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Abstraction is a key concept in AI. One could argue that the ability to
focus on precisely the relevant aspects of a problem is a de�ning feature of
intelligent behavior. How else can we make sense of such a complex place as the
real world, consisting of trillions of objects, billions of people, and constantly
changing con�gurations of these? However, even though in many cases it may
be relatively easy to determine which factors are most important, it is not clear
how to abstract away factors which are deemed less important: even if less
important, they still have some in�uence.

In this blog post, we will try to give some of the intuitions behind in�uence-
based abstraction (IBA), a form of state abstraction that eliminates entire state
variables, also called (state) factors. IBA provides a formal description of do-
ing abstraction in complex decision making settings, and makes links between
reinforcement learning (RL) in partially observable settings, supervised learn-
ing, and causal inference. It splits a complex decision making problem into two
separate problems: a local Markov (i.e., causal) decision making problem (e.g.,
reinforcement learning) and an in�uence prediction problem that can be ad-
dresses with supervised learning. Even though the in�uence-prediction problem
introduces a dependence on the local history, this novel perspective o�ers many
opportunities for e�cient planning and learning in both single and multiagent
settings.

The theory of in�uence-based abstraction as we will cover here was initially
developed in [12], and elaborated upon in a recent JAIR paper [13]. The goal
of this blog is to give a more high level description of the main concept, as well
as how it relates to current trends.

1 The High Level Idea

Imagine you have landed your �rst job as a waiter in a nice restaurant. As part
of your job you will need to interact with customers, and coordinate with the
chef, as well as any other waiters. Luckily for you, this does not mean that
you know everything about them: you are not required to know or understand
the customers' preferences regarding footwear, nor do you need to understand
exactly how the cook prepares the meal. As long as you can understand the
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Figure 1: A waiter does not need to know everything about the cook in order
to collaborate.

preferences expressed about the food, and can anticipate the timing of the cook,
you can go a long way on your �rst shift.

The above makes clear how abstraction can be critical for dealing with com-
plex decision making problems. There are many types of abstraction [10], rang-
ing from very speci�c ways of aggregating states, to general applications of
function approximation. Here, we focus on the idea of in�uence-based abstrac-
tion, which originated from the multiagent planning community, [e.g., 1, 24, 16,
28, 25], but is a speci�c, principled, approach to the more general idea of state
abstraction [e.g., 19, 8, 4, 9, 6], and hence also applies to single agent settings.

As an example, we can think of planning a trip to go `wadlopen' (translates
to: mud walking) in the beautiful Dutch Wadden Sea. During low tide, much of
the sea falls dry and you can walk over the seabed from sand back to sand bank.
Clearly, you want to plan your trip appropriately to avoid getting stuck on one!
Fortunately, this is possible without fully predicting the exact height of the tide
during every second of your trip, let alone reasoning about the exact interaction
between water particles, moon and wind that gives rise to that. By merely
predicting at what time the lowest parts of your route will become inaccessible,
you can plan your trip.

These two examples make clear that, in many di�erent complex decision
problems, restricting our attention to appropriate parts of the problem might be
su�cient as long as we are able to predict the in�uence (timing of the cook, time
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Figure 2: A dynamic Bayesian network can compactly represent an interaction
between a cook (black variables) and a waiter (red variables).

of routes being blocked) of all the other variables that we abstract away (cook's
state of mind, water particles interacting). This potentially huge simpli�cation
of the problem can lead to signi�cant computational bene�ts.

2 Formalizing In�uence-based Abstraction

In�uence-based abstraction targets decision making in structured complex prob-
lems, that can be formalized as `factored POMDPs'. These are a special case
of the partially observable Markov decision process (POMDP)�which itself is
a standard framework for representing decision making problems with state un-
certainty [7, 20]�in which the states consist of some number of state variables
or factors. By making use of Bayesian networks to exploit the conditional inde-
pendence between these factors, it is often possible to compactly represent the
model (transitions, observations, and rewards) [2], as illustrated in Figure 2.
We will refer to this as the `global' model.

In much of the work we have done on in�uence-based abstraction, we assume
that the global model is given and we `just' want to plan for some number of
time steps T . However, we typically have some motives (e.g., planning e�ciency,
storage size) to reduce the size of the problem by building an abstraction. E.g.,
while planning we do not want to consider the interaction between the moon
and the water particles, even if we could model this quite accurately. However,
we stress that the conceptual impact of this form of abstraction goes beyond just
planning: it describes under what assumptions a good solution can be
found when completely ignoring a large part of the original problem
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Figure 3: The dynamic Bayesian network unrolled over time. The diagram
illustrates how the waiter only models a subset of variables.

(whether we had the full model, or not).
In in�uence-based abstraction, our goal is to abstract away some set of state

variables. We are interested in characterizing lossless abstractions�i.e., ones
that do not lead to loss in task performance or value�and therefore will assume
that we will only abstract away latent (i.e., non-observable) state variables,
since throwing away actual observations can typically not be done without loss
in value. A so-called local-form model speci�es which variables we will abstract
away. Speci�cally, a local-form model is a factored POMDP (or partially ob-
servable stochastic game in the multiagent case) that speci�es:

• The modeled variables. These are the (important) variables that are
explicitly represented in the `local model' that the agent can use after
abstraction. The `local state' of the modeled variables at time step t will
be denoted xt

l .

• The non-modeled variables. These are the latent variables that are
deemed less important. We want to avoid explicitly reasoning about these
(but somehow still capture their `in�uence').

To keep the exposition clear, we focus on the case where the local state xl is
fully observable. However, this can be generalized as long as the local states
include all the reward-relevant and observation-relevant variables, i.e. those
state variables that are direct parents of the rewards and observations [13].

Now let us turn our attention to Figure 3. We want to ignore the non-
modeled variables, but in order to predict the next local states (and speci�cally
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the variable `p' in Figure 3) will need to reason about the arrows pointing into
the local problem. We call the source of such an in-pointing arrow (the variable
`r' in Figure 3) an in�uence source, and will denote such sources with u. The
variable `p' in the local state is called an in�uence destination. Given this
terminology, it may become apparent that, if we can predict the (probabilities
of the) in�uence sources, then we can also predict the (probabilities of the)
in�uence destinations. In other words, this enables us to do local planning.

This brings us to the main result of in�uence-based abstraction [13], which
states that for a local-form model it is possible to construct a so-called in�uence-
augmented local model, which is speci�ed only over local variables without loss
in value.

To accomplish this, such a model uses a representation, called an (exact)
in�uence point, to predict the in�uence sources, which in turn is used to predict
the in�uence destinations. Speci�cally, if we let ht denote the local history of
local states and actions, then p(ut|ht) is the in�uence exerted at stage t and
can be used to predict the probability of the in�uence destinations at the next
time step t + 1. Alternatively, it is also possible to try to directly predict the
in�uence destinations, see [13] for details. Of course, the other local variables
just depend on their parents in the previous time step.

3 Di�erentiating Markovian vs Non-Markovian

State Features

In this way, IBA provides a new perspective on decision making in such struc-
tured problems: it allows us to split the local state into two types of local state
variables xl = 〈xo, xn〉:

1. The ones that behave Markovian, because all their parents are in-
cluded in the local model. We will denote the state of these variables as
xo (`o' stands for for �only locally a�ected� state variables).

2. The ones that behave non-Markovian, because there is at least some
variable u that we abstracted away that in�uences it. We let xn denote the
state of such a non-Markovian (or �non-locally a�ected�) state variable.

To make this clear, note that the in�uence exerted at stage t, p(ut|ht), leads to
an induced CPT for the in�uence destination xn at stage t+ 1:

p(xt+1
n |ht, xt

LocPar(n), a
t) =

∑
ut

p(xt+1
n |ut, xt

LocPar(n), a
t)p(ut|ht) (1)

where LocPar(n) denotes the set of local variables that are parents of xn, and
xt
LocPar(n) denotes their value at stage t. Clearly, the dependence on the history

reveals the non-Markov nature of xn.
At this point the reader may wonder how this is di�erent from just thinking

of the entire local problem as a POMDP: certainly, when conditioning on the
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history, one can directly predict the entire local state p(xt+1
l |ht, at). However,

such a perspective discards the structure in the problem, which is important for
several reasons:

1. Predicting the value of a single (or small set of) in�uence vari-
able(s) might be much easier than predicting the full local state:
it is lower dimensional and predicting less requires less information. E.g.,
when we go mud walking, we only need to reason about the amount of
time since the last high tide to predict when parts of our route will get
blocked. Predicting our precise progress requires much more information
and is a more complex function. IBA formalizes this by de�ning the in-
�uence as p(ut|Dt) where Dt is a su�cient statistic of the local history ht

(also called the �d-separating set� or �d-set�).

2. Predicting the value of the Markovian variables xo, certainly is
much easier, since we do not require any history dependence.
E.g., when we go mud walking, we can predict the e�ect of taking a sip of
water from our drinking bottle without even thinking about the tide, or
how long ago we departed.

3. Moreover, if we are in the learning setting, for such Markovian vari-
ables it will be much easier to learn causal models, which means
that if dynamics of some parts (e.g., some state variables) of the prob-
lem change, we can still reuse other parts, as they would form a modular
representation.

Of course, it might be that advanced POMDP reinforcement learning methods
in the future can automatically discover this structure of two types of state
variables, and that is a worthwhile research agenda. However, given that we
now know this structure directly follows from relatively mild assumptions on
weak coupling of processes, we propose to incorporate such knowledge (e.g., in
the form of inductive biases) in methods the �eld develops in the future.

4 Compact and Approximate In�uence Repre-

sentations, and Learning Them

One thing to note about the expression for the induced CPT (1) is that p(ut|ht)
captures the in�uence of the external part of the system for predicting xt+1

n .
The exact in�uence point (EIP) therefore is nothing more than the collection

{p(ut|ht)}T−1
t=0 of such conditional probabilities for di�erent time steps (we as-

sume a �nite horizon in this exposition).
However, this immediately shows the intractability of such EIPs: the number

of ht grows exponentially with t. By itself IBA does not lead to a free lunch:
computing an exact in�uence in general is intractable.

To deal with this issue research so far has explored two directions:

1. exploiting structure of special cases to �nd tractable representations.
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Figure 4: Left: a simpli�ed discrete tra�c simulation. Right: the local model of
the central intersection together with predictions of the in�uence outside of this
local model, where the opacity indicates how sure the model is of its prediction.

2. learning approximate in�uence points (AIPs).

The �rst direction is directly related to the idea of using a su�cient statistic Dt

mentioned above. For instance, we can �nd compact exact statistics in a variant
of the Planetary Exploration domain [28]. In this problem, we consider a mars
rover that is exploring the planet and needs to navigate to a goal location. A
satellite can compute a detailed navigation plan for the rover, making it easier
to progress towards the goal. This is modeled with a `plan' variable, indicating
whether or not a plan has been generated already. Unfortunately, the satellite
also has other tasks to take into consideration, so we do not know exactly if or
when the plan will be available. This means that the rover needs to predict the
probability p(atsatellite = plan|ht) that the satellite computes a plan, which will
then �ip the `plan' available variable to true in the next time step. However,
it turns out that in order to make this prediction, many things from the local
history ht are irrelevant, and the rover can therefore represent a more compact
p(atsatellite = plan|Dt). In this case, the history of the variable `plan' is a
su�cient statistic Dt, and given that in this problem the `plan' variable can
only turn true, Dt only needs to specify the time at which this switch happens.

Of course, in the general case, it might not be possible to �nd such compact
exact statistics. In such a case, p(ut|ht) is both too large to represent due to
the large number of local histories ht, as well as intractable to compute for
each ht, computing p(ut|ht) is a hard inference problem. In this case, we might
want to resort to trying to use approximate in�uence points (AIPs). The hope
is that even though computing the exact in�uence (the exact distribution of
the moment when some mud walking routes get blocked, which would depend
on water particle interactions and position of moon) is intractable, a coarse
prediction may still support very good decisions. Speci�cally, given that p(ut|ht)
corresponds to a special case of sequence prediction problem, we may be able
to use supervised learning methods to estimate p̂(ut|ht).

The idea is to use advances in machine learning to learn these approximations
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Figure 5: Approximate in�uence prediction for the tra�c example.

of in�uence Î = p̂(ut|hy). The left hand side of Figure 4 represents a tra�c
scenario with nine intersections, each one controlled by a tra�c light. We take
the perspective of the central tra�c light and the red square delimits its local
model. Three learning models have been employed to predict the in�uence
corresponding to the distribution of incoming and outgoing cars based only on
the local model, as shown in Figure 5. On the right side of Figure 4 we see how
a model manages to predict quite accurately the incoming and outgoing car
�ows. This supports the idea that we can learn good in�uence approximations
even for complex real-world scenarios.

Moreover, we derived a loss bound that suggests that the supervised learn-
ing loss is well aligned with minimizing the value loss [3]. Figure 6 (left) shows
the cross-entropy loss for the in�uence learning problem of the Mars Rover.
The right side of the �gure shows the value achieved by the policy learnt using
the approximations of the in�uence corresponding to each epoch. As expected,
during the �rst epochs we see the cross-entropy loss decreasing quickly and
correspondingly an increase in the value achieved with the progressive approxi-
mations. When the cross-entropy loss converges to its minimum also the value
approximates quite well the optimal value.

5 Further Implications

The idea of in�uence-based abstraction leads to, perhaps surprisingly many,
connections and implications for (multiagent) decision making and learning.
Full coverage is beyond the scope of this exposition, but we brie�y mention a
few further implications that have been explored.

For the case of a single agent that controls a part of a complex environment,
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Figure 6: Cross-entropy loss (left) and performance loss (right) correlate well
empirically.

there is evidence that learned AIPs can enable more e�cient online planning [5].
The basic idea is that by using an AIP we can construct a local model that sup-
ports faster simulations than the full global model would, which thus provides
a better trade-o� in terms of speed vs accuracy.

In multiagent systems, research has explored in�uence search [1, 27, 26].
Here the idea is that, since many policies of one agent (e.g., cook) can lead to
the same in�uence on another agent (e.g., waiter), the space of (joint) policies
is much larger than the space of (joint) in�uences. Therefore, searching in the
latter space can lead to signi�cant speed-ups.

While the theory of IBA was developed in the context of planning, we believe
that the insights it provides many implications for learning too. For instance,
the possibility of lossless abstractions asserted by the theory of IBA directly
implies that in multiagent settings, each agent could have an exact local (but
history dependent) value function. As such this provides a possible explanation
behind the success of value factorization in multiagent reinforcement learning
such as VDNs [23] and Q-Mix [17].

The perspective of splitting a problem in Markovian and non-Markovian
state variables can also be exploited in the context of Deep RL. In [22] we
introduce a memory architecture for single-agent POMDP RL in which recurrent
layers are only fed the variables in the agent's observations that belong to the d-
set. The rest of the observation variables (i.e. those that carry no information
about hidden state variables) are simply processed by a feedforward neural
network. This inductive bias is shown to improve convergence and learning
speed when compared against standard recurrent architectures. More recently,
Suau et al. [21] showed how the use of approximate IALS can speed up Deep
RL in complex systems.

The theory of IBA may also lead to new insights when addressing problems
where parts of the dynamics are non-stationary, i.e., may change over time [11].
The behavior of the tides, for example, may be di�erent in summer and winter.
As a non-stationarity of the system can always be seen as a latent variable that
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we did not account for, i.e. as a latent in�uence source, the theory of IBA is
directly connected to non-stationary. problems.

Finally, we are also interested in exploring the relation of in�uence-based
abstraction to ideas in causal inference [14, 15]. Speci�cally, in order to de�ne
our notion of `in�uence' we have used su�cient statistics Dt that correspond
to applying the backdoor criterion. In that way, it seems that `causally correct
partial models' as introduced in [18] actually correspond to a special case of
in�uence-based abstraction.

6 Conclusions

In this text, we have given a high-level overview of in�uence-based abstraction, a
technique that can construct abstracted local models of complex decision making
problems. The main idea is that we can abstract away less important latent
variables, as long as we still correctly capture their in�uence on the remaining
local model. This constructed local model therefore will consist of two types
of variables: �only locally a�ected variables� that behave Markovian, and the
�non-locally a�ected� ones that have a non-Markovian dependence due to the
in�uence of the variables abstracted away. Even though dealing with some non-
Markovian variables can still be complex, we argue that it is easier than treating
all variables as non-Markovian as one would do when just treating the resulting
local model as a big POMDP. We provided some pointers to di�erent ways in
which this perspective of in�uence-based abstraction has made impact on single
agent and multiagent problems, both in terms of planning and reinforcement
learning. We expect that this structural insight will form the basis of many
further improvements in large scale planning and reinforcement learning.
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