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ABSTRACT
Cross-Entropy Method (CEM) is a gradient-free direct policy search

method, which has greater stability and is insensitive to hyper-

parameter tuning. CEM bears similarity to population-based evo-

lutionary methods, but, rather than using a population it uses a

distribution over candidate solutions (policies in our case). Usu-

ally, a natural exponential family distribution such as multivariate

Gaussian is used to parameterize the policy distribution. Using a

multivariate Gaussian limits the quality of CEM policies as the

search becomes confined to a less representative subspace. We

address this drawback by using an adversarially-trained hypernet-

work, enabling a richer and complex representation of the policy

distribution. To achieve better training stability and faster conver-

gence, we use a multivariate Gaussian CEM policy to guide our

adversarial training process. Experiments demonstrate that our ap-

proach outperforms state-of-the-art CEM-based methods by 15.8%

in terms of rewards while achieving faster convergence. Results

also show that our approach is less sensitive to hyper-parameters

than other deep-RL methods such as REINFORCE, DDPG and DQN.
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1 INTRODUCTION
In Reinforcement Learning (RL), Cross-Entropy Method (CEM) [24]

is a gradient-free optimization approach used to directly search in

the policy space. Different from value-based and policy gradient-

based approaches like Deep Q-Networks (DQN) [27], Asynchronous

Advantage Actor-Critic (A3C) [26], and Trust Region Policy Op-

timization (TRPO) [33], CEM has several advantages [21, 32, 36]:

1) it is easy to implement; 2) the evolutionary nature of CEM in

population selection leads to fast convergence and the sampling
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procedure is easy to parallelize for scalability; and 3) its training

is more stable and insensitive to hyper-parameters. However, the

performance of CEM is limited due to the inadequacy in policy dis-

tribution representation especially for large and complex problems.

To explain, CEM is similar in spirit to population-based search

methods such as evolutionary algorithms, but rather than using a

population it uses a distribution over candidate policies. This param-

eterized distribution, 𝑝 , is iteratively updated: during every training

iteration, a batch of policies are sampled from 𝑝 and are ranked

based on their episodic rewards (returns). Then the distribution 𝑝

is updated towards elite policies (those with high return). While

CEM has proven effective in many settings [19, 29, 36], a limitation

in the way it is employed in RL settings lies in the representation

of 𝑝: commonly, a natural exponential family distribution (NEF)

such as a multivariate Gaussian is used. This, however, imposes

severe constraints on the distributions that can be represented (e.g.,

only uni-modal), which limits the ability of 𝑝 to properly guide the

search. Mixture Gaussian [20] distribution can be used instead, but

it requires user-defined assumptions on the number of modes.

In this paper, we address the restrictive policy representation

issue typically observed in multivariate Gaussian CEM without

imposing any prior assumptions on the number of modes. We use a

hypernetwork [40] to represent the policy distribution, from which

the parameters/weights for a main policy network are sampled. We

optimize the policy distribution (hypernetwork) using an adversar-

ial process [14]. Further, we use the elite policies sampled from a

separate multivariate Gaussian CEM as supervision during adver-

sarial training. This hybrid combination of CEM guided adversarial

hypernetwork allows us to effectively learn the complex policy dis-

tribution (via hypernetwork), as well as achieve faster convergence

and reduce hyper-parameter sensitivity (via guiding multivariate

Gaussian CEM). Thus, our approach can achieve optimal results

faster with limited tuning. We list our main contributions below:

• Our key innovation is in using the adversarially-trained hypernet-

work architecture to address the issue of restrictive policy distri-

bution in CEM. Hypernetworks can model complex multi-modal

distributions [23, 28, 40] and provide better generalization by

introducing uncertainty in policy network weights [1], thereby,

more suitable to represent a policy distribution than multivariate

Gaussian. Existing CEM-based deep-RL techniques [19, 29, 36]

do not analyze the expressive power of CEM in representing the

policy distribution and only focus on addressing the issues of



hyper-parameter sensitivity and training instability. Whereas,

we aim to achieve both in our proposed work.

• In multivariate Gaussian CEM, the policy distribution updates

are skewed heavily towards the first few elite policies during the

early iterations, resulting in sub-optimal results. While one may

wonder if the multivariate Gaussian CEM is fit to guide the hyper-

network, we address this issue by using a replay buffer to store

only the elite policies from the guiding CEM and use them to train

the hypernetwork. The elite policies are also carefully assessed

before being added to the replay buffer to prevent premature

sub-optimal convergence. It also improves sample efficiency [29]

compared to discarding samples after every iteration.

• We provide a simple incremental approach to learn the policy

distribution without explicitly learning a Q-function or using

policy gradients which are highly sensitive to hyper-parameters.

The guiding CEM helps to achieve stable and faster convergence.

• We conduct experiments on discrete and continuous action prob-

lems. Results shows that: 1) our approach enables richer policy

representation, outperforming other state-of-the-art CEM-based

approaches: Qt-Opt [19], Qt-Opt+DDPG [36] at least by 15.8%

in rewards; 2) our approach achieves faster convergence than

Qt-Opt and Qt-Opt+DDPG (62.9% less training time) and is less

sensitive to hyper-parameters tuning than deep-RL methods such

as REINFORCE [41], DDPG [22] and DQN [27].

2 RELATEDWORK
In RL, the appeal of CEM-based direct policy search methods largely

comes from its hyper-parameter insensitive, stability and highly

parallelizable characteristics. Deep Q-learning methods [27] often

suffer from hyper-parameter sensitivity and instability across dif-

ferent training runs. Techniques to address these issues have been

proposed: [26, 39] reduce training instability to an extent; TRPO [33]

and Proximal Policy Optimization (PPO) [34] reduce variance in

policy gradient estimation; Deep Deterministic Policy Gradients

(DDPG) [22], Twin Delayed Deep Deterministic Policy Gradients

(TD3) [12], Soft Actor-Critic (SAC) [16] offer better training stabil-

ity; however, all of them have more room for improvement [36].

Researchers have used CEM [24] together with deep-RL tech-

niques to reduce hyper-parameter sensitivity and training instabil-

ity. CEM-RL [29] combines CEM and TD3. Qt-Opt [19] is a CEM

guided Q-learning method for continuous actions. In Qt-Opt, there

is no policy being learned directly and the role of CEM is only for ac-

tion selection based on the estimated Q-value. Qt-Opt+DDPG [36]

extends Qt-Opt by learning a policy to approximate the CEM action

selection process for reducing inference time. All of them use mul-

tivariate Gaussian to represent the CEM policy distribution. Our

method shares the idea of using CEM to guide the training process

from Qt-Opt, but, we use hypernetwork instead of multivariate

Gaussian. Unlike Qt-Opt and Qt-Opt+DDPG, our method does not

require a Q-function estimator as we update in the policy space

directly. Further, instead of using CEM for action selection as in

Qt-Opt, we use it to search the policy parameter space.

Multivariate Gaussian CEM policies tend to be easily trapped

in local optima due to their inability to handle multiple modes

and updates tend to skew towards lucky episodes during early

iterations. Some works aim to suppress this overly greedy and opti-

mistic update behaviour in CEM, such as applying noisy CEM [37]

and introducing a smoothing parameter while updating the dis-

tribution [6]. Another stream of work focuses on addressing the

fundamental bottleneck of representing and maintaining a complex

parametric distribution [20]. They use a multi-modal CEM with

mixture Gaussian models to alleviate the influence of elites in the

first few iterations. However, such multi-modal Gaussian mixture

may not outperform its uni-modal counterpart at all times [13], as

additional assumption on the number of components in the mixture

is needed. In our approach, we use hypernetwork (without assump-

tions on modality) to represent the complex policy distribution.

Adversarially-trained hypernetworks were used for image clas-

sification [18], where the hypernetwork generates weights for mul-

tiple classification models. In our work, we use an adversarially-

trained hypernetwork to generate weights for policy network. How-

ever, unlike the supervised image classification problem, in our case,

there is no ground-truth available and we rely on elite samples from

a separate multivariate Gaussian CEM to guide the training process.

3 MULTIVARIATE GAUSSIAN LIMITATION
Existing theory on CEM applied in combinatorial optimization prob-

lems [5, 25, 31] show that CEM can find the optimal solution when

sampling distribution converges to a unit mass with probability of 1.

These works use the Bernoulli distribution, which can be viewed as

a special case of bi-modal or joint distribution of two different Dirac

delta functions [2] to sample discrete binary solutions. CEM-based

approaches [19, 29, 36] in RL, however, use uni-modal multivariate

Gaussian distribution while searching for policy parameters. The

constrain of parametric distribution becomes more pronounced

when the parameters are continuous, for example, neural network

policies whose parameters, i.e., weights are continuous. In addition

to the restrictive representation, the rare-event probability maxi-

mization nature of CEM updates causes the policy distribution to

skew heavily towards the first few elite policies determined dur-

ing the early iterations. This behaviour quickly limits the search

space to a much smaller neighbourhood, allowing CEM to be easily

trapped in a local optimum, mainly due to the lack of exploration

and the inability to handle multiple modes [11].

To illustrate these shortcomings, a maximization problem is

performed on (the negative of) Schwefel function [35] using mul-

tivariate Gaussian CEM. The function 𝑓 (𝑥) is shown in Fig. 1a

with parameters 𝑥1 and 𝑥2, where black regions represent maxima

and dark red regions represent minima. 𝑓 (𝑥) is non-convex and

complex, with multiple geometrically distant local maxima. Fig. 1b

shows the contour plots across different CEM update iterations.

The global optimum is marked with yellow star and the blue dots

represent sampled values from the distribution. The (uni-modal)

multivariate Gaussian distribution quickly collapses into a narrow

distribution along the 𝑥2-axis during the 10th iteration. This quickly

eliminates any further exploration along 𝑥2, and subsequently con-

verges to a point mass distribution at a local optimum within 15

iterations. Further, multivariate Gaussian assumes i.i.d (independent

and identically distributed) parameters, implying that the conver-

gence favours a parameter value which leads to high 𝑓 (𝑥) score
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