#### Interactive Learning and Decision Making: Foundations, Insights & Challenges

Frans A. Oliehoek

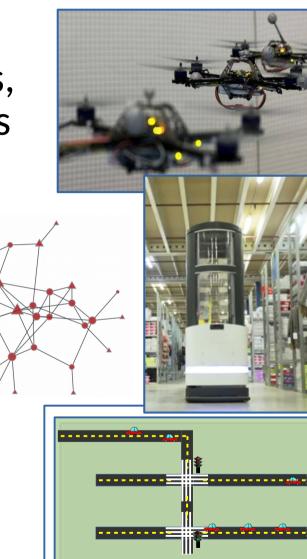


Early Career Spotlight Track – IJCAI 2018, Stockholm

# Goal: designing intelligent agents

• Design intelligent agents (systems, robots) for complex environments

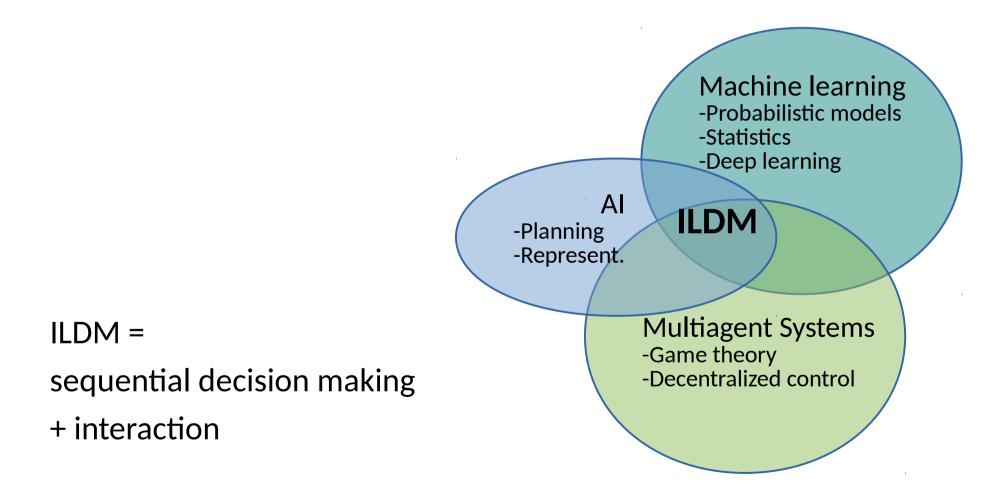
- Agents will interact with...
  - ...each other,
  - …humans, and
  - ...their unknown environments



IJCAI 2018

Frans A. Oliehoek - Interactive Learning & Decision

# What is Interactive Learning & Decision Making (ILDM)?



IJCAI 2018

Frans A. Oliehoek - Interactive Learning & Decision Making

## Interactive

The Oxford dictionary defines

#### interactive (adj)

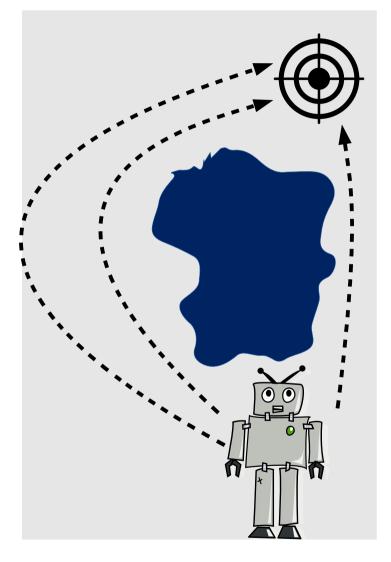
- (of two people or things) influencing each other,
- Allowing a two-way flow of information [...]



→ the key characteristic: **two-way flow of influence**.

# Sequential Decision Making (SDM)

- Actions over multiple time steps
- SDM problems are complex...
  - immediate vs long-term rewards
  - deal with uncertainties (stochasticity, partial information)
- Manual programming is difficult
  - Instead: "programming via rewards"
  - planning / reinforcement learning

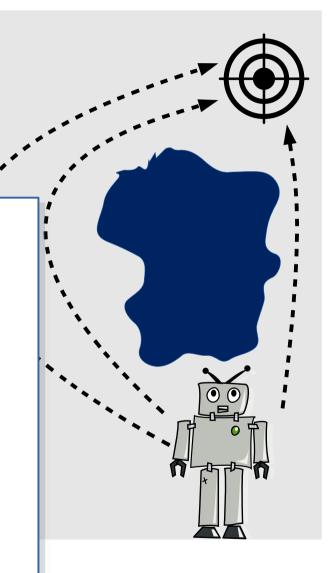


# Sequential Decision Making (SDM)

- Actions over multiple time steps
- SDM problems are complex...

And interaction adds to the complexity...

- intelligent agents will live in a multiagent world: multiple agents / humans
- → Near-impossible to manually program
  → How? Need principled methods!



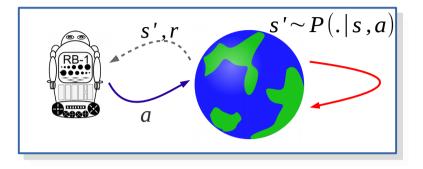
#### Foundations



IJCAI 2018

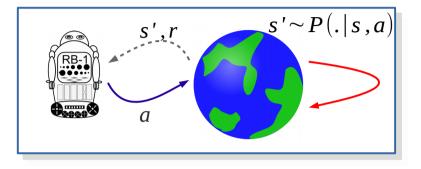
## ILDM... How? Formal Models!

- Community realized that action uncertainties need representation
  - MDP embraced by RL community
- For a long time: "POMDPs are intractable..."
  - scalability has seen great progress (e.g., POMCP)
  - more and more applications emerging!



## ILDM... How? Formal Models!

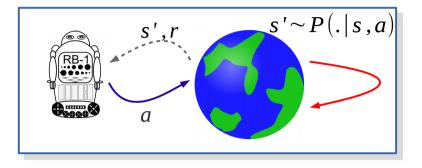
- Community realized that action uncertainties need representation
  - MDP embraced by RL community
- For a long time: "POMDPs are intractable..."
  - scalability has seen great progress (e.g., POMCP)
  - more and more applications emerging!

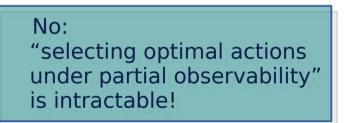


No: "selecting optimal actions under partial observability" is intractable!

# ILDM... How? Formal Models!

- Community realized that action uncertainties need representation
  - MDP embraced by RL community
- For a long time: "POMDPs are intractable..."
  - scalability has seen great progress (e.g., POMCP)
  - more and more applications emerging!





• Bottom line: we have seen great progress due to

→ minimal models that represent all relevant aspects ←

So... if your problem has multiple decision makers
 → you should probably represent that.

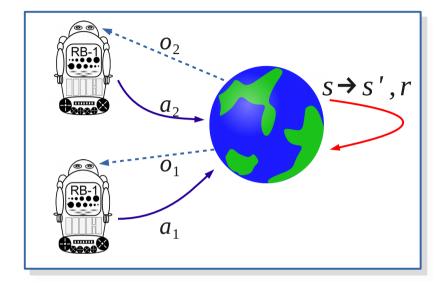
IJCAI 2018

## **Decentralized POMDPs**

- A minimal framework for
  - multiple cooperative agents
  - stochastic environments
  - state uncertainty

• A Dec-POMDP 
$$\langle S, A, P_T, O, P_O, R \rangle$$

- n agents
- S set of states
- A set of **joint** actions
- $P_{\tau}$  transition function
- O set of **joint** observations
- $P_{o}$  observation function
- R reward function
- Act based on **individual** observations



$$a = \langle a_1, a_2, \dots, a_n \rangle$$
  

$$P(s'|s, a)$$
  

$$o = \langle o_1, o_2, \dots, o_n \rangle$$
  

$$P(o|a, s')$$
  

$$R(s, a)$$

IJCAI 2018

Frans A. Oliehoek - Interactive Learning & Decision Making

## **Decentralized POMDPs**

Yes, these are horribly complex to solve optimally... ►NEXP-complete [Bernstein et al. 2000]

▶ but no easy way out - this is a minimal model.

...but we are making steady progressE.g., multi-robot systems - Christopher Amato et al.



• PR2 + 2 turtlebots for faster drinks delivery!

 $s \rightarrow s', r$ 

## What does it buy us?

- Optimal plans need to trade-off:
  - immediate vs long-term reward (as in MDPs)
  - knowledge gathering vs exploitation (as in POMDPs and/or RL)
  - exploiting individual knowledge vs being predictable
- Using Dec-POMDPs (and similar models) we can study quantitatively and qualitatively the effect of interaction.

## Some Insights

- This talk, zoom in on just **two insights**:
  - influence-based abstraction (IBA)
  - transfer planning (TP)

See paper for a more...!

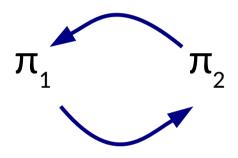
## Insights: Influence-based Abstraction & Search



IJCAI 2018

## **Multiagent Influences**

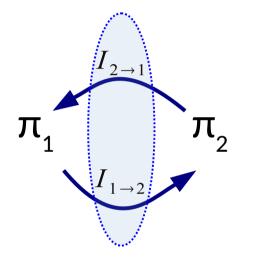
• Interaction: the combination of policies matters



# Policies influence each other best response $\pi_2$ depends on $\pi_1$

## **Multiagent Influences**

• Interaction: the combination of policies matters



# Influence-Based (Policy) Abstraction: summarize the influence of the policy of the other

[Becker et al. 2003, Becker et al., 2004, Varakantham et al., 2009, Witwicki and Durfee, 2010b, Velagapudi et al., 2011, Oliehoek et al. 2012]

IJCAI 2018

Frans A. Oliehoek - Interactive Learning & Decision Making

# Influence representations – Intuition

• Spatial Task Allocation Problems [Claes et al. AAMAS 2015, 2017]

Task locations known

 $\rightarrow$  what is the prob. that each task will be addressed by teammates?

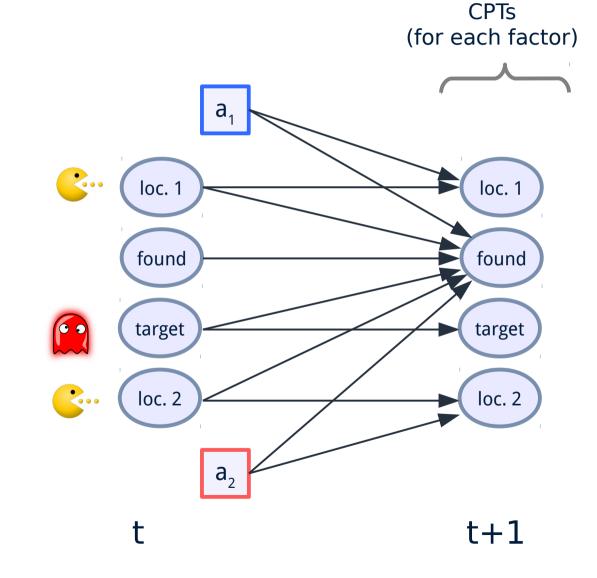
#### Example: HouseSearch [Witwicki et al. AAMAS, 2012]

- Team of agents
- A target

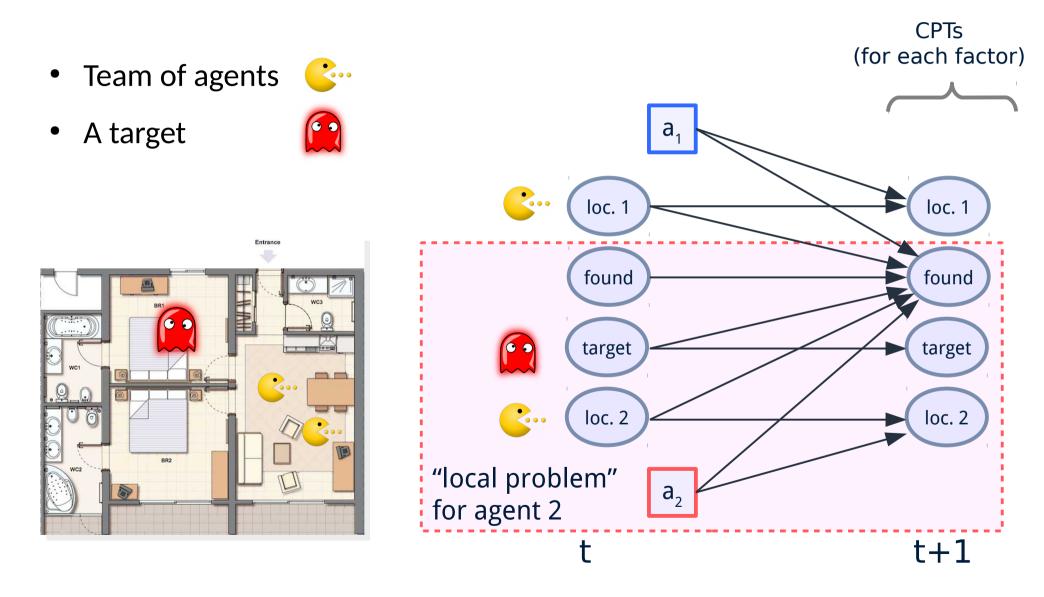


**~**...



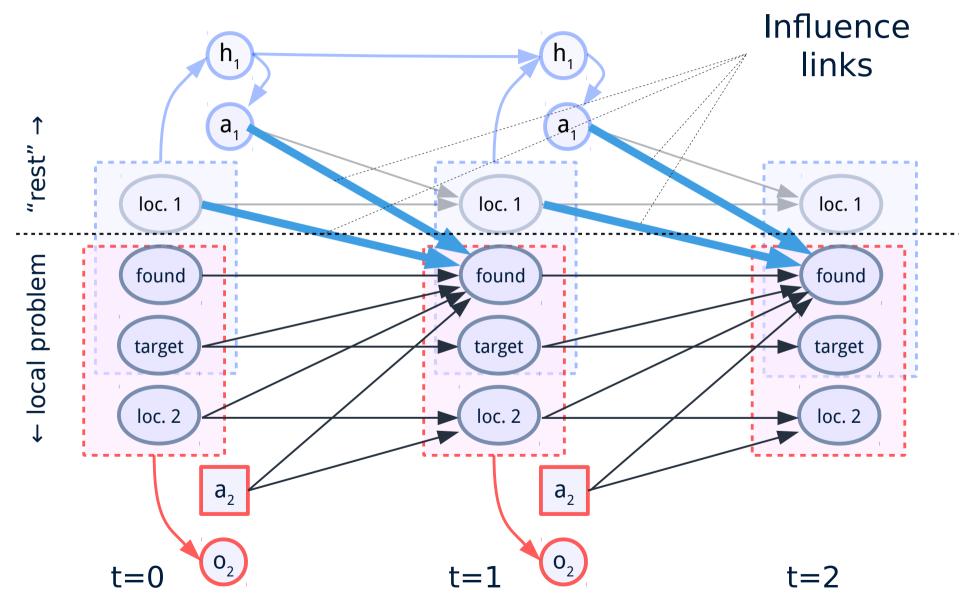


#### Example: HouseSearch [Witwicki et al. AAMAS, 2012]



IJCAI 2018

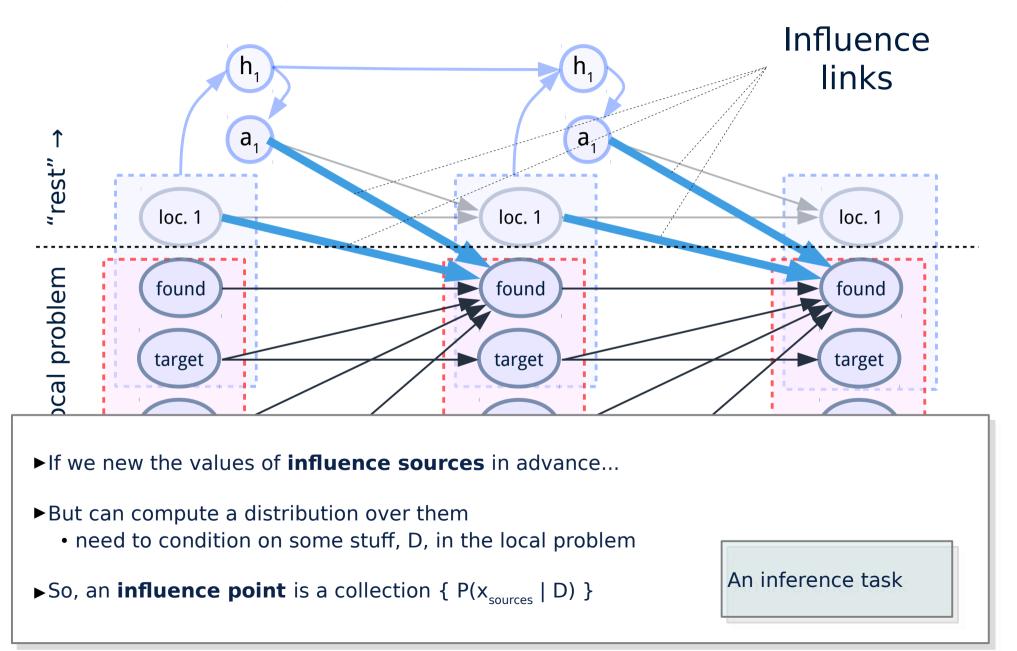
#### **Agent 2's Perspective**





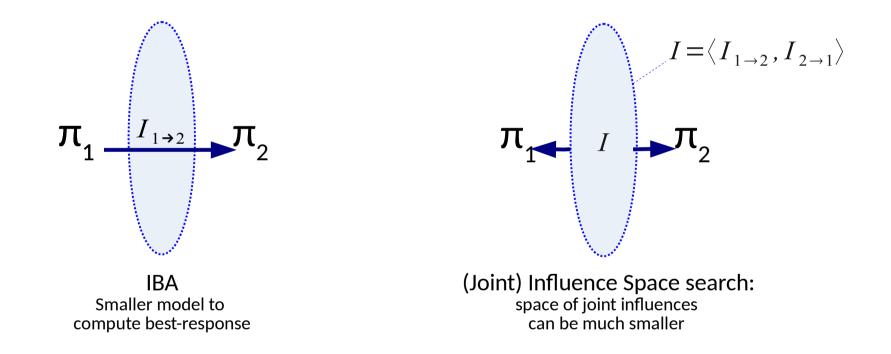
Frans A. Oliehoek - Interactive Learning & Decision Making

#### **Agent 2's Perspective**



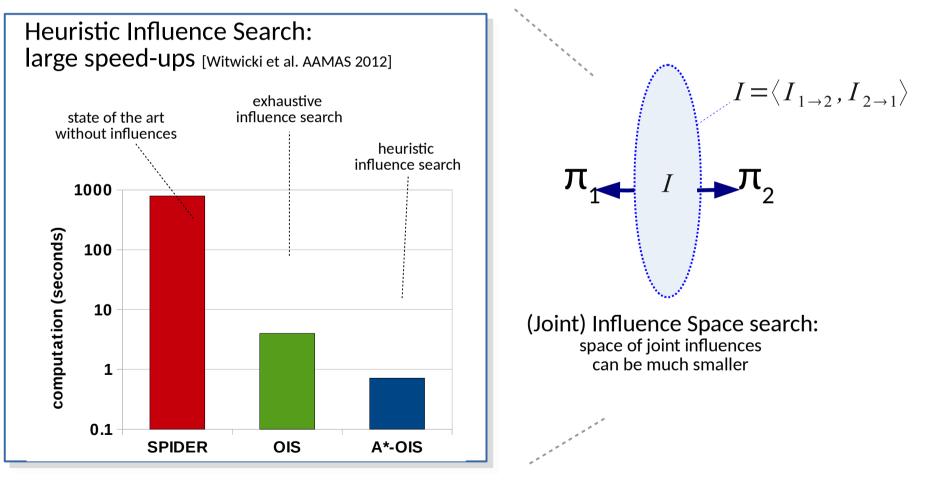
## Why/How To Use Influences?

- Influence-based abstraction (IBA): local best-response
- Influence search: joint optimization

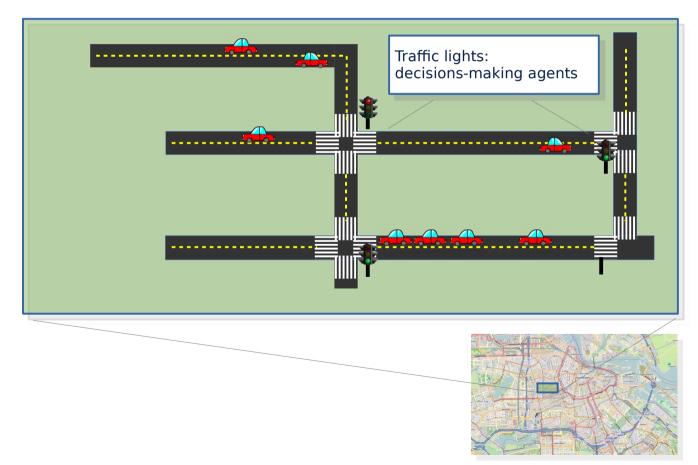


## Why/How To Use Influences?

- Influence-based abstraction (IBA): local best-response
- Influence search: joint optimization

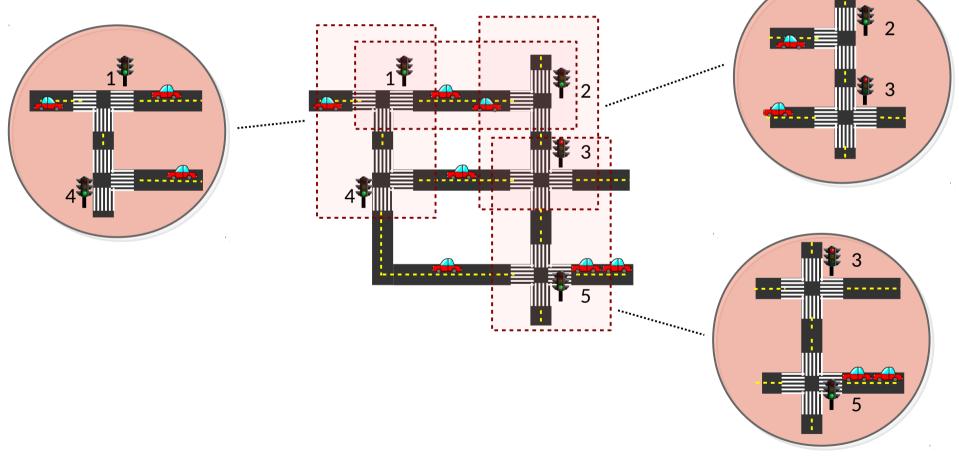


## Insights: Scaling via Transfer Planning



# Transfer Planning (TP)

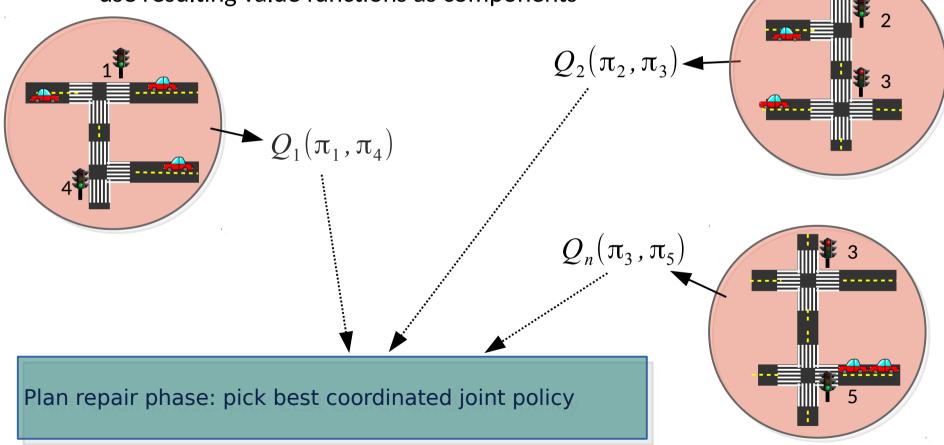
Define source problem for each component of the approximate value function



Frans A. Oliehoek, Shimon Whiteson, and Matthijs T. J. Spaan. Approximate Solutions for Factored Dec-POMDPs with Many Agents. In Proceedings of the Twelfth International Conference on Autonomous Agents and Multiagent Systems, pp. 563–570, 2013.

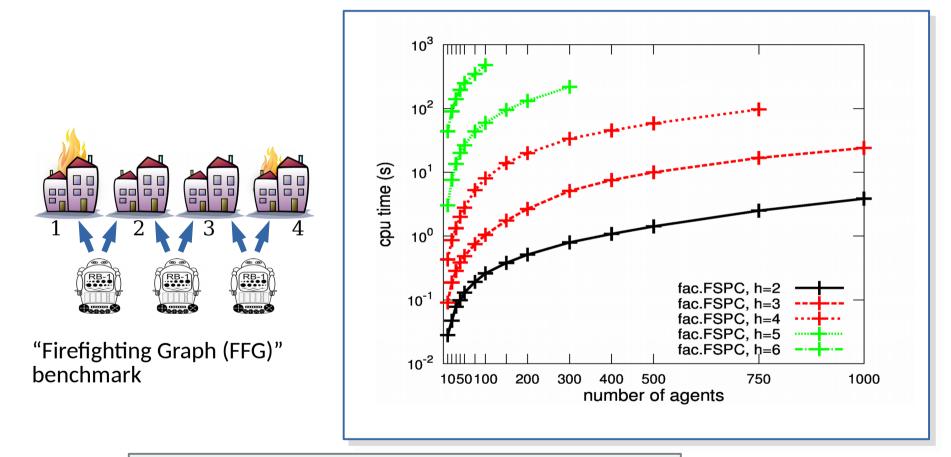
## **TP for Dec-POMDPs**

- Solve source problems independently
  - use resulting value functions as components



## What can we say about TP?

• Unprecedented scalability: 100s of agents



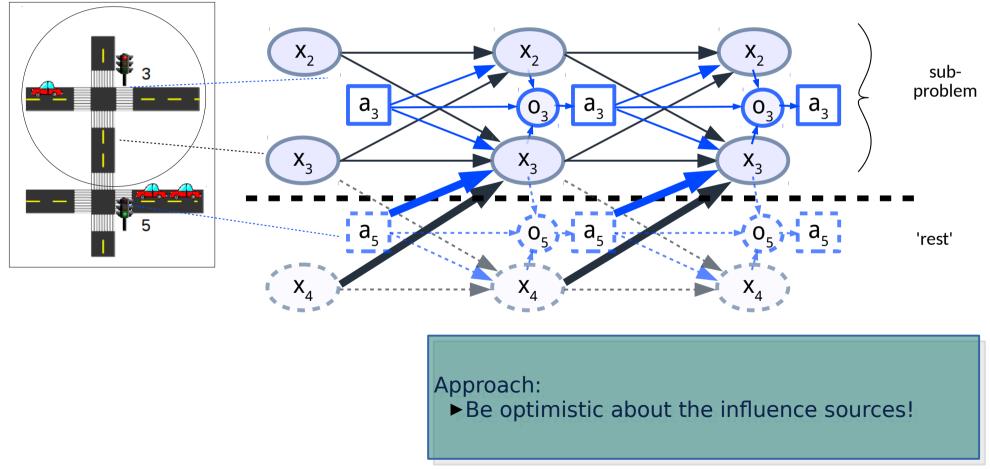
But completely heuristic: No guarantees on solution quality....

IJCAI 2018

Frans A. Oliehoek - Interactive Learning & Decision Making

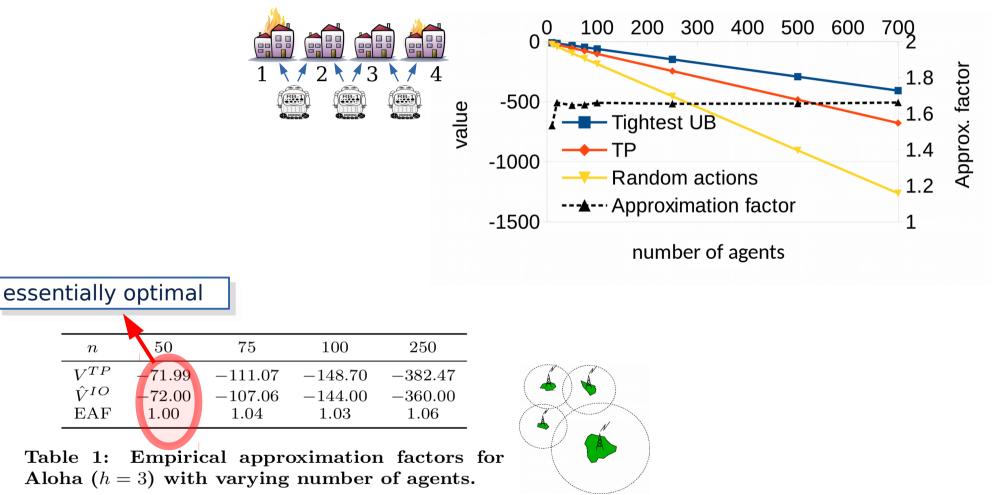
## Bounds via Influence-optimism

• Compute local upper bound on value [Oliehoek et al. IJCAI 2015]



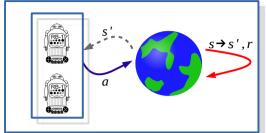
## **Upper Bounds for Large Problems**

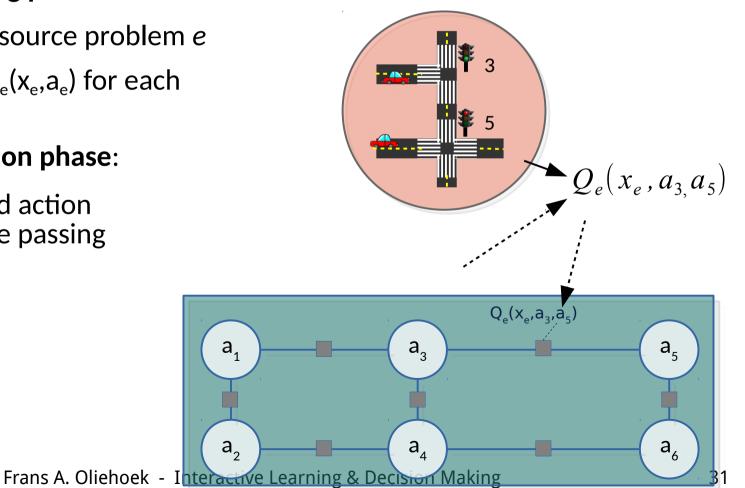
• Provide UB for interpretation of Transfer Planning [Oliehoek et al. '15 IJCAI]



# **Transfer Planning for MMDPs**

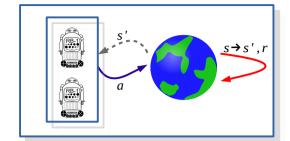
- Can also use TP when agents can synchronize: • multiagent MDPs (MMDPs)
- off-line planning phase: •
  - solve each source problem *e*
  - compute  $Q_e(x_e, a_e)$  for each
- on-line execution phase:
  - coordinated action via message passing

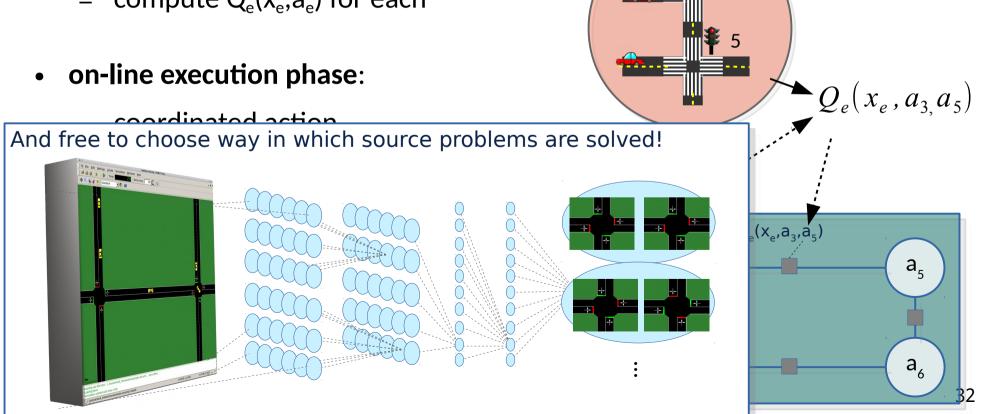




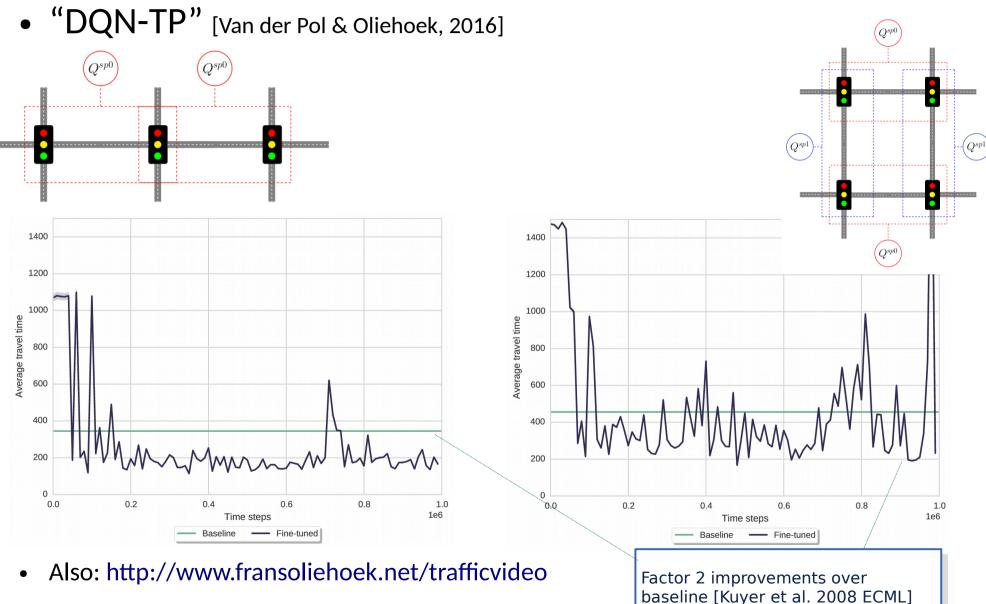
# **Transfer Planning for MMDPs**

- Can also use TP when agents can synchronize: multiagent MDPs (MMDPs)
- off-line planning phase:
  - solve each source problem e
  - compute  $Q_e(x_e, a_e)$  for each





## **Coordinated Deep RL**

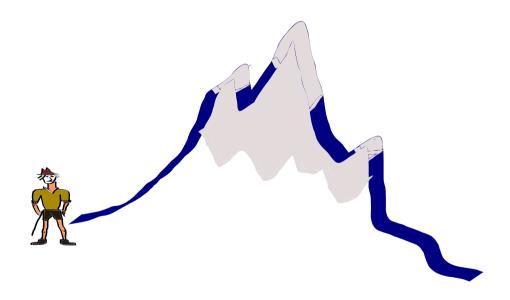


IJCAI 2018

Frans A. Oliehoek - Interactive Learning & Deci

33

#### Challenges



# MARL (incl. "deep" MARL)

- Deep RL has shown ability to scale to impressive domains
- But... much MARL does not take into account interaction explicitly
  - Individual Q-learners: may work... or not.
- Some deep MARL does. [E.g., Foerster et al.'16, Mordatch&Abeel'18, Foerster et al.'18, etc.]
- Challenges:
  - scalability in number of agents remains a challenge
  - truly decentralized learning remains challenging
    - e.g., policy gradient works for Dec-POMDPs [Peshkin et al 2000] but still requires observation of return of entire system.



IJCAI 2018

## Learning Models (incl. of other agents and humans)

- Researchers turning to model-based RL: learning ("world") models.
- But how can we learn models of interaction/interactive settings?

- E.g. how to model human behavior in a warehouse?
- Progress? Need benchmark simulators?

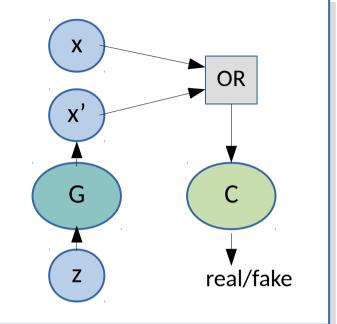
# **Understanding Interactive Learning**

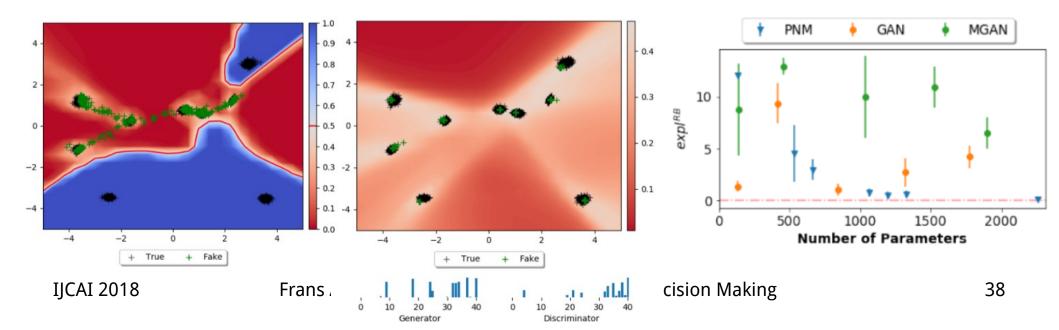
- Interaction at basis of successful learning paradigms:
  - Self-play
  - Learning from demonstration
  - Active learning
  - Learning in competition (e.g., GANs)
- Challenges:
  - better understanding when/how these work?
  - insights from MAL and game theory to improve these?



#### E.g. GANS [Oliehoek et. al 2018 arxiv]

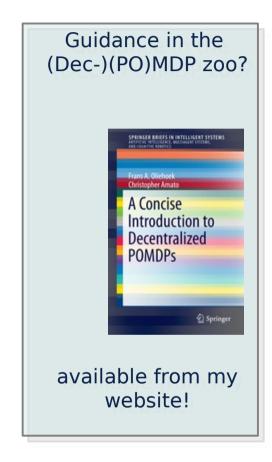
- Using game-theoretic methods:
  - avoid 'local Nash equilibria'
  - better, more robust solutions





## Summary

- Many of the problems have interactive aspects: 2-way stream of influence
- Main message: important to explicitly think about interaction, and represent it in the frameworks we consider
- This will lead to:
  - better multiagent RL
  - better HRI / HCI
  - and even better "single-agent" machine learning (reinforcement learning, active learning, GANs, etc.)



# Acknowledgments / Join my lab!

• Collaborators/mentors:

(amongst others) Nikos Vlassis, Frans Groen, Sammie Katt, Christopher Amato, Shimon Whiteson, Matthijs Spaan, Stefan Witwicki, Leslie Kaelbling, Rahul Savani, Jie Zhang, Athirai Irissappane, Diederik Roijers, Yash Satsangi, José Gallego-Posada, Elise Van der Pol, Edwin D. De Jong, Roderich Groß, Daniel Claes, Hendrik Baier, Daniel Hennes, Karl Tuyls, ...

• References: see paper!

- Funding agencies:
  - NWO

Netherlands Organisation for Scientific Research

#### **EPSRC**

Engineering and Physical Sciences Research Council





European Research Council Established by the European Commission

I am still looking for one postdoc to join the ERC INFLUENCE project!

https://www.fransoliehoek.net/wp/vacancies/