
GametheoryandAI: a uni¯ed approach to poker
games

Thesis for graduation as Master of Arti¯cial Intelligence

University of Amsterdam

Frans Oliehoek

2 September 2005



ii



Abstract

This thesis focuseson decisionmaking in partially observable card gamesand,
in particular, poker games. An attempt is made to outline both the game
theoretic, asan agent-centric approach to such games,analyzing di®erencesand
similarities, as well as strong and weaker points and ¯nally proposing a view to
make a tradeo®betweenthese.

The game theoretic approach for this type of gameswould specify a Nash-
equilibrium, i.e., a pair of policies that are a best responseto each other. Al-
though a policy found in this way guaranteesa minimum payo®, it is conserva-
tiv e in the sensethat it is unable to exploit any weaknessesthe opponent might
have.

This motivatesan agent-centric perspective, in which we proposemodeling a
simple poker gameasa Partial Observable Markov DecisionProcess(POMDP)
for a player who is playing against a ¯xed opponent whosepolicy is known (e.g.
by repeated play). The resulting deterministic policy is a best responseagainst
the ¯xed opponent policy. Such a best-responsepolicy doesexploit weaknesses
in the opponent's policy, thus yielding the maximum payo®attainable.

In order for the results obtained for such a simpli¯ed poker game to be of
signi¯cance for real-life poker games, various methods for dealing with large
(PO)MDPs are treated. These could be used to tackle larger gamesusing the
best-responseapproach. We examine the application of one of these methods,
model minimization , on poker gamesin more detail. The result of this exami-
nation is that the reduction gainedby direct application of model minimization
on poker games is bounded and that this bound prevents this method from
successfullytackling real-life poker variants.

Finally, in a coevolutionary framework, we try to unify the game theoretic
and agent-centric approach by making a tradeo®betweenthe security the former
o®ersand the potential gain of the latter. A secondarygoal in this approach is
examining e±cient calculation of Nash-equilibria.
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Chapter 1

In tro duction

Playing gamesis something that comesnatural to humans. We easily under-
stand the rules and by playing against more experiencedplayers we pick up the
subtleties and overcomedi±culties for a particular game. In contrast, learning
a computer to play a gameis a considerablemore di±cult process.

Especially when chance moves and partial observabilit y are involved, as is
the case for games like poker, games quickly become intractable. An often
used solution for this problem is to have a computer play according to some
heuristics that are de¯ned by human knowledgeabout a particular game. This
essentially comesdown to programs playing a set of predetermined rules. The
major downside of this approach is that these type of programs have a very
limited capability to adjust their play and, therefore, are beaten rather easily
by human playersor other program designedspeci¯cally to counter the heuristics
behind the rules.

In this thesis we will examine frameworks that give a fundamental basis
for gamesand are less vulnerable than rule-based programs based on human
expertise.

1.1 Games

In the last century a lot of research has been devoted to the study of games.
Beforediving into the details of research on poker and games,we will ¯rst give a
brief overview of someof this research and answer the necessaryquestion \Wh y
one would research gamesin the ¯rst place?"

1.1.1 Wh y games?

Probably the best reason for studying games is that games can be used to
model a lot of real-life situations. Becauseof this, gametheory hasbeenwidely
applied in ¯elds as economics,biology, (international) politics and law. Also in
computer sciencegametheory hasfound more and more applications. Examples
of these are interface design, discourseunderstanding, network routing, load
sharing, resourceallocation in distributed systemsand information and service
transactions on Internet [35].
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Chapter 1 Intro duction 1.1 Games

full information partial information
deterministic Chess,Go Battleships

stochastic Backgammon, Monopoly Poker

Table 1.1: Examples of various gametypescharacterize by the forms of uncer-
tainty.

This shows that gamesare useful for a large classof problems. Particularly
most situations in which multiple interacting entities have to make decisions
are suitable to be modeled as a game. In fact the interest in gameshas been
renewed by the research in multi-agent systems.

We should mention that the by `game' we do not mean arcade computer-
gamessuch as Doom. However, the ideas and techniques that are considered
heremight alsobeemployed in certain aspectsof thesetypesof computer-games.
This could also be of importance, as the computer-gameindustry is one of the
fastest growing sectorswithin the entertainment branch.

Apart from their relevancegamesalsohave someproperties that make them
very suitable for research: Gameshave a set of clearly stated rules and they have
a speci¯c goal. This makesit possibleto test the successof di®erent approaches
for a speci¯c game. As an example, the research performed on chessbrought
many scienti¯c advances.

1.1.2 T yp es of games

Gamescanbecharacterizedby variousproperties they embody. Someimportant
characteristics are induced by the type(s) of uncertainty present in a game[51].
One type of uncertainty is opponent uncertainty , meaningnot knowing how your
opponent will play. This is a form of uncertainty is shared by most, if not all
multi-pla yer games.

Another type of uncertainty is known as e®ectuncertainty: It is possible
that a player doesnot know all possiblee®ectsof an action, e.g. opening a box
in a role playing game. This type of uncertainty is not further consideredas
this stretchesthe boundary of \a set of well de¯ned rules".

Both types of uncertainty discussedabove are interesting on itself, but are
lessuseful for characterizing games.The following two di®erent typesof uncer-
tainty do provide important characteristics: The presenceof chancemovesin a
gameand whether the players can fully observe the current state of the game.

Chancemovesare causedby the presenceof outcome uncertainty . Outcome
uncertainty occurs when all possiblee®ectsof an action and their probabilities
are known, for example when throwing a dice. Gameswith chance moves are
referred to as stochastic games, those without as deterministic.

When one or more players can't fully observe the current state of the game,
the gameexhibits state uncertainty . We say the player has partial or imperfect
information regarding the state and consequently speak of partial information
games.

Table 1.1 givesexamplesof gameswith the outcome and state uncertainty.

2



1.2 Research on games Chapter 1 Intro duction

1.1.3 Outcomes and utilities

Another important factor in characterizing a game is what kind of outcomes
is has. In general an outcome of a game speci¯es a reward for each player
independently . This meansthat there may be outcomesthat are good for all
players, outcomesthat are bad for all players and outcomesthat are good for
one, but bad for another player. This implies gamescan also be speci¯ed by
the type of preferencesthe players hold over the outcomes. One such type are
strictly competitive games:when the players in the gamestrictly prefer di®erent
outcomes,the gameis said to be strictly competitiv e.

Now, lets make the idea of preferencemore concrete. The preferencesthe
player holds over outcomes is expressedby a utility function, U. This is a
mapping from outcomesto real numbers in such a way that for all outcomeso1

and o2 it holds that, if the player prefers o1 over o2, then U(o1) > U(o2).
The utilit y of a certain outcome is also referred to as the payo®. When

the payo®sfor all players sum to 0, we speak of a zero-sum game. Clearly, a
two-personzero-sumgameis strictly competitiv e.

The gamesthat are consideredin this thesis are poker variants that have a
outcomesexpressedin won or lost money. The amount of money won and lost
by the playerssumsto zero for thesegames.1 However, for the gameto be zero-
sum, the utilit y payo®sshould sum to one. Therefore we make the assumption
that the utilit y function for all players is equal to the amount of money won or
lost.

Also, when a gameincludes chancemoves, the players must also have pref-
erencesover di®erent lotteries of outcomes. Strictly spoken this requiresa well-
founded choice on the desiredattitude towards taking risks. However, as most
gamestypically deal with only small winnings and losings, players are usually
consideredrisk neutral. Therefore we can simply use the expectation of these
lotteries.

The issuesdealt with here belong to the ¯eld of utilit y theory. More infor-
mation can be found in [6].

1.2 Research on games

Although research on gameshas been mathematically formalized only relative
recently , related insights can be traced back to philosophersfrom ancient times.
As an example, at one point Socrates sketches the setting of a soldier waiting
with his comradesto repulsean enemy attack. He reasonsthat if the battle will
be won, the e®ort of the soldier is not neededand therefore he would better not
participate, avoiding risk of injury . On the other hand it the battle will be lost,
the soldierschanceof getting hurt are even higher and therefore, he should not
participate in the battle in this caseeither. This kind of reasoningis very much
related to ideas in current gametheory.

In the ¯rst half of the twentieth century a lot of research was performed on
games. Important contributions were made by Zermelo, von Neumann, Mor-
genstern and Nash and others, leading to a formalization that could be called
the `classicalgametheory'.

1Unless played in the casino, where the house tak es a percentage of the pot.

3



Chapter 1 Intro duction 1.3 Thesis focus

With the advent of computers, again lots of gameshave beenstudied. Until
the late 90's, most of the e®ort focusedon fully observable games. An exam-
ple of a fully observable game on which computer scienceresearch focused is
backgammon. In 1992TD-Gammon was intro duced in [57]. The program was
able to compete with the world-class player winning somegameslosing some
others.

The most prominent, however, was the research performed on chess: the lit-
erature on chessis extensive including dedicatedjournals. This research resulted
many advancesin computer science,especially search techniques. In 1997 for
the ¯rst time the world-champion at that time, Garry Kasparov, was defeated
by a computer, `DeepBlue'.

Sincethen moreand moreattention hasshifted to partial information games.
Poker was identi¯ed as a next `benchmark' problem for partial information
games[1, 5] and indeed more and more research has focusedon poker in the
last decade.We will give a brief overview in section 1.4.

1.3 Thesis focus

In this thesis, the focus will be on frameworks for learning good policies for
partially observablecard games,speci¯cally poker variants. Thesearestochastic
games.As mentioned, we assumepayo®sare equal to the amount of moneywon
or lost so that they are zero-sumand therefore strictly competitiv e in the two-
player case.

1.4 Related work

In this section we discusssomerelated work on partial observable card games
and poker in particular. It only gives a brief overview, as for a more detailed
description quite someknowledgeis required in advance.

Probably one of the ¯rst to mathematically study poker was von Neumann
[58]. He created an abstract small poker game, still known as \v on Neumann
poker", which he studied in detail. A similar approach was taken by Kuhn [37],
who studied a simpli¯ed poker game very similar to `8-card poker', which will
be useas an example throughout this thesis (seesection 1.5 for a description).

More recently , poker received a lot of attention from the ¯eld of computer
scienceand arti¯cial intelligence. The Gala system[35] provided a way to solve
partial observable games,like poker, of a higher order of magnitude than was
possiblebefore. In [5, 4] a poker program called Loki is described that plays
the gameof Texas'Hold-em (also, seesection1.5) basedon opponent modeling.
The successorof this program, Poki, [3] madeit to a commercialproduct. In [36]
describesan approach basedon Bayesiannetworks. A gametheoretic approach
to a medium sized poker game called Rhode Island hold-em, is given in [51],
employing several techniques to make the size of the game manageable. A
similar approach for Texas' Hold-em is given [2].

Finally, also someother partially observable card gamesreceived attention.
Before 1995a lot of research focusedon bridge [1]. More recently , the gameof
hearts was investigated [22].
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1.5 Two poker games Chapter 1 Intro duction

1.5 Tw o poker games

As wewill bediscussinga lot of poker variants in this thesis,wewill ¯rst describe
two poker variants to familiarize with someconcepts. The ¯rst is a small game
from literature [35] called 8-card poker. The secondis a real-life poker game,
usedto determine the world-champion, called Texas' Hold-em.

1.5.1 8-Card poker

In this thesis we will use a simple poker variant, 8-card poker, to illustrate
various conceptsmore clearly. An additional bene¯t is that the game is small
enoughto be solved exactly, as we will in chapter 2. 8-Card poker is played by
two players: a dealer and a gambler, who both own two coins. Before the game
starts, each player puts one coin to the pot, the ante. Then both players are
dealt one card out of a deck of eight cards (1 suit, ranks 1{8).

After the players have observed their card, they are allowed to bet their
remaining coin, starting with the gambler. If the gambler bets his coin, the
dealer has the option to fold or call. If the dealer folds he losesthe ante, and if
he calls showdown follows. If the gambler does not bet, the dealer can choose
to bet his coin. If the dealer does so, the gambler will have to decidewhether
to fold or call. If the game reaches the showdown (neither player bets or the
bet is called), the player with the highest card wins the pot.

1.5.2 Texas' Hold-em

Texas'Hold-em is a real-life poker variant. In fact, it is not oneparticular poker
variant; there are several variants of Texas' Hold-em as well. All of these are
played with anywhere from two to over ten players, although we will mostly
focus on the two player poker games.

The main di®erencebetween di®erent variants of Texas' Hold-em is the
amount of money that can be bet or raised. In this respect, there are limit,
no-limit and pot limit games. We will discusslimit Texas' Hold-em here ¯rst.
The limit version of the gamespeci¯es two amounts, with the highest amount
usually being twice the lower amount, e.g.

�

4 /
�

8. The lower amount speci¯es
the value of a single bet or raise in the ¯rst two bet-rounds, the higher amount
for the last two bet-rounds.

As might be clear, bet-rounds, of which there are four in total, take a central
place in Texas' Hold-em, therefore we will ¯rst describe how one bet-round is
played.

In a bet-round the ¯rst player to act has 2 options: check and bet. When he
checks, he doesn't place a bet, when he bets does place a bet (of

�

4) thereby
increasing the stakes of the game. The second player has di®erent options
depending on what the ¯rst player did. If the ¯rst player checked, the second
player has the sameactions check and bet. If the ¯rst player bet, the second
player can fold, call or raise. Folding meansthat the player gives up, causing
the opponent to win.2 When a player calls a bet, he pays enough money to
the pot to match the opponent's bet. Raising meansthat the player calls the

2Technically , the ¯rst player can also fold, as can the second player after the ¯rst player
checked. However, as at these point the player does not have to pay to stay in the game, this
action is dominated by checking.
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Chapter 1 Intro duction 1.6 Outline of thesis

name description
Royal °ush A,K,Q,J,10 of the samesuit

Straight °ush ¯v e consecutive cards of the samesuit
4-of-a-kind 4 cards of the samerank
full house 3-of-a-kind + one pair, e.g.: J,J,J,4,4

°ush 5 cards of samesuit
straight 5 consecutive cards, .e.g. 7,8,9,10,J

3-of-a-kind 3 cards of the samerank
2-pair 2 pairs, e.g. 6,6,4,4,J
pair 2 cards of samerank, e.g. 4,9,10,K,K

high-card the highest card, e.g. 2,5,7,8,Qo®-suit

Table 1.2: Hand-typesfor Texas' Hold-em.

opponent's bet and placesa bet on top of that. In this example, with a single
bet costing

�

4, raising comesdown to placing
�

8 in the pot.
A bet-round is endedwhen no player increasedthe stakesof the gamein his

last turn, i.e. both players checked or the last bet was called. Also, there is a
maximum of 4 bets, so

�

16 in this example,per player per bet-round.
Now the bet-round has been described, the structure of the whole game is

as follows. First the players in concern pay the ante which is called the blind
bet.3 After that all players receive two private card out of a standard deck of 52
cards. This is followed by a bet round. When the ¯rst bet-round ended, three
public cardsare placed, face-up,on the table, this is called the °op. The second
bet-round follows and when ended a single public card is placed on the table.
This stageis called the turn . After the turn the third and before last bet-round
starts, this meansthat a single bet now costs

�

8 and therefore a maximum of
�

32 per player can be bet in this round. This third bet-round is followed be a
¯fth and last public card placed on the table: the river . After the river the last
bet-round is played, also with a single bet of

�

8.
When both players didn't fold up to this point, showdown follows and the

player that hasthe highestcombination of ¯v ecardsformed usinghis two private
cards and the table cards wins the pot.

The variants no-limit and pot-limit di®er in the bets that can be placed. As
suggestedby the name, in no-limit poker any amount can be betted or raised.
In pot-limit hold-em, the maximum bet is determined by the amount of money
that is currently in the pot.

1.6 Outline of thesis

This thesis is divided in 3 parts. In the ¯rst part we discussgamesand best-
response play. First, game theoretic notions and solutions are intro duced in
chapter 2 and we identify two weak points in the outlined game theoretic ap-
proach: the incapabilit y of exploiting weaknessesof the opponent and the prac-
tical limitation on the sizeof problems that can be addressed.In chapter 3 we

3 In Texas' Hold-em only one or two, depending on the total number of players and the
exact variant, pay ante.
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present a method to calculate a best-responsethat exploits the weaknessesof
the opponent. At the end of the ¯rst part we provide experimental results for
both the gametheoretic and best-responseapproach.

In the secondpart we discussmethods for handling bigger gamesusing the
best-responseapproach. In chapter 5 an overview of relevant literature is pre-
sented. For someof the discussedmethods, we analyze their applicabilit y for
poker gamesin chapter 6.

Finally, in the last part, we examine a way of providing a tradeo® between
the security of the gametheoretic solution and the potential winnings of best-
response play. This is done in a coevolutionary framework and discussedin
chapter 7. Chapter 8 concludesand summarizesdirections for future research
identi¯ed throughout the thesis.
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Chapter 2

Game theory

As the name implies, game theory is the traditional approach for analyzing
games. It is usually divided in two parts: cooperative and non-cooperative
gametheory. The cooperative gametheory takesa looserapproach and mostly
dealswith bargaining problems. The non-cooperative gametheory is basedon
exact rules for games,so that solutions can be studied in detail. As the type
of gamesdiscussedin this thesis are strictly competitiv e, we will focus on the
non-cooperative part and leave the cooperative gametheory untouched.

A natural ¯rst question to ask here is what it meansto solve game?In other
words: What is a solution for a game? In general, a solution of a game is a
speci¯cation for each player how to play the game in each situation that can
arise. That is, it speci¯es the best strategy or policy for each player.1

In this chapter, we will ¯rst give an intro duction in necessaryconceptsand
methods from game theory. This includes di®erent ways gamescan be repre-
sented, approaches for solving gamesand properties of these `solutions'. Next
we will describe the Gala system presented in [35] and how it can be used to
solve games.

2.1 Represen tation

There are di®erent types of representations for games. The most familiar of
which is a representation by the rules of the game. If someoneexplains how
to play a certain game this is the representation that would be used. The
descriptions in section 1.5 are good examples.

Although such representations by rulesare the easiestway to describegames,
in order to perform reasoningabout game dynamics and outcomes,more for-
mal representations are needed. In this section some commonly used formal
representations are discussed.

2.1.1 Extensiv e form games

A commonly usedrepresentation for gamesis the so-calledextensiveform. We
can model 8-card poker as an extensive form game with partial (imperfect)

1 In game theory the term `strategy' is usually adopted, while AI the term `policy' is
generally used. In this thesis, we will use the term `policy'.
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4 42  6

Start

1 -1 2 1 2 -1 -1 -2 1 -2

pass/0 1/bet

Figure 2.1: The partial game-treeof 8-card poker for the deals(4; 2) and (4; 6).
Gambler's decision nodes are black, dealer's are grey. The diamond represent
the chancemove at start. The payo®sare given for the gambler.

information [38]. The extensive form of a game is given by a tree, in which
nodes represent game states and whose root is the starting state. There are
two types of nodes: decision nodes that represent points at which agents can
make a move, and chancenodeswhich represent stochastic transitions `taken by
nature'. In 8-card poker, the only chancenode is the starting state, in which two
cards are chosenat random from the 8-card deck and are dealt to the agents.

In a partial information game, an agent may be uncertain about the true
state of the game. In particular, an 8-card poker agent may not be able to
discriminate betweensomenodes in the tree. The nodes that an agent cannot
tell apart are grouped in information sets. From this perspective a game-tree
for a perfect information gamecan be seenas a special casein which each node
has a unique information set associated with it.

In Fig. 2.1 a part of the game-treeof 8-card poker is drawn. At the root
of tree (`Start' node) a card is dealt to each agent. At each decision node the
agents can choosebetweenaction 1 (bet), and action 0 (fold). The ¯gure shows
two deals: in the ¯rst the dealer receivescard 2, in the secondhe receivescard
6. The gambler receives card 4 in both cases. Therefore the gambler cannot
discriminate between the two deals. This is illustrated by the information sets
indicated by ovals. The leaves of the tree represent the outcomesof the game
and the corresponding payo®s. In the ¯gure only the payo® of the gambler is
shown, the payo® of the dealer is exactly the opposite, as 8-card poker is a
zero-sumgame.

An assumption that usually is made with the analysis of extensive form
gamesit that of perfect recall. This assumption in fact is not a very strong one.
It embodies that at a certain node or phasein the game, the players perfectly
remembers the actions he took and observations he received.

2.1.2 POSGs

As mentioned in the intro duction, much of the research in multi-agent systems
has renewed the interest in game theory. The framework that is often used in

11
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t=1

t=2

Figure 2.2: Simultaneous actions in an extensive form game. By using infor-
mation sets, the ¯rst players move is hidden for the secondplayer, modeling
simultaneous actions.

this ¯eld is that of Stochastic Games. The partially observable variant of this
is referred to as Partial ly ObservableStochastic Game(POSG) [27, 18].

POSGs are very similar to extensive form games. The major di®erence
is that in a POSG, actions are usually taken simultaneous by all players (or
agents). I.e., it speci¯es the spaceof joint actions A as the cross-product of
the individual actions: A = A1 £ ::: £ An for n players. As in a multi-agent
environment agents usually take actions simultaneous, this framework is very
natural to describe such systems. However, in an extensive form gameit is also
possibleto model simultaneous actions, as illustrated in ¯gure 2.2.

Another di®erencebetween the two frameworks are that in a POSG the
players receive explicit observations speci¯ed by an observation model versus
the implicit modeling of such observations through the use of information sets
in extensive form games.

A POSG is more general than an extensive form game. The latter can be
seenas a special caseof the former with a tree-like structure.

2.1.3 Strategic form games

Another commonly used representation is the strategic- or normal form. A
strategic form two-player gameis given by a matrix and is played by a row and
column player. The game is played by each player independently selecting a
row/column and the outcome is given by the corresponding matrix entry .

Example 2.1.1 In table 2.1 the gameof `Chicken' is shown. The story usually
told for this gameconcernstwo teenagerswho settle a dispute by driving head
on at each other. Both players have the action to drive on or to chicken out.
When the ¯rst player choosesto chicken out while the the secondplayer chooses
to drive on, the payo®is 0 for the ¯rst player and 2 for the secondplayer. When
both teenagersdecide to drive on they will crash and therefore both receive a
payo® of -1. When both player chicken out the shameis less than when only
one decidesto do so and both players receive a payo®of 1. ¤

The strategic form representation is in fact based on the notion of pure
policies. A pure policy for a player speci¯es exactly oneaction for each situation
that can occur. So rather than an action, `chicken out' actually is a pure policy
for Chicken. We will elaborate on the notion of pure policy in section 2.1.4.

12
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D C
D -1, -1 2, 0
C 0, 2 1, 1

Table 2.1: The game`Chicken'. Both players have the option to (D)riv e on or
(C)hicken out.

When all players have chosena pure policy this determines the (expected)
outcomeof the game.2 This outcomeis the entry in the matrix for the respective
row and column corresponding to the chosenpolicies.

2.1.4 Pure policies

Here we will present a more precisede¯nition of what we referred to as pure
policies.

Seenfrom the perspective of the extensive form, a pure policy for a player
speci¯es what action to take in each decisionnode for that player. Recall that
in a partial information game, a player can't discriminate between the nodes
within the sameinformation set. This meansthat the player will have to play
the sameaction in each of thesenodes. This leadsto the following de¯nition.

De¯nition 2.1.1 In an extensive form game, a pure policy, also called deter-
ministic policy, is a mapping from information sets to actions. In a strategic
form game,a pure policy is a particular row or column.

As an example, in 8-card poker the dealer could follow the rule that he will
always bet after receiving card 5 and having observed that the gambler passes.
A collection of such rules for all combinations of cards and opponent actions
would make up one pure policy.

It is possibleto convert an extensive form gameto one in strategic form, by
enumerating all pure policies available for the players. In this transformation
all information regarding the structure of the gameis eliminated: the resulting
normal form game only contains information regarding the outcomes. This
makesit more di±cult to understand what the gameis about. For exampleit is
not possibleto derive who moves¯rst from this representation. However, when
only interested in which outcomescertain policies can cause,it is very suitable.

Also, it is important to seethat the number of pure policies grows expo-
nentially in the number of information sets: for each information set there are
number-of-actions choices. Therefore, if n denotes the number of information
sets for a player and a is the number of actions he can take at thesenodes, the
number of pure policies the player has is an . This exponential blow-up prevents
methods for strategic form gamesto be applied to all but the simplesgames.

2When there are chance moves in the game, the expectation over the outcomes is deter-
mined.
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2.2 Solutions

In this section we make the notion of solution for a game more precise. First
the so-calledNash equilibria are explained. Next, someapproaches to solving
gamesare brie°y reviewed. For the special caseof two-player zero-sumgames
with partial information like poker the approach is explained in more detail.

2.2.1 Nash equilibria

The game theoretic solution of a game speci¯es how each player should play
given that the opponent also follows this advise, that is it provides an optimal
policy for each player. This solution of a game is given by one or more of its
Nash equilibria .

De¯nition 2.2.1 Let ¼= h¼1; ¼2; :::; ¼N i be a tuple of policies for N players
and let ¼¡ k = h¼1; :::; ¼k ¡ 1; ¼k+1 ; :::; ¼N i be the tuple of N ¡ 1 policiesfor player
k's opponents. Also, let the expectedpayo®of a policy ¼k for player k be given
by H k (¼k ; ¼¡ k ).

A tuple of policies ¼= h¼1; ¼2; :::; ¼N i is a Nash equilibrium if and only if
for all players k = 1; :::; N :

8¼0
k

: H k (¼k ; ¼¡ k ) ¸ H k (¼0
k ; ¼¡ k )

That is, for each player k, playing ¼k gives a reward equal or higher than
that obtained when playing someother policy ¼0

k given that all other players
do not deviate from their policies speci¯ed by ¼¡ k . So each ¼k 2 ¼ is a best
responsefor the opponents policies ¼¡ k .

For example, in the Chicken in table 2.1, (C, D) is a Nash equilibrium, as
chicken out is the ¯rst player's best response to the secondplayer's policy to
drive on and vice versa. Likewise,(D, C) is also a Nash equilibrium.

2.2.2 Solving games

The question to answer now is what tuple of policies to recommend as the
solution. Clearly it should be a Nash equilibrium, asotherwisethere would be a
better policy for one of the players and he would better usethat. This presents
us with the question how to ¯nd a Nash equilibrium.

In extensive form gameswith perfect information we can ¯nd the equilibria
by using Zermelo's backward induction algorithm [59]. For partial information
games,however, this algorithm doesn't work becauseactions will have to be
chosen for information sets instead of nodes. Taking a certain action in one
node of the information set might give an outcome completely di®erent than
obtained when performing that same action from another node in the same
information set.

For strategic form games we can use elimination of (strictly) dominated
policies. For a certain player we consider if there are policies for which all the
outcomesare (strictly) dominated by the outcomesfor another policy. If this is
the case,this policy is removed, reducing the matrix. This is repeated, iterating
over the players, until no further reductions take place. Although this approach
will in most casesreduce the matrix, there is absolutely no guarantee that it
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will result in exactly onepolicy for each player. Also, when deleting non-strictly
(weakly) dominated policies, equilibria may be lost.

In general, a Nash equilibrium might not exist in pure policies for games
with partial information. We overcome this by allowing randomized policies.
Randomizedpolicies allow particular pure policies or actions to be played with
some probabilit y. A famous result, by Nash [40] is that for a strategic form
game, there always exist at least one Nash equilibrium in randomized policies.
When combining this result with the equivalencebetween extensive form and
strategic form games[38], we obtain the following theorem:

Theorem 2.2.1 Any extensive-form game with perfect recall has at least one
Nash equilibrium in randomized policies.

As the intuitiv e description above already indicated, there are two kinds of
randomized policies: mixed policies and stochastic policies, which we will now
de¯ne.

De¯nition 2.2.2 A mixed policy, ¹ , is a non-empty setof pure policiestogether
with a probabilit y distribution over thesepure policies. The set of pure policies
to which ¹ assignspositive probabilit y is also called the support of ¹ .3

De¯nition 2.2.3 A stochastic policy, ¹ , is a single policy that de¯nes a map-
ping from information sets to probabilit y distributions over actions. I.e. for
each information set, a stochastic policy de¯nes what action to take with what
probabilit y.

There is a relation between mixed and stochastic policies: for every mixed
policy, there is a stochastic policy that results in the samebehavior and vice
versa.4 At this point, this exact relation is not important, but we will elaborate
on this in chapter 7, whereweshow how to convert a mixed policy to a stochastic
policy (7.4.2).

2.2.3 Solving two-pla yer zero-sum games

In the previous section we brie°y discussedsolving gamesin general. Theorem
2.2.1 tells that there is at least one Nash equilibrium for every extensive form
game. In general, ¯nding such an equilibrium is di±cult [44]. For two-player
zero-sumgames,however, things are easier.

In a zero-sum game, it is reasonableto assumethat a player will try to
be as harmful as possiblefor the opponent, becausehis payo® will increaseas
that of the opponent decreases.In the worst casean opponent will predict the
players move successfullyand then act to minimize the latter's payo®, thereby
maximizing his own. This gives lead to playing a security or maximin policy.

De¯nition 2.2.4 Let H 1 be the payo® matrix for player 1 and let ¦ 1; ¦ 2 be
the policy spacesfrom which respectively player 1 and player 2 can choosea
policy. Then a policy ¼1 that satis¯es:

3 In this thesis, policies are indicated with ¼ in general. The notation ¹ is used when the
policy can only be a randomized policy.

4This holds for games with a tree-lik e structure as the ones we focus on in this thesis. In
general, this might not hold (e.g. in POSGs without tree-lik e structure).
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¼2 ¼0
2

¼1 ¡ 1 +5
¼0

1 +3 +2

Table 2.2: A simple zero-sumgame in strategic form with 2 policies for each
player. Shown is the payo®for player 1.

arg max
¼1 2 ¦ 1

min
¼2 2 ¦ 2

H1(¼1; ¼2)

is called a maximin policy for player 1. The maximin value given by:

v1 = max
¼1 2 ¦ 1

min
¼2 2 ¦ 2

H1(¼1; ¼2)

is the payo®player 1 is guaranteed to obtain and is called the security value
for player 1. Therefore ¼1 is also called a security policy. Likewise,a policy ¼2

that maximizes:

v2 = max
¼2 2 ¦ 2

min
¼1 2 ¦ 1

H2(¼1; ¼2) (2.1)

is a maximin policy for player 2 with payo® matrix H 2. Note that for a
zero-sumgameH1 = ¡ H2 and therefore equation 2.1 can be rewritten to:

¡ v2 = min
¼1 2 ¦ 1

max
¼2 2 ¦ 2

H1(¼1; ¼2):

Therefore ¡ v2 is also referred to as the minimax value for player 1.

We will illustrate the precedingde¯nition with an examplehere.

Example 2.2.1 In table 2.2, a simple strategic form gameis displayed. When
player 1 assumesplayer 2 will predict his policy correctly, he will get ¡ 1 when
playing ¼1 and +2 when playing ¼0

1. His security policy is given by choosing the
largest of these: ¼0

1 giving a security payo®of +2, this is the maximin value for
player 1.

Similarly, player 2 will get a worst-casepayo® of ¡ 5 when playing ¼2 and
¡ 3 when playing ¼0

2. Therefore player 2's security policy is ¼2 with a security
payo®of ¡ 3. This translates to a minimax value of +3 for player 1. ¤

In example2.2.1 we restricted the policies that the players could pick to be
pure policies. That is, we de¯ned ¦ 1; ¦ 2 from de¯nition 2.2.4 to be the spaceof
pure policies. In pure policiesthe gamehasno Nashequilibrium and the security
valuesfor the players are di®erent. Theorem 2.2.1 tells that there should be an
equilibrium in randomized policies. For zero-sumgamesvon Neumann already
showed this in his minimax theorem [58]:

Theorem 2.2.2 In a two-player zero-sum game,a policy pair ¼¤
1 ; ¼¤

2 is in equi-
librium if and only if both:

² ¼¤
1 maximizesv1 = max¼1 2 ¦ 1 min¼2 2 ¦ 2 H1(¼1; ¼2)
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Figure 2.3: Calculating maximin valuesusing mixed policies.

² ¼¤
2 maximizesv2 = max¼2 2 ¦ 2 min¼1 2 ¦ 1 H2(¼1; ¼2),

where ¦ 1; ¦ 2 are the spaces of randomized policies. In this case v1 = ¡ v2, i.e.
the maximin and minimax valuesare equal. This value is called the value of the
game.

Again, we will give an illustration of this using the examplegamefrom table
2.2.

Example 2.2.2 Let r be the probabilit y that player 2 useshis ¯rst policy, ¼2.
As a consequencethe probabilit y that he useshis secondpolicy, ¼0

2, is 1 ¡ r .
Now player 1 can de¯ne the expected payo®of his policies as follows:

E1(¼1) = r ¢(¡ 1) + (1 ¡ r ) ¢5

E1(¼0
1) = r ¢3 + (1 ¡ r ) ¢2:

Similarly, if t is the probabilit y of the ¯rst player using his ¯rst policy, ¼1;
the expected payo®for the secondplayer's policies is given by:

E2(¼2) = t ¢1 + (1 ¡ t) ¢(¡ 3)

E2(¼0
2) = t ¢(¡ 5) + (1 ¡ t) ¢(¡ 2):

Also note that, becausethe gameis zero-sumthe expectation of the outcome
for both players sum up to 0, i.e. E1(¼2) = ¡ E2(¼2); etc. This allows us to
expressthe players' expected outcome in terms of their own policy.

Figure 2.3 graphically shows the two situations. For player 1, ¼0
1 corresponds

with P(¼1) = 0. The ¯gure shows payo® he can expect for t = P(¼1) against
both opponent's policies. Now if player 1 assumesthat player 2 will always
predict his policy and act to minimize his payo®,he will get the payo®indicated
by the thick line. In order to maximize this, player 1 should play his policy ¼1

with a probabilit y of 0:14 (t = 1=7): This is the ¯rst players security policy,
obtaining a payo®of 2:42 which is the value of the game.

In a similar way, the secondplayers security policy is playing ¼2 with a
probabilit y of 0:43 (r = 3=7), this yields him a security level payo®of ¡ 2:42:

The pair of policies found make up a Nash-equilibrium in mixed policies. No
player can increasehis pro¯t by unilaterally deviating from his current policy,
so the policies are a best responseto each other. ¤
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Figure 2.4: The best-response functions for the game of table 2.2. The best
responsefunction for player 1 is given in black, that for player 2 in gray. It can
clearly be seenthat a player is indi®erent between its own policies when the
opponent plays the Nash policy.

This example,of course,is very simple: both players only have two policies
they can choosefrom. In the general case¯nding a solution is more di±cult.
However, von Neumann and Morgenstern showed [58] that for every two-player
zero-sumgamewith a ¯nite number of pure policies a solution can be found:

Theorem 2.2.3 The normal form of a two-player zero-sum de¯nes a linear
program whosesolutions are the Nash-equilibria of the game.

Loosely speaking, a linear program is a maximization problem under con-
straints. In a normal form gamethe matrix, A , gives the outcome of two pure
policies played against each other. Now considerthe casethat the players both
play a mixed policy. Let x denotethe vector of probabilities with which the row
player selectsits pure policies. Similarly y denotesthe vector of probabilities
for the column player's pure policies. Then, the outcomeof thesemixed policies
against each other is given by:

xT Ay

The vectorsx and y should both sum to 1, giving constraints. Togetherwith
the desireof both players to maximize their own payo®this can be transformed
to a linear program, which can be solved using linear programming. Linear
programming will be discussedin more detail in section 2.3.4.

2.2.4 Prop erties of Nash equilibria

As it is important to fully understand the concept Nash equilibrium, we will
summarizesomeof the important properties that have beendiscussed.
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² In two-player zero-sumgames,a Nash policy5 is a security policy and the
value of the gameis the security value for player 1.

A security policy gives the rewards that a player can maximally obtain,
given that the opponent will predict his move and act to minimize this
reward. The resulting reward is the maximin or security value for the
player. In general, it is paranoid to assumethe opponent will do this, as
other players are assumedto maximize their own rewards, not minimize
that of another. In a two-player zero-sumgame,however, thesegoalsare
identical.

² Nash equilibrium policies are best responsesto each other.

In fact this was how the Nash equilibrium was de¯ned. We repeat it here
to make the next point clear.

² A Nash policy is optimal given that the opponent(s) also play a Nash
policy.

When our opponent(s) do not play a policy from a Nash equilibrium,
playing a Nash policy is still secure,but not necessarilya best-response.

² At a randomized Nash equilibrium the players are indi®erent among the
pure policies in the support of the Nash-policies.

Actually this is not a property speci¯cally for a Nash equilibrium. In
general,a mixed policy is a best responseto someopponent policy if and
only if each of the pure policies to which is assignspositive probabilit y is a
best responseto this opponent policy [6]. When this is the case,the player
is indi®erent betweenthesepure policies. This is illustrated in ¯gure 2.4.

2.3 The exp onential gap

The major problem with the method outlined in 2.2.3is the exponential blow-up
when converting to strategic form. To overcomethis problem Koller et al. [34]
intro duced a di®erent representation called sequence form, that is polynomial
in the sizeof the gametree. In [35] the Gala systemwaspresented which makes
useof this sequenceform representation in order to solve gamese±ciently .

In this section we give an overview of the Gala system, the sequenceform
and exactly how to solve gamesusing linear programming.

2.3.1 Gala language and generating the game tree

The Gala system takes as input a description of a game. This description
is de¯ned according to the Gala languageand consists of de¯nitions for: the
`name' of the game,the `players', `parameters' for the game,`variables' usedin
the game,the `°ow' and optional modulesreferencesfrom within the game-°ow.

The `players' de¯ne which playersparticipate in the game. In addition there
is a special player nature that accounts for all the chancemoves. In principle,
there can be more than two players in a Gala game,but the procedureto solve
a gameis only implemented for the two-player (zero-sum) case.

5For concisenesswe will refer to a policy that is part of a Nash equilibrium as a Nash
policy.
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`Parameters' for the game directly in°uence the structure of the game, for
example how much stagesthe game does consist of, or which cards are in the
deck.

`Variables' used in the gameare used to maintain values through the game
that for exampledetermine the outcomeor are revealedto oneor more players.
For exampleHand of player1 might be a variable in a poker game.

The `°ow' determines how the game is played. It typically invokes some
modules that represent stagesof the game. For example (pay ante, deal cards,
bet round) could describe the °ow for a simple poker game.

From this speci¯cation the Gala systemgeneratesthe game-treeby following
the °ow and generating nodes for each choice until the gameends. When this
happens the system backs up to the last node and tries whether there was
another choice available for the player to move at that node. If there is, that
choice is followed, if not it backs up further. In this way the full game-treeis
constructed in a depth-¯rst manner.

2.3.2 Sequences

In order to avoid the the exponential blow-up inducedwhenconverting to normal
form, the Gala system usesa di®erent representation: the sequenceform. The
key observation is that pure policies result in particular paths in the game-
tree, therefore distributions over pure policies induce distributions over paths,
or sequences of moves. The probabilities of these paths can be expressedby
realization weights and can be conveniently related to stochastic policies.

We will start with the sequences.A sequenceshould be interpreted asa path
from the root of the game-treeto a particular node. Along this path, the edges
have labelscorresponding with actions and observations. To give someintuition
we will ¯rst give two examplesfor 8-card poker: \pass on c", is a sequencefor
the gambler and \b et on c after seeinga pass", is one for the dealer, where c
refersto observinga particular card. We give the following formal de¯nition for
a sequence:

De¯nition 2.3.1 A sequence¾k (p) for a player k is the concatenation of the
description of the previous decision node, dk ; of that player and the action at
dk that leadsto p.

The previous decision node, dk ; for player k is the ¯rst decision node of
player k encountered when traversing from p to the root, excluding p itself.

The description of an decisionnode, dk , is the concatenationof the labelsof
all edgesencountered when traversing the path from root to dk . These labels
correspond with the observations and actions for player k.

By observations wemeanobservedactionsof the opponent (e.g. `bet', `pass')
or nature (in the form of observed cards).

Example 2.3.1 We will give some examples of sequencesfor gambler using
¯gure 2.5 here. Let's take a look at node 1 and determine ¾gambl er (1). We
¯rst look for the previous decisionnode for gambler: we go up in the tree and
immediately reach the root, therefore there is no previous decision node and
¾gambl er (1) = ; .
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Figure 2.5: A partial game-treefor a simple poker variant from the perspective
of the gambler. His actions are P(ass) and B(et). The observations gambler
receives are quoted. Node 1 is somenode in which the gambler received card
'Q'. 5{9 are end-nodes.

Next weexaminenode4. When goingup in the tree we¯nd that the previous
decisionnode of gambler is node 1. The description of node 1 is `Obs(Q)'. The
action taken at node 1 to reach node 4 is `P', therefore¾gambl er (4) =`Obs(Q),P'.

Node 3, 8 and 9 all have the same previous decision node; also node 1.
The action taken at node 1 to reach them is also the same `B'. Therefore
¾gambl er (3) = ¾gambl er (8) = ¾gambl er (9) =`Obs(Q),B'.

Finally for nodes 6 and 7, the previous decision node is 4. Node 4's de-
scription is `Obs(Q),P,Obs(b)', yielding ¾gambl er (6) =`Obs(Q),P,Obs(b),P' and
¾gambl er (7) =`Obs(Q),P,Obs(b),B'. ¤

Note that the de¯nition of `description of the previous decisionnode' results
in exactly the for player k observable labels. Therefore this description is in fact
equal to the description of all the nodes in the sameinformation set. Viewed
in this way a sequencecan also be seenas the description of an information set
concatenated with an action taken at that information set.

2.3.3 Realization weights

A pure policy for player k speci¯es an action to take at each information set,
therefore such a policy actually speci¯es a subset of all the nodes that can
be reached when player k uses this policy. Similarly, a randomized (either
stochastic or mixed) policy for player k speci¯es the contribution of player k in
the probabilit y that a particular node, and thus sequence,is reached or realized.

Now supposewe want to represent a randomizedpolicy ¹ k using sequences6,
we de¯ne the realization weights as follows:

6The representation of a policy using realization weights over sequencesis more closely re-
lated to its stochastic representation than its mixed representation, but we keep the discussion
general here.
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De¯nition 2.3.2 The realization weight of sequence¾k , denoted as ¹ k (¾k ) is
the probabilit y that player k, playing according to ¹ k will take the movesin ¾k ,
given that the appropriate information setsare reached in the game.

For example,the realization weight of the sequencèbet on Q' in ¯gure 2.5 is the
probabilit y the gambler bets at node 1. The realization weight of the sequence
¾gambl er (6): `passafter observing a bet after passingafter observing Q' is the
probabilit y of passingat node 1 times the probabilit y of passingat node 4.

Of coursenot all arbitrary assignments of sequenceweights represent a ran-
domized policy. In particular, the realization weights of continuations of a
sequencemust sum up to the probabilit y of that sequence.Translated to ¯gure
2.5 this meansthat ¹ gambl er (; ) = ¹ gambl er (¾bet on Q ) + ¹ gambl er (¾pass on Q ) = 1,
because`bet on Q' and `passon Q' are continuations of the empty sequence.
These constraints can be put in a constraint matrix which will be used for
solving.

When all the realization weights for the set of sequencesavailable to a player
satisfy the above condition they indeeddo describe a randomizedpolicy. There-
fore, when this is true for all players, a distribution over the outcomesof the
gameis de¯ned. To seethis, note that the realization weights give a distribution
over conditional plans in the sameway as the weights for full policies do in the
normal form of the game.

The constraints the realization weights must obey also indicate how a real-
ization weight representation of a policy can be converted to a stochastic policy.
Let ¾k (I ) be a sequencefor player k that can lead to a particular information
set I . Let ¾k (I ) ±a1; :::; ¾k (I ) ±an be sequencesthat are continuations of ¾k (I ),
that specify taking action a1; :::; an at information set I . The constraints for
realization weights tell us that:

¹ k (¾k (I )) = ¹ k (¾k (I ) ±a1) + ::: + ¹ k (¾k (I ) ±an ):

Therefore, when we know the realization weights of ¾k (I ) and ¾k (I ) ±ai , the
probabilit y of taking action ai at information set I is:

P(ai jI ; ¹ k ) =
¹ k (¾k (I ) ±ai )

¹ k (¾k (I ))
:

2.3.4 Solving games in sequence form

Here a brief overview on solving sequenceform using linear programming is
given. For a more detailed coveragewe refer to [34].

In order to solve a game we will have to formalize the outcomesover the
game. For a given tuple of randomizedpolicies¹ = h¹ 1; ¹ 2; :::; ¹ N i the expected
payo®H for a player is given by:

H (¹ ) =
X

l eav es p

h(p) ¢¯ (p) ¢
NY

k=1

¹ k (¾k (p))

where h(p) is the payo® the player gets at leave p, and ¯ (p) is the product
of the probabilities of the chancemoveson the path to leave p.

For two player gamethis can be rewritten a formulation similar to that for
the normal form:
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H (x; y ) = xT Ay

where x = (x1; x2; :::; xm ) is the vector of realization weights for player 1,
y , in the sameway, is the vector of realization weight for player 2. A is the
matrix of which entry aij gives the outcome of playing ¾i

1 against ¾j
2 weighted

by the chancemoveson the path(s). That is, A is a matrix of which the rows
correspond to the sequencesfor player 1 and the columns to sequencesof player
2. Formally:

aij =
X

p:¾1 (p)= ¾i
1 ; ¾2 (p)= ¾j

2

¯ (p) ¢h(p):

Here the summation is over all p that are consistent with sequences¾i
1 and

¾j
2. Of courseonly leave nodes,p, will have a nonzerovalue for h(p). Therefore

the matrix A will have a lot of zero entries.
Now we have all the tools to de¯ne the linear program. The best response

y to player 1's policy x is the following linear program:

max
y

(xT B )y

subject to Fy = f ; (2.2)

y ¸ 0:

Here B is the payo® matrix for player 2, F is the constraint matrix for the
assignment of realization weights y , so they satisfy the constraints mentioned
in the previous section and f is the column vector forcing them to add up to
the right number.7 This equation is the primal objective of the linear program.
The dual objective function is:

min
q

qT f

subject to qT F ¸ xT B : (2.3)

Equation 2.2 and 2.3 together de¯ne the complete linear program. The
optimal solution is for a pair y ; q such that the primal and dual objective are
equal:

qT f = qT Fy = xT By :

In a similar way the best responsefor player 1 can be constructed. This is
optimized over a pair x ; p when:

eT p = xT ET p = xT Ay (2.4)

Recall that an equilibrium in a gameis the point where the players' policies
are best responsesto each other. Therefore, we now can construct a linear pro-
gram for an equilibrium for a zero-sumtwo player game. The primal objective
function is:

7When performing linear programming using normal form, the constrain t matrices are a
single row, forcing the probabilit y of the pure policies to sum up to 1 (i.e a scalar f ). The rest
of the procedure is the same.

23



Chapter 2 Game theory 2.4 Remaining problems

min
y ;p

eT p

subject to ¡ Ay + ET p ¸ 0;

¡ Fy = ¡ f ; (2.5)

y ¸ 0:

Where A is the payo®function for player 1, so¡ A = B is the payo®function
for player 2. Also in this casethe program has a dual objective function, which
performs a maximization over q and x. The solution of the linear program gives
a pair of optimal policies speci¯ed in randomization weights.

2.4 Remaining problems

In this chapter the game theoretic approach to solving gameswas described.
We discussedwhat the gametheoretic notion of a solution for gameis and how
to ¯nd such a solution. We explained how an exponential blow-up in size can
be avoided by making useof sequenceform instead of strategic- or normal form.
The sizeof this sequenceform is polynomial in the game-tree,allowing to tackle
bigger games.

Despite all this, we argue that there are two problems with this gametheo-
retic approach:

1. Although sequenceform is polynomial in the size of the game-tree, the
game-tree itself can be huge, rendering the approach less practical for
real-life games.

2. The Nash equilibrium solution concept is too conservative.

The ¯rst problem is one of computation. The size of a game-tree is usually
highly exponential in the sizeof its rule baseddescription. As an example, for
two-player Texas' Hold-em, which was discussedin the intro duction, the game-
tree consist of O(1018) nodes [2]. Clearly, this is a magnitude that is beyond
the limits of computation.

The secondproblem directly relates to property discussedin section 2.2.4,
that expressedthat a Nash policy is optimal given that the opponent also plays
a Nash policy. In a real-life gameit is not very likely that an opponent actually
plays a Nash policy. This assumption is strengthenedby the ¯rst problem. In
this case,we would want to exploit any weaknessesthe opponent's policy might
have.

This is the reason that an opponent-based approach for poker is taken in
[4, 3]. It is alsoindicated in the setting of multi-agent systems[48]. The authors
of the latter identify other problemswith the usageof Nash-equilibria in [52]. In
this work they also proposean `AI Agenda' for multi-agent settings, centering
around the question \ how to best represent meaningful classesof agents, and
then use this representation to calculate a best response".
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Chapter 3

MDPs & POMDPs

In the previous chapter we outlined the game theoretic approach for solving
gameslike poker and argued that its solution concept, the Nash equilibrium is
too conservative for these type of games. In this chapter we switch from the
¯eld of gametheory to that of decision theoretic planning (DTP) and arti¯cial
intelligence.

DTP studies the processof automated sequential decisionmaking, in which
the major problem is planning under uncertainty: Planning what actions to take
in an uncertain environment in order to obtain the best result. This problem
has been studied in various ¯elds of science(AI planning, decision analysis,
operations research, control theory, economics)and is complex. In general, the
¯rst problem is determining what `obtaining the best result' means,usually this
involvesmaximizing someperformancemeasure.Luckily, for the poker-variants
investigated in this thesis, this is an easytask, as this performancemeasureis
given by the outcomesof the game.1

After that comes the harder task of formalizing the problem in concern
and solving it such that the obtained plan or policy indeed performs well with
respect to the performancemeasure. In this chapter, we will ¯rst intro duce two
frameworks, that give such a formalization for planning problems.

In section 3.1 we ¯rst intro duce the Markov Decision Process(MDP) which
has been adopted of one of the standard frameworks for planning in arti¯cial
intelligence. After that, we intro duce the Partial ly ObservableMarkov Decision
Process (POMDP) which extends the MDP.

Having explained the POMDP, in section 3.3, we show how we can convert
an extensive form game to a POMDP model for a single player under the as-
sumption of a ¯xed opponent, following the approach given in [42]. Finally we
show how we can usethis model to calculate a best-responsepolicy that exploits
the weaknessesof the opponent.

3.1 MDPs

Markov decisionprocessesprovide a formal basis to a great variety of planning
problems. The basic class of problems that can be modeled using MDPs are

1 Indeed, this is exactly one of the reasons making games suitable for research.
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systemsin which there is a decisionmaker (the agent) that can be modeled as
stochastic processes.

An MDP planning problem is given by: 1) the possibleworld states, 2) the
actions that can be performed at thesestates, 3) a transition probabilit y model
describing the probabilit y of transferring from one particular state to another
when a certain action is taken, and 4) the rewards that are assignedfor certain
transitions.

The goal is controlling the dynamical stochastic systemthe MDP describes:
This systemcanbein oneof the world statesand which state changesin response
to events.

One of the great advantagesof the MDP framework is its abilit y to deal with
outcome uncertainty; the uncertainty with respect of the outcome of an action.
Also, it allows for modeling uncertain exogenousevents, i.e. events not caused
by actions of the agent, and multiple prioritized objectives. Finally, MDPs can
also be usedto model and solve non-terminating processes.

It is for a great part becauseof this versatilit y and °exibilit y, that the MDP
framework has been adopted by most work on DTP and recent AI planning
[8, 26, 30, 50]. Also, it has served as a basis for much work on reinforcement
learning [56, 39, 50].

3.1.1 The MDP framew ork

Formally, a MDP is a tuple: hS; A ; T; Ri , with S being the state-space,A the
set of actions available to the agent, T the transition model and R the reward
model. We will ¯rst elaborate on theseelements of an MDP.

The state-space,S, is the collection of world states. At each time point t
the processcan be in exactly one of thesestates s 2 S.

At each time t the agent selectsan action from the set of actions that is
available to him a 2 A. These actions are the only meansby which the agent
in°uences the process.Not all actions might be available in all states.

The transition model, T; speci¯esexactly how each action takenby the player
changesthe current state. Formally it is a function, T : S £ A ! P(S; S; A ),
mapping from statesand actions to a probabilit y distributions over states. With
someabuseof notation we will denotethe probabilit y of transitioning to s0 from
s when performing action a by P(s0js; a).

In its most general form, the reward model, R, speci¯es the reward for a
particular transition. That is, is speci¯es a function R : S £ A £ S ! R.
Usually, however, the reward model is given as:

R(s;a) =
X

s02 S

P(s0js; a) ¢R(s;a; s0):

In some cases,the reward can also be speci¯ed as a function of only the
state, giving R(s). However, we will mostly use the common form R(s;a), to
preserve generality.

An important aspect of a MDP is that it respects the Markov property : the
future dynamics, transitions and rewards, depend only on the current state.
Formally:

P(st +1 jst ; at ; st ¡ 1; at ¡ 1; :::; s0; a0) = P(st +1 jst ; at )
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and

R(st ; at jst ¡ 1; at ¡ 1; :::; s0; a0) = R(st ; at ):

In a MDP, a policy speci¯es what action to take in a state, soit is a mapping
from states to actions. In general,whether the MDP models a ¯nite or in¯nite
processis relevant for the type of policy; the last action an agent takesin its life
will generally be a di®erent one from the ¯rst action, even if the circumstances
(state) are the same. The number of actions the agent takesin a MDP is called
the horizon, h.

To model the fact that, when a MDP has a ¯nite horizon, the preferable
actions for a certain state will probably di®er for di®erent times (or stages),
non-stationary policies are used for these type of MDPs. A non-stationary
policy is a sequenceof action mappings ¼t (s), with t = 0; 1; :::; h [49].

For an in¯nite-horizon MDPs, it is known that they have an optimal station-
ary policy ¼(s). This corresponds with the intuition that the stage will make
no di®erenceregarding what action to take at particular state.2

3.1.2 Solving MDPs

Now that the MDP model and the notion of policy within a MDP have been
explained, we turn to the questionof how we can usea MDP to solve a planning
problem. It is clear that the goal is to ¯nd an optimal policy with respect to
some objective function. The most common objective function is that of the
expected cumulative (discounted) reward.

For a ¯nite-horizon MDP of horizon h, the expected cumulativ e reward of a
policy, ¼; is simply the expected value of sum of the rewards:

E

"
hX

t =1

Rt

#

;

where Rt is the reward received at step t, which is given by:

Rt =
X

st 2S

R(st ; ¼t (st )) P(st jst ¡ 1; ¼t ¡ 1(st ¡ 1)) :

For this measureto be bounded in the caseof an in¯nite horizon MDP, a
discount factor, 0 < ° < 1, is intro duced. The expected cumulativ e discounted
reward is given by:

E

"
1X

t =1

° t Rt

#

:

Now wecan inductiv ely de¯ne the valueof a state accordingto the stationary
policy ¼as follows:

V¼(s) = R(s;¼(s)) + °
X

s0

P(s0js;¼(s)) V¼(s0): (3.1)

2To understand why, observe that when the horizon is in¯nite, at each stage there are an
in¯nite number of actions still to be tak en.
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For a ¯nite horizon MDP with a non-stationary policy this de¯nition be-
comes:

V t +1
¼ (s) = R(s;¼t (s)) +

X

s0

P(s0js;¼t (s)) V t
¼(s0); (3.2)

with V 0
¼ = 0. Equation 3.2 de¯nes the so-called the t-steps-to-go value

function.
Another equation similar to the above two is:

V t +1
¼ (s) = R(s;¼(s)) + °

X

s0

P(s0js;¼(s)) V t
¼(s0):

This equation can be used to approximate the value function for stationary
policies, equation 3.1, to arbitrary accuracy, becauseV n

¼ (s) ! V¼(s) as n !
1 .3This processis known as successiveapproximation.[9]

In the rest of this section we will focus on stationary policies. For non-
stationary policies similar results hold. Also note, that non-stationary policies
can be converted to stationary policies, by indexing states with their stageand
requiring all transitions to go to next stage. E.g. t0 6= t + 1 ) P(st 0jst ; a) = 0.

Now the goal is to ¯nd an optimal policy. It is known that optimal policies
share a unique optimal value function, denoted V ¤. Given this optimal value
function an optimal policy, ¼¤ can be constructed greedily in the following way:

¼¤(s) = argmax
a2A

Ã

R(s;a) + °
X

s0

P(s0js; a) V ¤(s0)

!

:

So if we can ¯nd V ¤ we have a way to solve the MDP. Here we discusstwo
ways to tackle this problem.

The ¯rst is to solve the system of Bellman equations:

V (s) = max
a2A

Ã

R(s;a) + °
X

s0

P(s0js; a) V (s0)

!

;

for all states using linear programming. [49, 14, 25]
The secondoption is to usedynamic programming. By iterativ ely applying

the Bellman backup operator, H :

H V(s) = max
a2A

Ã

R(s;a) + °
X

s0

P(s0js; a) V (s0)

!

;

we can ¯nd the approximate optimal value function. In the light of non-
stationary policies, the t -th application of H gives the optimal t -step-to-go
value function:

V ¤
t +1 = H V ¤

t :

Sofor a MDP with horizon k, we can apply H k times to get (V ¤
t =0 ; :::;V ¤

t = k ),
which can be usedto extract an optimal non-stationary policy. For the in¯nite
horizon case,we are interested in the stationary policy V ¤ = V ¤

t = 1 . Iterativ ely

3For a stationary policy, there are in¯nitely many steps to go.
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applying H will convergeto V ¤ in ¯nite time. This technique is also known as
value iteration.[56]

A di®erent method we will not cover in detail is policy iteration. The basic
ideabehind this is to interleavepolicy evaluation (e.g. successiveapproximation)
with policy improvement. In practice this convergesin few iterations, although
the amount of work to be done per iteration is more.

3.2 POMDPs

In the previous section the MDP and its abilit y to deal with e®ectuncertainty
were presented. In this section the Partial ly ObservableMarkov Decision Pro-
cess (POMDP) is described. In addition to the representational capabilities of
the MDP, the POMDP model alsoallows for dealing with problemsthat exhibit
state uncertainty , i.e. the agent does not know what the current state is, but
only receivesa hint regarding this true state through meansof an observation.

As before we will ¯rst describe the framework. After that we will relate
MDPs and POMDPs and, at the end of the section we will describe how to
solve POMDPs.

3.2.1 The POMDP framew ork

As mentioned, in the POMDP framework the agent does not know the true
state, but instead receivesan observation that givesa clue regarding this state
when transferring to it. To deal with this the formal description is expandedto
incorporate the observations and their probabilities.

A POMDP is a tuple hS; A ; O; T; O; Ri , where S; A ; T; R are as before. The
set O are the observations the agent can receive.

The observation model, O, is a function O : A £ S ! P(O; A ; S) map-
ping from actions and states to probabilit y distributions over O. We will write
P(oja; s0) for the probabilit y of observation o 2 O when transferring to state
s0 2 S after action a 2 A.

Note, that now the reward function R; can in principle also depend on the
observation. However, this can again be rewritten to R(s;a) in the following
way:

R(s;a) =
X

s02S

X

o2O

P(s0js; a) ¢P(oja; s0) ¢R(s;a; s0; o):

As the agent canno longerobserve the true state in a POMDP, a policy can't
simply be a mapping from states to actions as for a MDP. Instead, at time t the
agent must basehis policy on the observablehistory h(a0; o0); (a1; o1); :::; (at ; ot )i ,
very much like a player in an extensive form game must baseits policy on his
information sets.

Of course,maintaining such an history takesup a lot of spacefor POMDPs
with a largehorizon and is impossiblein the caseof an in¯nite horizon. Also, this
would make the processnon-Markovian. Luckily, it turns out that maintaining
a probabilit y distribution that represents the belief over the states provides a
su±cient statistic of the history and thus a Markovian signal for the planning
task.
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Figure 3.1: The `state-estimator' view. (Image from [30])

A POMDP has an initial belief b0, which is a probabilit y distribution over
the state space,with b0(s) de¯ning the probabilit y of starting in a state s. Every
time the agent takesan action this belief is updated using Bayes' rule:

bo
a(s0) =

P(ojs0; a)
P

s2S P(s0js; a)b(s)
P(oja;b)

; (3.3)

where

P(oja;b) =
X

s02S

P(ojs0; a)
X

s2S

P(s0js; a)b(s) (3.4)

is a normalization factor.
Now, returning back to the de¯nition of a policy, a policy in a POMDP is a

mapping from beliefs to actions.
A nice intuitiv e interpretation is given by the `state-estimator' view [12, 30],

which is depicted in ¯gure 3.1. At somepoint in time, the agent hasa particular
belief regarding the state of the world. He interacts with the world by taking an
action that is basedon that belief, as a consequencethe state changesand the
world givesback an observation. This observation is fed to the state-estimator
together with the previous belief and action. The state estimator producesan
updated belief which in turn is mapped to an action by the agent's policy again,
etc.

3.2.2 The relation between MDP and POMDP

The MDP model asgiven in 3.1 sometimesis also referred to as ful ly observable
Markov decision process(FOMDP) . In [8] the authors explain how a FOMDP
can interpreted as a special caseof POMDP, namely a POMDP in which at
every state the observation received is the state itself.4

Seenin this way, both models are part of a bigger family of MDPs. At the
other end of the spectrum, there is the non-observableMDP (NOMDP) . In this
model, no observation of any kind is received. Consequently , a policy in such a
model is an unconditional plan of actions.

4This is an idea is very similar to the view that a perfect information game can be modeled
by an extensive form game in which each node has its own information set.
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3.2.3 Solving POMDPs

In section3.2.1we saw that we could compactly represent the observable history
using beliefsand that a policy in a POMDP is a mapping from thesebeliefs to
actions. Now the question is how to ¯nd an optimal policy.

When proceedingalong the samelines as before, we can de¯ne the value of
a particular belief, b; under a policy ¼as:

V ¼(b) = R(b;s) + °
X

o2O

P(oja;b)V ¼(bo
a);

where the reward, R(b;s) =
P

s2S R(s;a)b(s) 5 and the secondpart gives
the value of all successorbeliefs weighted by the probabilit y that they will be
realizedwhentaking action a: That meansthat P(oja;b) is asde¯ned in equation
3.4.

In a similar way, we can also use dynamic programming to calculate the
optimal t -steps-to-govalue function:

V ¤
t +1 (b) = H V ¤

t (b);

where, H ; the Bellman backup operator for POMDPs is given by:

V ¤(b) = max
a2A

"

R(b;s) + °
X

o2O

P(oja;b)V ¤(bo
a)

#

: (3.5)

However, since beliefs are probabilit y distributions, the belief spaceis con-
tinuous (a simplex with dimensionality equal to the number of states). In the
general case, the optimal value over the belief spacecan be represented by a
number of vectors (hyperplanes) that correspond to conditional plans, and the
value of a belief point is given by the maximum inner product of that belief with
each vector. In this way, the value function can be represented by thosevectors
that are maximizing for somepart of the belief space.Finding those vectors is
in generalan intractable problem even in the ¯nite horizon case[43], and exact
algorithms are heavily relying on linear programming, [53, 11, 30].

In recent years, a lot of attention has shifted to approximate solving of
POMDPs. Examples are the PEGASUS [41] algorithm which is a model-free
policy search method and PERSEUS [54] which is basedon randomized point
based(approximate) value iteration.

3.3 From game to POMDP

Returning back to poker games,in this section we will show how we can rep-
resent such gamesas a POMDP and how solving a resulting POMDP yields
a non-conservative policy for the protagonist agent, i.e., one that exploits the
opponent.

5Note that at a certain belief b, b(s) is the actual probabilit y of state s. In this sensethe
word `belief ' can be slightly misleading.
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4 42  6
Startpass/0 1/bet

1 -1 2 1 2 -1 -1 -2 1 -2

(a) Extensiv e form game.

(4)

1 -1 2 1 2 -1 -1 -2 1 -2
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(Pass)

(Bet)

(4)

(Pass)

(Bet)(Bet) (Bet)

(Pass) (Pass)

bet / 1
pass / 0
get card

(observation)

S_42b S_46b

s_statename
Start

(b) POMDP model.

Figure 3.2: Conversion from extensive form for 8-card poker (left) to a POMDP
model for the gambler (right). The decision nodes for the protagonist agent
becomestates in the POMDP model. The deterministic choicesof the opponent
becomestochastic transitions.

3.3.1 8-card poker as a POMDP

The crucial assumption that lies at the foundation of this approach is that
the policy of the opponent is ¯xed and known. For example, estimated from
repeatedplay. Given this assumptionwe know probabilit y of transitioning from
a particular decisionnode to a next decision(or outcome) node.

With this insight we can model all the decisionnodesfor the player in focus
together with the outcome nodes as states in a POMDP. In this POMDP, the
deterministic decisionsof other playersareconverted to stochastic transitions for
the protagonist agent. This is illustrated in ¯gure 3.2, which shows a POMDP
model for the gambler.

More formally, let the state-spacefor the POMDP, S, consist of the set of
nodes in the game-tree at which the protagonist agent select an action ai 2
f pass;betg, including the start state6, together with the outcome nodes, the
end-states.

For transitions from somestate in S to another that doesnot involve a move
from the opponent, the transition model is clear. E.g. when the protagonist
agent folds the transition is not in°uenced by the opponent. In the casethat
for a transition from s to s0 an opponent move is involved, we needto consider
the probabilities that he chooseshis actions with.

Let T be the set of decisionnodesfor the opponent. Theseare all the nodes
from the game-treenot in S. At each opponent node t 2 T he selectshis action
aj according to a policy ¼j = P(aj jt). This leadsto:

P(s0js; ai ) =
X

a j

X

t 2 T

P(s0jt; aj )P(aj jt)P(tjs;ai ); (3.6)

where P(tjs;ai ) represents the probabilit y induced by any chancemovesbefore

6We will assume that the agent has to bet at the start node to pay the ante. In fact this
is a form of `dummy' move.
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the opponent selectshis action and P(s0jt; aj ) that of any chance moves after
the opponent selectedaction aj . Also, becausethe transitions are over a tree,
we know that each node hasa unique predecessor,thus equation 3.6 reducesto:

P(s0js; ai ) = P(s0jt; aj )P(aj jt)P(tjs;ai ):

In this aj and t are exactly that action and opponent node that make s0

possible,i.e. P(s0jt; aj ) > 0.
Having covered the construction of the transition model, we still need to

de¯ne the reward- and observation model. The reward model for poker games
is trivial. It is possibleto use the simple version of the reward function: R(s):
For all the non-end-statesR(s) = 0, the reward of the end-statesis given by the
corresponding outcome nodes.

The observation model also is very simple. When a player reachesa certain
state he is certain to make the corresponding observation. E.g. when arriving
in state s 42 in ¯gure 3.2b, he is certain to observe card `4'.

One point of attention is that the actions of the opponent are also obser-
vations for the protagonist agent, but these remain deterministic: when the
transitioning to state s 42b, the agent is certain the receive observation `bet'.
Therefore P(ojs0; a) is 1 for exactly one observation o 2 O.

3.3.2 Best-resp onse play: Solving the POMDP

In section 3.2.3 we described solving POMDPs, which illustrated that this is a
hard task in general. In this sectionwe explain that for the special caseof poker
gamesthis task is relatively simple.

Recall from section 3.2.1 that a belief in fact is a compressedrepresentation
of the observable history and that becauseof this, for an extensive form game,
there is one belief per information set.

Also observe the game-treefor the discussedpoker gamesis ¯nite. There-
fore the number of information sets and thus corresponding beliefs is ¯nite.
Moreover, the horizon of these gamesis relatively low and the sets A and O
are relatively small, therefore the number of beliefs is not only ¯nite, but also
small. A ¯nal observation is that the initial belief is ¯xed and known.

To solve the resulting POMDPs, we therefore simply generateall possible
beliefsand their transition probabilities, yielding a fully observable MDP. This
MDP is then solved using exact value iteration as described in 3.1.

The construction of this belief MDP is straightforward. The chanceof reach-
ing a next belief is equal to the chance of receiving the observation that leads
to that belief, i.e.:

P(b0jb;a) = P(oi jai ; b);

where ai and oi are the action and observation leading to belief b0 and
P(oi jai ; b) is the changeof receiving observation oi after action ai from belief b,
as de¯ned in equation 3.4.

The reward of a particular belief b is also trivially de¯ned as:

R(b) =
X

s2S

R(s)b(s);

giving us the complete description of the belief MDP.
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3.3.3 Discussion

Although in this thesis we focus on two-player poker games, the method for
calculating a best-responsepolicy aspresented in principle works for any number
of opponents. However, with a large number of players, the game-treegrows
exponentially . Therefore the size of gameswith multiple players that can be
tackled using this technique will be practically bounded.

Another remark that should be madehereis that it is alsopossibleto usethe
reward model that is dependent on both state and action R(s;a), this eliminates
the needto include end-statesand end-statebeliefs. As roughly half of the states
are end-statesthis would save considerablespace.In fact this should be seenas
manually performing one backup step of value iteration.

A last issueis regardingour assumptionof knowing the ¯xed opponent policy.
For this assumption to be justi¯ed, it is vital to have a good opponent model.
However, this is a separatetopic of research and therefore not further treated
in this thesis. For research on opponent modeling we refer to [4, 13, 3]. In this
chapter we have shown that, given a perfect opponent model, we can calculate
best-response to that policy. Of courseno opponent model will be perfect in
practice. We return to the issueof being more secureagainst errors that might
comefrom errors in the opponent model in chapter 7.
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Chapter 4

Exp erimen tal results

4.1 The Gala system

4.1.1 Mo di¯cations and additions

At the time of writing it is seven years after the Gala system was published.
Therefore somemodi¯cations were neededto get everything to work. Most of
the changesinvolved the Gala systems code. Some other modi¯cations were
necessarywith respect to linear programming. Thesechangesare described in
the appendix.

Becauseof the required modi¯cations, it wasnecessaryto verify whether the
Gala system indeed outputs optimal policies, as these will be used as a basis
throughout this thesis. In [35] the optimal policy is given for 8-card poker, so
this was usedto compareto. In this section the resulting policies, a description
of the comparisonsmade and the conclusionof the veri¯cation are given.

4.1.2 Description of resulting policy

As expected, the Gala system provided a dealer and gambler policy. These
policies, however, are di®erent from the optimal policy given in [35]. The only
modi¯cation madethat would seemto explain this is the usageof a di®erent LP
algorithm. This thought resulted in a secondtest: solving the dual of equation
2.5: which speci¯es optimization over the policy of the dealer (x).

This resulted in a third pair of of policies, di®erent from both others. This
strengthens the assumption that the di®erenceis causedusing a di®erent LP
algorithm: the algorithm gives di®erent outcomes when switching the primal
and dual objective function, so¯nding a di®erent optimal solution than another
algorithm seemsmore likely. The three pairs of policies are depicted in ¯gure
4.1.

Observe that all encountered policies exhibit `blu±ng'. I.e., all specify to
bet on the lowest one or two cards in somesituation. In fact, blu±ng is game
theoretically optimal, as already shown in [35].

Another striking observation was that the value resulting from the LP opti-
mization was+0.0625. When optimizing accordingto equation2.5, weminimize
eT p, which according to equation 2.4 is the payo® for player 1, which in the
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Figure 4.1: The three resulting policies

used Gala poker game is the dealer. Therefore this indicates that the value of
the game, is 0.0625coin per gamein the favor of the dealer.

4.1.3 Whic h are optimal policies?

As explained in the previous section solving the 8-card poker game using the
Gala system presented more questions. Out of three pairs of policies, which
are optimal? And, can it be correct that the value of the game is in favor of
the dealer? To answer these questions, the only viable approach seemedto do
simulations. For each pair of policies¯v e runs of a million gamesweresimulated
and the averagepayo®per deal wasdetermined. By using the averageoutcomes
of di®erent deals, we remove the e®ectof somedeals appearing more frequent
then others, thereby in°uencing the averageoutcome.

The outcomesof these simulations are shown in ¯gure 4.2a-c. Figure 4.2a
shows the results for policies found by our modi¯ed Gala implementation using
the new LP algorithm, which we will refer to as the `LP policies'. 4.2b shows
the `Gala paper policies', i.e. those from [35]. As they were read from paper,
these are quite inaccurate. Figure 4.2c shows the results for the policies that
resulted from LP using the dual equation, i.e. `optimized on x'. And ¯nally
4.2d shows the averageover all simulations.

Although the averageoutcome for a particular deal is di®erent for the three
policy pairs, the average over these di®erent deals lie very close together. It
seemsthat if a combination of policies gives a higher payo® for a player for a
certain deal, this is compensated by a lower payo® in the same row/column.
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Figure 4.2: Outcomes for di®erent policy-pairs, determined by simulating 5M
games
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¹ ¾
LP policies 6.2500e-02 6.7685e-04
Gala paper policies 6.2738e-02 5.0112e-04
LP policies optimization on x 6.2444e-02 2.2613e-04
Gala paper dealer vs LP gambler 6.2107e-02 4.1600e-04
Gala paper gambler vs LP dealer 6.2500e-02 4.9861e-04
LP gambler vs. `optimized on x' dealer 6.2342e-02 4.0139e-04
LP dealer `optimized on x' gambler 6.2644e-02 7.4739e-04
Over all simulations 6.2468e-02 5.1074e-04

Table 4.1: Mean (¹ ) and standard deviation (¾) of expectedpro¯t for the dealer
for the di®erent simulations

For example look at the ¯rst row in ¯gure 4.2 a and b: Although the gambler
has a higher payo®for card 2 and 3 in b comparedto a, this is compensatedby
a higher loss for cards 5-8.

The averageover all deals is close to the +0.0625 coin/game predicted by
the LP algorithm, for all the policy pairs. This indicates that this is the true
value of the game.

Still theseresults didn't allow us to point onepair of policiesout asbeing the
optimal. Therefore we performed more veri¯cation by simulating gameswith a
dealer policy selectedfrom one pair versusa gambler from another pair. Again
each simulation consistedof 5 runs of a million games. The results of this are
listed in table 4.1.

As the table shows, the results are very closefor all the experiments, sug-
gesting that all policies are equally good. Moreover, the standard deviation
over all simulations is not signi¯cantly higher than those within the di®erent
simulations. If someparticular policies would actually be better than others,
one would expect the standard deviation for that the di®erent experiments to
be lower than the over all standard deviation.

Therefore it is, in the author's opinion, safe to conclude that all the found
policies are indeed optimal and that the value of the game is +0.0625 in favor
of the dealer.

4.1.4 Conclusions of veri¯cation

We found that the outcomesof the di®erent policies are closeenoughto justify
that all are optimal. This meansthat the modi¯cations, although they caused
¯nding di®erent optimal policies, did no harm and we conclude that we can
safely usepolicies produced by the modi¯ed Gala implementation.

4.2 Best-resp onse play

The procedure for calculating best-responsepolicies as given in chapter 3 was
implemented. This section describessomeperformed experiments.
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Figure 4.3: Resulting POMDP policies. Obtained when trained against Nash
policies.

4.2.1 8-card poker as a POMDP

The ¯rst experiments wereperformedon 8-cardpoker. As for this game,optimal
policiesand the corresponding valueof the gamewasavailable, this madea good
test-bed for the best-responseprocedure.

We proceededby calculating best-responsesagainst the found Gala policies.
As expected, the POMDP approach wasable the reach a payo®of ¡ 0:0625and
+0 :0625for respectively gambler and dealer policies.

It turned out that when playing against the Nash-policies from Gala, there
are multiple best-response policies. This is in accordancewith the fact that
a mixed policy is only a best response to a particular policy when all of the
pure policies it assignspositive support to are best-responses,as mentioned in
section2.2.4. Figure 4.3 shows the resulting policies. For the casesthat betting
and passinghave the sameexpected value (corresponding with the indi®erence
betweenthe di®erent pure policies), the probabilit y of betting is plotted as 0:5.

The ¯gure clearly shows that when the Nash-policy speci¯es either bet or
pass with a probabilit y of 1:0, then so does the POMDP policy. When the
Nash-policy speci¯es a both actions with some positive probabilit y, the plot-
ted POMDP policy speci¯es 0:5, indicating indi®erence. In fact the Nash and
POMDP policies are very similar, only the latter is missing the particular ran-
domization that guarantees the security level payo®. The lacking of this `defen-
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sive capability' becomesclear in the light of the assumptionthat the opponent's
policy is ¯xed.

4.2.2 Alternating learning

After having experimentally established that the POMDP-approach to poker
gamesindeed provides a best-responsepolicy, we performed someexperiments
on alternating learning for 8-card poker. The idea is to start with a arbitrary
policy for one of the players, learn a best responseto that policy, in turn take
the resulting policy and learn a best-responseto that policy, etc.

It turned out that this didn't lead to any kind of convergence. This result
is con¯rmed by theory [21], and tells us the gamecontains intransitiv e cycles.

An exampleof another gamewith such transitivities is Rock-Paper-Scissors.
As rock beats scissors,scissorsbeats paper and paper beats rock, clearly the
alternation of best-responsepolicies will never converge.
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Scaling up: reduction and
appro ximating metho ds
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Chapter 5

Represen ting large state
spaces

In the previous part we showed that a partially observable card game can be
transformed to a POMDP. The assumptions that were necessaryare that the
opponent is playing a ¯xed policy and that we know that ¯xed policy. In this
setting we can exactly solve the POMDP, yielding a best-responsepolicy.

This approach overcomesone of the identi¯ed problems a Nash equilibrium
policy exhibits: being too conservative. The secondproblem remains. As men-
tioned, the POMDP representation described in section3.3 hasa state for every
decisionnode in the game-treebelonging to the modeled player. Therefore the
sizeof this representation is still of the sameorder as the full game-tree,which
for realistic gamesis intractable.

In this chapter, we present somemethods for dealing with large state spaces.
First, the issue of representing state spacesfor large MDPs and POMDPs is
covered. After which we will focus on reducing the size of the representation
through state aggregation. The idea is to reduce the e®ective size of the state
spaceby grouping together states that are equal with respect to someequiva-
lence notion as value and optimal action. In speci¯c we focus on an approach
called model minimization .

5.1 State Represen tation

The size of state spacesfor realistic problems is the main reason that MDPs
and POMDPs have not beenfrequently usedto tackle them. As a consequence,
a lot of research has focusedon dealing with these large spaces,especially for
the MDP framework. However, as noted in section 3.2, a POMDP can be seen
as an extensionof a MDP, therefore most of thesemethods can be extendedto
the POMDP framework as well.1

So far, we have presented the state spaceas an enumeration of all states,
S = f s1; s2; :::; sn g, this is called an extensional or explicit representation. It is
also possible to describe the state spacewithout enumerating all of them, by

1For conciseness, in this chapter we will often use the term MDP to denote the general
family of Mark ov decision processesincluding the partial observable case.
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factors denoted description
location Loc The robots location: (K)itc hen or (O)±ce

hold co®ee RHC Robot Holds Co®ee?
co®eerequest CR Is there a un¯lled co®eerequest?

tidy Tidy Is the o±ce tidy?
actions denoted description
move M move from K to O or vice versa

pickup co®ee PC pickup co®ee
deliver co®ee DC deliver co®eeto the o±ce

clean C make the o±ce tidy again
events denoted description
mess Mess The o±ce becomesa mess

request co®ee Co®ee! Someonewants: \ Co®ee!"

Table 5.1: The o±ce robot's world

talking about properties of states or sets of states. Such representations are
is called intensional or implicit representations. Often, the full state spaceis
thought to be the Cartesian product of several discrete properties or factors,
for this reasonthe term factored representations is also commonly used. A big
advantage of implicit representations is that can be much smaller.

Very much related to implicit representations are abstraction and aggrega-
tion. Abstraction is the processof removing properties of (particular) states
that are deemedirrelevant or of little in°uence. The term aggregationrefers to
the processof grouping or aggregatingstates that are similar according to some
equivalencenotion. The resulting aggregatestatescan then be usedto represent
the grouped states in a reducedmodel.

In this section,¯rst factored representations will be illustrated in moredetail.
Next, methods working directly on thesefactored representations will be brie°y
covered. After that, we will treat methods that separatemodel reduction from
solving. In the last subsectionwe will mention someother approachesof dealing
with large state spaces.

5.1.1 Factored represen tations

As mentioned, factored representations are basedon the idea that a state can
be described with someproperties or factors. Let F = f F1; F2; :::; Fk g be the
set of factors. Usually the factors are assumedto be booleanvariablesand easy
extention to the non-boolean caseis claimed.2

Now, a state is represented by an assignment to the k factors and the state
spaceis formed by all possible assignments. This immediately illustrates the
fact that a factored representation is typically exponentially smaller than the
full state space.

Example 5.1.1 We will give a simpli¯ed example from [8] to illustrate the

2 In the author's opinion, this extention may very well be possible, but often is not `easy'
and far from clear.
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Figure 5.1: On the left, the 2TBN for action move, M, is shown. Also shown are
the CPTs for Loc and Tidy . For Tidy a decisiontree representation is illustrated
on the right, indicating the probabilit y Tidy is true after the action.

concept. Supposewe are designinga robot to help in out an o±ce environment.
Its tasks are to deliver co®eewhen requestedand to tidy the o±ce if it's messy.

The relevant state variables or factors are the robots location, whether it
holds co®ee,whether there is a co®eerequest and whether the o±ce is tidy or
not. Of course the robot will have several actions at its disposal: move from
the kitchen to the o±ce and vice versa,pickup and deliver co®eeand clean the
o±ce.

Finally in his world there are two events that can take place, changing the
state of the world: the o±ce can becomea messand someonein the o±ce can
call for co®ee.Table 5.1 summarizes`the o±ce robot's world'. ¤

In order for this presentation to be usable, we needa way to represent the
transition probabilities, the rewards and, in caseof partially observabilit y, the
observation probabilities. Also, we would like to ¯nd a way to do this without
explicitly enumerating all the combinations.

A way of doing this is by using two-stage temporal Bayes nets (2TBNs)
[10, 8]. A 2TBN consistsof the set of factors F at time t and the sameset at
time t + 1 and represents the in°uence of an action on the factors. Figure 5.1
depicts the 2TBN for the action move, M. The ¯gure alsodepicts the conditional
probability table (CPT) for the post-action factors Loc and Tidy. Under the
action move Loc at time t + 1 is only dependent on Loc before the action. The
robot will successfullymove to from the kitchen to the o±ce (and vice versa)
with a probabilit y of 90%. The variable Tidy at t + 1 dependson two pre-action
factors: T idy and RH C. When Tidy is false before move, it will remain false
after the move; moving doesnot get the o±ce cleaner. When the o±ce is tidy,
there is a standard probabilit y of 5% that the o±ce becomesa messby the
people using it. However, when the robot moves while it holds co®ee,there is
a chanceof spilling the co®ee,increasingthe probabilit y of the o±ce not being
tidy after the move to 20%.

The 2TBN from this example contains no arrows between the post-action
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factors. Such networks are called simple 2TBNs. When there are connections
betweenthe post-action factors, this meansthey are correlated. In such a case
we speak of general 2TBNs. General 2TBNs require a more careful approach,
for more information we refer to [7] and [8].

When using a 2TBN for each action we can fully represent the transition
model compactly. Still, whenthe number of relevant pre-action factors increases,
the CPTs grow exponentially . To counter this, the CPTs can often be repre-
sented more compactly using decisiontrees. For example, ¯gure 5.1, also shows
a decision tree for the CPT for T idy. It illustrates that whether the robot has
co®eeis not relevant when it is already a mess.

As described in [29] further reduction in sizecanbegainedby usingAlgebraic
Decision Diagrams (ADDs) instead of decisiontrees. ADDs are an extention on
ordered binary decisiondiagrams (OBDDs) that have beensuccessfullyapplied
to reducethe state spacein the ¯eld of system veri¯cation. Other examplesof
this approach are given in [55, 8].

Up to now the explanation focusedon representing the transition model in a
factorized way. The extensionto rewardsand observation is quite simple though.
For rewards we can de¯ne a conditional reward table (CRT) for each action.
When dealing with POMDPs the samecan be done for observations. In [19]
these are referred to as complete observation diagrams. Both the rewards and
observations can also be represented compactly using decisiontrees or ADDs.

In this sectionwe brie°y outlined factored representations basedon 2TBNs.
There are also other approaches such as using probabilistic STRIPS represen-
tation. For more information we refer to [8].

5.1.2 Metho ds for factored MDPs

Above we discussedhow to compactly represent large MDPs, but we did not
discusshow to solve theseMDPs represented in such a way. Here we will give
a brief overview of methods working directly on factored representations.

As we saw the reward function ascan be represented using a decisiontreesor
ADDs. Also note that the reward function speci¯es the initial value function, V1.
This has lead to various approaches that perform the bellman backup directly
on these data structures. Examples are structured successive approximation
(SSA) and structured value iteration (SVI). For a comprehensive overview, we
refer to [8, 9].

The referredworks focuson MDP, but there are alsosomeapproachesspecif-
ically for POMDPs. One exampleis a factored approach for POMDPs basedon
the incremental pruning algorithm [11] described in [28] and an approximating
extension to it presented in [19].

5.1.3 Finding reduced mo dels

In the previous subsection we mentioned some methods that solve factored
MDPs directly. A di®erent approach is to try and ¯nd a smaller model through
state aggregation. This reduced model explicitly represents (enumerates) the
aggregatestates, which in turn implicitly represent parts of the original state
space.The aggregatestatescorrespond to a partition of the original state space.
If the reducedmodel is small enoughit can be solved exactly and will induce a
policy for the original MDP.
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In [16, 24] a method model minimization is proposed, that guarantees the
optimal policy for the reduced model will induce an optimal policy for the
original MDP. This approach is extended in [17, 33] to ¯nd further reduced
models that induce an approximately optimal policy.

The advantage of this line of approach is that oncethe reducedmodel is con-
structed, we can usestandard solving methods that are well understood. Also,
when the parametersof the model change(but not the structure of the partition
inducing the reducedmodel), we do not needto recalculate the reduction. Fur-
thermore, in [24] the authors discussequivalencesbetween this approach and
methods that operate directly on factored representations giving deeper insight
in how these methods work. We will treat the model minimization method in
more detail in section 5.2.

5.1.4 Other approac hes

Of course,there are a lot of other approachesas well, somebasedon the above
approaches. In [20] a non-factored approach is presented using aggregatestates
in the pruning phaseof the incremental pruning algorithm it is basedon. The
method, however, doesrely on an explicit representation of the full state space
for performing the bellman backup.

A factored approach for POMDPs using basis functions to represent the
value function is presented in [26]. It is basedon the assumption of additiv ely
separable rewards, that is the assumption that di®erent factors of the state
give di®erent components of the reward. The total reward is the sum of these
components. The idea is that if rewards can be modeled additiv ely, so can the
value functions.

Another family of methods for dealing with large (PO)MDPs are basedon
sampling approaches. In section 3.2.3 two of these, PERSEUS [54] and PE-
GASUS [41] were already mentioned. The former is basedon sampling belief
points that are typically encountered. Then a value function and thus policy is
calculated basedon thesebelief points. The latter is basedon the view that the
value of a state can be approximated by sampling a small number of tra jecto-
ries through the state. PEGASUS combines this perspective with policy search.
Work basedon a similar view is presented in [31, 32].

A ¯nal direction of recent work is that given in [46, 47]. Here the belief
spaceis compressedin such a way that information relevant to predict expected
future reward is preserved. This compressionis combined with bounded policy
iteration to give the VDCBPI algorithm they proposefor large POMDPs.

The alternativ e approaches listed in this section are also relevant in the
context of poker gamesand further research in this direction is required. Es-
pecially the tra jectory sampling approacheslook promising, as theseguarantee
performancebounds independent of the number of states. We performed a few
experiments using PERSEUS for poker games,but this didn't give immediate
results. Becausethe belief points are sampled randomly, relatively few beliefs
of gamesreaching showdown are sampled. Further investigation along this trail
might include methods that interleave sampling and policy calculation. I.e., in
a subsequent iteration, beliefs are sampled using the policy from the previous
iteration.
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5.2 Mo del Minimization

Although the intuition of state aggregation is clear, formalizing it leads to the
intro duction of quite a few concepts. Also, care has to be taken when grouping
states. In particular, when aggregatingarbitrary states, the resulting aggregate
states and transition model will violate the Markov property.

In this section we will ¯rst formalize state aggregation by intro ducing the
various concepts. An important concept is that of equivalencenotion. In par-
ticular, we will elaborate on the equivalence notion of stochastic bisimilarity ,
which is the central concept in model minimization [16, 24]. By showing that
this state aggregationmethod preserves the Markov property, an intuition be-
hind its working is given. After that weturn our attention on actually computing
reducedmodelsusing stochastic bisimilarit y and discusssomeissuesrelevant in
this procedure.

5.2.1 Aggregation and partitions

As mentioned state aggregationreducesthe e®ective sizeof the state space.The
result of aggregation is a partition, P, of the state spaceS = f s1; :::; sn g that
groups states together in aggregate states or blocks.3 I.e., P = f B1; B2; :::; Bm g,
where the blocks B i are disjoint subsetsof S. The block B i of P to which s
belongsis also denoted s=P.

A partition P 0 is a re¯nement of P if each block of P 0 is a subsetof a block
of P. If one of its block is a proper subset, P 0 is ¯ner than P: The other way
around, P 0 is called a coarsening of P if each block of P 0 is a superset of some
block(s) of P and P 0 is coarser than P if it is a coarseningof P and one of its
blocks is the union of someblocks in P.

In order to perform the aggregationan equivalence notion is used to deter-
mine what states are identical for the purposesunder interest. An equivalence
notion in fact is an equivalencerelation, E , that inducesa partition, P, of the
state space: P = S=E. We uses=E to denote the equivalenceclassof s under
E . This equivalenceclasscorresponds with the block s=P.

From an equivalencerelation E and its induced partition S=E; we can con-
struct a reduced MDP. We will use M =E to denote this MDP that is de¯ned
over the aggregatestates.

5.2.2 Equiv alence notions

[24] ¯rst intro ducestwo simple equivalencenotions. The ¯rst is action sequence
equivalence. Two states i 2 M and j 2 M 0 action sequenceequivalent if and
only if for all possiblesequencesof actions, a1; a2; :::; an , of any length n that
start in i and j , the distribution over reward sequences,r 1; r 2; :::; r n , are the the
same. This also applies for two states in the sameMDP, i.e. when M = M 0.

It is alsoshown that this notion is inadequateasit is not able to discriminate
between states with a di®erent optimal value. This is becausea policy for a
MDP de¯nes a conditional plan, meaningit can respond to what transitions are
actually taken, while an action sequencecan be seenas an unconditional plan.

3The term `block' is used to refer a group of states in the partitioning process,while the
term `aggregate state' is typically used to denote a block being used as state in a reduced
MDP .
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This observation immediately leadsto the secondequivalencenotion, namely
optimal value equivalence. Under this notion, two states s 2 M and t 2 M 0

equivalent if they have the sameoptimal value. However, becausethe optimal
value of a state does not convey information regarding the dynamics at that
state, this notion is also found inadequate.

In [24] the authors pose that an adequate equivalencenotion should be a
re¯nement of both action sequenceequivalenceand optimal value equivalence
and intro duce stochastic bisimilarity for Markov decision processes.

De¯nition 5.2.1 Let M = hS; A; T; Ri , M 0 = hS0; A; T0; R0i be two MDPs
with the sameactions. let E µ S£ S0 bea relation. E is a stochasticbisimulation
if each s 2 S (and t 2 S0) is in somepair in E , and if for all pairs E(s; t), the
following holds for all actions a:

1. R(s=E) and R0(t=E) are well de¯ned and equal to each other.

2. For states s0 2 M and t0 2 M 0, such that E(s0; t0) then P(s0=Ejs;a) =
P(t0=Ejs;a).

Two states s 2 M and t 2 M 0 are stochastically bisimilar if there is a
stochastic bisimulation that relates them. Again, this de¯nition also applies
when M = M 0 and therefore for two states in the sameMDP.

In [24] the authors prove many properties of stochastic bisimulations. We
will summarizesomeof them in the following theorem:

Theorem 5.2.1 Stochastic bisimilarity restricted to the statesof a single MDP
is an equivalence relation that is a re¯nement of both action sequence equivalence
and optimal value equivalence. Moreover, for any equivalence relation E that is
a stochastic bisimulation, an optimal policy for M =E induces an optimal policy
for the original MDP M .
Pro of For the proof we refer to [24]. We provide an intuition in section 5.2.3
and 5.2.4. ¤

5.2.3 The Mark ov prop ert y

This subsection shows that the Markov property may be violated when per-
forming aggregation on arbitrary states. Assume the current state is s 2 B i .
For a particular action a, we have that the probabilit y of transferring to a state
in B j when performing that action is given by:

P(B j js; a) =
X

s02 B j

P(s0js; a): (5.1)

Let p(¢) be a distribution over all states in B i . We refer to this as the
within block distribution of B i and will also denote it pB i (¢) if there is a need
to disambiguate. This allows us to de¯ne the transition probabilit y betweenB i

and B j in the following way:

P(B j jB i ; p(¢);a) =
X

s2 B i

p(s) ¢P(B j js; a)

=
X

s2 B i

X

s02 B j

p(s) ¢P(s0js; a): (5.2)
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S1

S2

S3

Block jBlock i
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Figure 5.2: A partition satisfying equation 5.5.

This shows that the transition betweenblocks is depend on the distribution
p(¢). This distribution, however, can in general depend on the full history of
the (PO)MDP . The result is that the transition to a next block doesn't solely
depend on the current block, but potentially on the full history, breaching the
Markov assumption.

For the reward4 and observation model we can derive in a similar way:

R(B i ; p(¢); a) =
X

s2 B i

p(s) ¢R(s;a) (5.3)

and, for a certain observation o:

P(ojB i ; p(¢); a) =
X

s02 B i

p(s0) ¢P(ojs0; a): (5.4)

Which show that the reward and observation model depend on the full his-
tory in the generalcase.

5.2.4 Mark ov requiremen ts

After having observed that arbitrary state aggregationin generaldoesnot pre-
serve the Markov property, we will now examine under what conditions this
property is preserved and show how this relates to stochastic bisimilarit y.

To ensurethat the transition model remains Markovian, we needto ensure
that for all blocks B i ; B j and actions a the transition probabilit y, P(B j jB i ; a),
is independent of the state distribution within the blocks. A condition that will
satisfy this requirement is the following:

Theorem 5.2.2 Given a partition P. If for all B i ; B j 2 P and all actions a it
holds that:

8s1 ;s2 2 B i

0

@
X

s02 B j

P(s0js1; a) =
X

s02 B j

P(s0js2; a)

1

A ; (5.5)

4As mentioned in chapter 3, there are multiple ways to specify the reward and observation
model: R(s; a), R(s), O(ojs0; a), O(ojs). Although the POMDP models we consider can be
expressed with the simpler forms and that is also used in [24], we will use the more general
forms in this chapter.

49



Chapter 5 Representing large state spaces 5.2 Model Minimization

then the transition model for the reduced model induced by partition P sat-
is¯es the Markov assumption.
Pro of Let P(B j jB i ; a) ´

P
s02 B j

P(s0js1; a) for an arbitrary s1 2 B i . Substi-
tuting in equation 5.2 gives:

P(B j jB i ; p(¢);a) = P(B j jB i ; a)
X

s2 B i

p(s)

= P(B j jB i ; a)

which is independent of the history and therefore satis¯es the Markov as-
sumption. ¤

The condition is illustrated in ¯gure 5.2. Note that it is exactly this condition
that is satis¯ed by point 2 in de¯nition 5.2.1.

Next, we posea condition that guaranteesthat the reward model that does
not depend on the within block distribution and thus on the history.

Theorem 5.2.3 If for all blocks B i and all actions a, it holds that:

8s1 ;s2 2 B i R(s1; a) = R(s2; a):

That is, the states within all blocks have the same immediate reward with
respect to all actions. Then the reward model is not dependent on the within
state distribution.
Pro of Let c1 be the immediate reward for the all states in someblock B i and
someaction a, substitution in (5.3) gives:

R(B i ; p(¢); a) =
X

s2 B i

p(s) ¢c1

= c1

concluding the proof. ¤
This says as much as \when taking an action from a state in B i the reward

is always the same,no matter what the actual state is" and corresponds with
point 1 in de¯nition 5.2.1.

The fact that de¯nition 5.2.1 implicates theorems 5.2.3 and 5.2.3 means
that a reducedMDP M =E, whereE is a stochastic bisimilation, will satisfy the
Markov property. This in turn implicates that any actions taken or rewards
received do not depend on the history and thus provides an intuition why the
action dynamics of such a reducedmodel are preserved and theorem 5.2.1.

Although de¯nition 5.2.1 focuseson MDP and therefore does not mention
the observations, we will alsogive a similar condition for the observation model.
This will expressas much as \when reaching a state in B i the probabilit y of
a particular observation is ¯xed and doesn't depend on exactly what state is
reached".

Theorem 5.2.4 If for all blocksB i all observationso and all actions a, it holds
that:

8s0
1 ;s0

2 2 B i P(ojs0
1; a) = P(ojs0

2; a):

Then the observationmodel is not dependenton the within state distribution.
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Pro of Let c2 be the probabilit y P(ojs0
1; a) for an arbitrary s0

1 2 B i substitu-
tion in (5.4) gives the proof in the sameway as above. ¤

5.2.5 Computing sto chastic bisimilarit y

Theorem 5.2.1tells us any stochastic bisimulation can be usedto perform model
reduction by aggregatingthe states that are equivalent under that bisimulation.
The smallest model is given by the coarsestbisimulation and is referred to as
the minimal model.

In [24] two type of approaches are given to ¯nd the coarsestbisimulation.
The ¯rst type is by ¯nding the greatest ¯xed point of an operator I . However,
as this is done by iterativ ely applying I (E ) starting on E0 = S £ S, this type
of approach is infeasible for very large state spaces.

The other, more interesting approach, is basedon de¯ning a property called
stability that can be tested locally (between blocks), but assuresbisimilarit y
when it holds globally.

De¯nition 5.2.2 A block B i 2 P is stable with respect to another block B j

if and only if for all actions a, the reward R(B i ; a) is well de¯ned and it holds
that:

8s1 ;s2 2 B i P(B j js1; a) = P(B j js2; a):

A Block B i 2 P is called stable when it is stable with respect to all blocks
B j 2 P.

When all blocks in partition P are stable, then P is called homogeneous5.
In this case,the equivalencerelation E that inducesthis partition is also called
stable and it is guaranteed to be a stochastic bisimulation.

Note that the formula in de¯nition 5.2.2 is closely related to equation 5.5.
The di®erenceis that the latter additionally requires the formula to hold for all
blocks B 2 P. Wethereforeconcludethat if a partition P is homogeneous,it will
satisfy the requirement of theorem 5.2.2and therefore the transition model of a
reducedmodel basedon this partition will not violate the Markov assumption.

The requirement that `the reward R(B i ; a) is well de¯ned' is related to the-
orem 5.2.3 in the same way. Therefore, the reward model of reduced model
M =E will respect the Markov assumption when the partition S=E it induces
is homogeneous.In [16] a de¯nition of stabilit y is given that does not include
the requirement on rewards. In this case, the model minimization algorithm
will needto be extendedto guarantee that the requirement from theorem 5.2.3
holds.

To compute the coarsesthomogeneouspartition and thus the minimal model,
an operation P 0 = SPLI T(B ; C; P) is used. SPLI T(B ; C; P) takes a parti-
tion P and returns a partition P 0 in which block B is replaced by sub-blocks
f B1; :::; Bk g such that all B i are maximal sub-blocks that are stable with respect
to block C.

The model minimization algorithm shown on the following page works by
iterativ ely checking if there are unstable blocks and splitting them until all
blocks are stable.

5Precisely stated, P possessesthe prop erty of stochastic bisimulation homogeneity.
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Algorithm 1 Model minimization
P = f Sg //trivial one-block partition
While P contains blocks B, C s.t. B is not stable w.r.t. C

P = SPLIT(B,C,P)
end
return P //coarsest homogeneouspartition

As mentioned, in [16] a stabilit y notion is used that does not include any
requirement on the rewards. We will call this T-stability to emphasizeit only
posesa requirement on the transition model. The versionof SPLI T making use
of T-stabilit y will be denotedSPLI T-T. We can adapt the model minimization
algorithm to useSPLI T-T by changing the initial partition it works on.

[16] de¯nes the immediate reward partition, Pir , to be the coarsestpartition
for which the requirement of theorem 5.2.3holds. I.e., it groups together all the
states that have the samerewards for all actions. As the requirement of theo-
rem 5.2.3 holds for the immediate reward partition, clearly it should also hold
for any re¯nement of that partition. Also, repeated application of SPLI T-T
on a partition P is guaranteed to yield a partition that is a re¯nement of P.
Therefore it can be concluded that a modi¯ed version of model minimization
using SPLI T-T applied to the immediate reward partition yields the coarsest
homogeneouspartition that satis¯es the requirement of theorem 5.2.3.6

So far this section has focusedon model minimization for fully observable
MDPs. Now we turn our attention to partial observable MDPs. The gen-
eralization of model minimization to POMDPs given in [16, 24] is based on
guaranteeing that the requirement stated in theorem 5.2.4 holds. It is done in
the sameway as shown above for the requirement on the reward.

Let the observationpartition , Po, be the coarsestpartition that satis¯es the
requirement of theorem 5.2.4, i.e., the partition that groups together all the
states that have the sameobservation probabilities for all actions.

Again, any re¯nement of the observation partition will also satisfy the re-
quirement of theorem 5.2.4. Now let the initial partition, P, be the coarsest
re¯nement of both the observation partition and the immediate reward parti-
tion, which we calculate as follows:

P = f B i \ B j j B i 2 Pir ; B j 2 Pog

This initial partition satis¯es the requirements of both theorem 5.2.3 and
5.2.4. Now performing model minimization by repeatedly applying SPLI T-T
will result in the coarsesthomogeneouspartition and it will satisfy the require-
ments of theorems5.2.3, 5.2.4 and 5.2.2.7 The resulting algorithm is shown on
the next page.

Another approach would be to incorporate the requirement of theorem 5.2.4
in de¯nition 5.2.2. That is, by adding \and the observation probabilit y P(ojB i ; a)

6When using the notion of T-stabilit y, the notion `homogenous' also doesn't include
the requirement on the rewards within blocks anymore. (Think of `homogeneous' as `T-
homogeneous' in this context.)

7The fact that it satis¯es the requirement of theorem 5.2.2 follows trivially from the fact
that model minimization produces a homogenous partition.
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Algorithm 2 Model minimization for POMDPs
Pr = immediate reward partition(S)
Po = observation partition(S)
P = coarsest refinement(Pr, Po)
While P contains blocks B, C s.t. B is not T-stable w.r.t. C

P = SPLIT(B,C,P)
end
return P //coarsest homogeneouspartition

is well de¯ned for all observations o and actions a". Using this de¯nition of sta-
ble it is possible to use the normal model minimization algorithm (shown on
the facing page).

5.2.6 Complexit y and non-optimal splitting

The model minimization algorithm presented in the last paragraph runs in time
polynomial of the resulting number of blocks, assuming that SPLI T and the
stabilit y test can be computed in constant time.

Unfortunately theseassumptionsgenerally do not hold and therefore model
minimization problem has been shown to be NP-hard in general. One of the
problems is that to represent arbitrary partitions, blocks have to be represented
as mutually inconsistent DNF formulas over the factors of the MDP. Manipu-
lating these formulas and maintaining the shortest description of the blocks is
hard. Although this complexity result seemsvery negative, this givesworst-case
behavior. Moreover, even if ¯nding a reducedmodel is costly in terms of time,
it will probably still be preferableover solving the original MDP, as that might
be costly in terms of space.

To reduce the cost of manipulating and maintaining block descriptions,
[16, 24] intro duce other block descriptions. These alternativ e partition rep-
resentations are cheaper to manipulate, but less powerful than unconstrained
DNF formulas. The result is that not all blocks and thus partitions can be
represented.

To deal with this, a non-optimal splitting procedure,SPLI T 0, is intro duced.
Intuitiv ely SPLI T 0 needsto split `at least as much' as the optimal SPLI T,
to guarantee a homogeneouspartition as result. Formally, SPLI T 0 is called
adequate if SPLI T 0(B ; C; P) is always a re¯nement of SPLI T(B ; C; P).

Model minimization making useof an adequateSPLI T 0 operation is referred
to as adequate minimization . Clearly, adequateminimization typically doesn't
¯nd the minimal model, becauseit can't represent it. From this perspective, a
tradeo®is madebetweeneaseof computation and the reduction that is achieved
in the resulting reducedmodel.
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Chapter 6

Poker & aggregation

In the previous chapter various aspects of dealing with MDPs with large state
spaceswere covered. In this chapter we will apply someof the methods men-
tioned to poker games.Speci¯cally, the theory of aggregationis related to poker
games.

We show that the reduction gained by direct application of model mini-
mization for POMDPs to poker gamesis boundedand arguethat this approach
therefore is of lesspractical value for thesetypeof games.In our analysiswealso
identify the bottleneck and suggesta direction for further research to alleviate
this problem.

6.1 Implicit states

As discussedin section5.1 implicit or factored representations are often usedto
describe large statesspaces.Here, we will intro ducefactored representations for
poker games.To characterizea state in poker completely, we needto know: the
sequencesof actions taken, the private card(s) of both playersand, if applicable,
the ¯rst, second,third, etc. set of public (table) cards.

For example, for 8-card poker, we would get the following state representa-
tion:

factor description value
BS bet-sequence `01'

PC1 private card of player 1 7
PC2 private card of player 2 1

Table 6.1: Implicit state representation for 8-card poker.

which describes a state for gambler in which he observed a bet from the
dealer (1) after passing(0) himself at the start of the game.

It is clear that there are some restrictions to the assignment of the vari-
ables,e.g. a state that would assignthe samecard to PC1 and PC2 would not
correspond to a true state of the game.

Of course,the goal of an implicit representation is that it allows for reason-
ing about groups of states, the blocks for state aggregation, without explicitly
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factor value
BS `01'

PC1 7-8
PC2 1-5

factor value
BS `01'

PC1 7 _ 8
PC2 1 _ 5

Table 6.2: Two ways of representing blocks for 8-card poker.

representing them. As an example,table 6.2 shows two ways we could represent
blocks for 8-card poker.

While the ¯rst representation is simpler, it is less powerful as it cannot
represent blocks that contain states with non-adjacent cards.

6.2 Bisimilarit y for poker

In the previous section someways of implicitly representing states and blocks
were discussed. So now we will investigate how we can use the methods from
chapter 5 to ¯nd a reducedmodel for poker games.

First, in section 6.2.1 we will intro duce an example poker game called 1-
action poker. This will be used in section 6.2.2 to show that the reduction
in size gained by direct application of model minimization for POMDPs as
proposedin [24] is bounded. The reasonis that this approach makesuseof the
requirement from theorem 5.2.4on the observation probabilities asexplained in
section5.2.5. We will argue that this bound is prohibitiv e for direct application
to real-life poker variants.

6.2.1 1-action poker

Here we will intro duce 1-action poker. This is also a 2-player poker variant
player with a deck of 8 cards: 1{8. Both players have to pay 1 coin ante after
which they receive 2 private cards each. In contrast to 8-card poker, in the
betting round, the players do not have additional coins to bet. I.e the player
can only do one action: check (0).

In 1-action poker, there are three `bet'-rounds. At the end of the ¯rst two of
these bet-rounds, a public card is dealt, face-up, on the table. After the third
and last bet-round, the playersshow their cardsand the player with the highest
private card wins.

This gameis not very entertaining, but is useful for our explanation and is
closely related to real hold-em poker variants. The fact that the player with
highest private card wins, meansthat the table cards do not in°uence the out-
comes,but only serve as a clue.1

Figure 6.1 shows a part of the game-treeof 1 action poker. Indicated is that
the game consists of 3 rounds, at each of which both player take one action
(`check'). Becausethe players can only take this oneaction, the only branching
points are the chance moves in the game. The ¯rst corresponding with the

1This is useful for clarit y and does not a®ect the generalit y: the game could be altered to
let the table cards e®ect the outcomes as is usual in poker (pair, straigh t, etc.), although this
would also typically mean that the game should be played with a multi-suited deck.
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-1 -1 -1 -1 +1 +1 +1 +1

1,2/3,4 1,4/2,3

Start

66
...

...

Round

1

2

3

...

...

{P1/P2}

...

... ... ... ...

P1 node

P2 node

chance node

other chance
moves

{TC1}

{TC2}

7 8

Figure 6.1: A part of the game-treeof 1 action poker.

dealing of the private cards, the onesafter that corresponding with the turning
of the public table cards.

Table 6.3 shows a factored state representation for a POMDP for the ¯rst
player (gambler) in 1-action poker. The valid valuesfor factors PC1, PC2, TC1
and TC2 are in fact subsetsof the deck, as is indicated by the brackets.

factor description
BS the bet-sequence

PC1 private cards player 1
PC2 \ 2
TC1 table card before round 2
TC2 \ 3

factor value
BS `00'

PC1 f 7,1g
PC2 f 5,4g
TC1 f 3g
TC2 -

Table 6.3: The implicit representation for 1-action poker and an examplestate
for player 1 (gambler). BS `00' meansboth players played action '0', therefore
it is the ¯rst player's move again. At this point TC1 is revealed and round 2
starts. TC2 is unassignedat this phaseof the game.
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6.2.2 Optimal split for 1-action poker

Here we will use 1-action poker to make someclaims on output produced by
the model minimization algorithm as presented in section 5.2.5.2 The focus
will be on the in°uence of requirement from theorem 5.2.4 on the observation
probabilities.

Lemma 6.2.1 When model minimization for POMDPs applied to a POMDP
for 1-action poker resultsin partition P. Then it holdsthat, for all blocksB i 2 P
and for all states s1; s2 2 B i , BS(s1) = BS(s2)

Pro of Notice that, there are only three bet-sequencesin the game at which
a player takes an action. Let's call these bsi with 1 · i · 3. Becausethere is
only oneaction the playerscan take, the bet-sequencechangesdeterministically.
Also, all end-stateshave the samebet-sequence(`00,00,00'), which we will call
bsend .

Now, suppose,B S(s1) 6= B S(s2). That meansthat the bet-sequenceof one
of the states has more steps to go to reach bsend . Let's denote this B S(s1) >
B S(s2) and assumeit holds. In this casethere are two possibilities: either 1)
B S(s2) = bsend or 2) it is not.

In case1) s2 is an end-state and s1 is not. This meansthat R(s1) 6= R(s2),
however this is in contradiction with the result that model minimization calcu-
lates a homogeneouspartition P.

In case2) B S(s1) and B S(s2) have deterministic successors:B S(s0
1) and

B S(s0
2) and it holds that B S(s0

1) > B S(s0
2). Again, there are two cases(s0

2 is
an end-state and s0

1 is not), inductiv ely giving that s0
1 and s0

2 cannot be in the
sameblock. This in turn gives that block B i is not stable, again contradicting
the result that model minimization calculatesa homogeneouspartition P. ¤

Intuitiv ely, this lemma meansthat all blocks in the partition resulting from
model minimization are `located within the bet-rounds'.

De¯nition 6.2.1 The assigned cards speci¯ed by a state, s, is the set

AC (s) = PC1 [ PC2 [ TC1 [ TC2:

Lemma 6.2.2 When model minimization for POMDPs applied to a POMDP
for 1-action poker results in partition P. Then it holds, for all blocks B i 2 P
and for all states s1; s2 2 B i , that:

1. For all observations,o, P(ojs1) = P(ojs2).

2. If block B i is not located in the last bet-round, then AC (s1) = AC (s2).

Pro of 1. Follows trivially from the fact the model minimization for POMDPs
satis¯es the requirement from theorem 5.2.4. In the remainder we prove 2.

SupposeAC (s1) 6= AC (s2). Since B i is not located in the last bet-round,
there will be another card observation. Now let c1 2 AC (s1)nAC (s2) be a card
assignedby s1 but not by s2 and o1 be the observation of that card. This means
that there is a transition from s2 to a state s0

2 2 B j such that P(o1js0
2) > 0. For

s1 there is not such a transition, because:
2Note that because there is only 1 action we will omit requirements `for all actions' and

use R(s) and P (ojs) in most of this explanation.
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² by 1. P(o1jB j ) > 0 for all states in B j , and

² as s1 already assignscard c1, there is no state s0
1 it can transfer to such

that P(o1js0
1) > 0.

Therefore 0 = P(B j js1) 6= P(B j js2) > 0. Again, this contradicts that P is a
homogeneouspartition. ¤

Using the lemmasabove, we will show that the requirement on the observa-
tion model for use in optimal SPLIT for POMDPs severely limits the maximal
obtainable reduction.

To show this we ¯rst needto de¯ne somemore concepts. First, let a round
be a stagein the gameas indicated in ¯gure 6.1. Round i , indicates that there
are i ¡ 1 actions taken by the protagonist agent. As seenalready, becausethere
is only oneaction, a round is associated with a speci¯c bet-sequence.E.g. round
0 correspondswith the start of the gameand round 4 with the end of the game:
bet-sequencè 00,00,00'. Also, let the d be the size of the deck. Then we can
de¯ne:

² nac (i ) - the number of assignedcards at round i.

² noc(i ) - number of observed cards when reaching round i.

² nuac (i ) = d!
(d¡ n ac ( i ))! n ac ( i )! - denotesthe number of unique assignedcard

combinations at round i . This is the number of unique nac (i ) subsetsof
a d-element set. E.g. at round 2 a total of ¯v e cards have beenassigned
(2 ¢2 private cards, plus one table card). So nuac (2) = 8!

3!5! = 56.

² nspuac (i ) - the number of states per unique card combination at round i
. As there is only one bet-sequenceper round, this is the number of ways
the nuac (i ) cards can be assigned.E.g. nspuac (2) = 5!

2!2!1! = 30.

² s(i ) = nuac (i ) ¢nspuac (i ) - the number of states at round i .

² nopuac (i ) = n ac ( i )
(n ac ( i ) ¡ n oc ( i ))! n oc ( i )! - the number of possibleobservations per

unique assignedcard combination when reaching round i. E.g. when
reaching round 2 there are nuac (2) = 56 unique card combinations, and
they assignnac (2) = 5 cards. When reaching oneof these,we just observed
a single table card (= noc(2)), so we could have 5 observations.

Theorem 6.2.1 Let b(i ) be the number of blocks, resulting from model mini-
mization for POMDPs as given in section 5.2.5, that lie within round i . Also
let nopuac (i ) and nspuac (i ) be as de¯ned above. Then for i · 2; i.e. blocks not
located in the last bet-round,

bmin (i ) = nuac (i ) ¢nopuac (i )

is a lower-bound for b(i ) in 1-action poker.
As a consequence, the reduction in size obtainablefor states in theserounds

is also bounded by:

b(i )
s(i )

¸
bmin (i )

s(i )
=

nopuac (i )
nspuac (i )

:
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round, i noc(i ) nac (i ) nuac (i ) nspuac (i ) nopuac (i ) n opuac ( i )
n spuac ( i )

1 2 4 70 6 6 1
2 1 5 56 30 5 0.167
3 1 6 28 180 6 n/a

Table 6.4: Lower bounds for the maximal reduction obtainable with model
minimization for POMDPs per round. The quantities relevant for determining
this are also shown. For round 3, since it's the last round, the bound doesnot
apply.

Pro of We have a couple of things to prove. First we need to prove that all
blocks lie within the bet-rounds, so that b(i ) is well-de¯ned. This follows from
lemma 6.2.1 together with the observation that each bet-sequencedetermines
the round.

Next, we need to show that b(i ) is bounded by bmin (i ) for i · 2. From
lemma 6.2.2 it follows that each block B i must assign the same cards to all
states it clusters. Therefore there must be at least nuac (i ) blocks. From the
same lemma it follows that the observations for all states in a block must be
equal. Therefore, bmin (i ) = nuac (i ) ¢nopuac (i ) must be a lower bound for b(i ):

Finally, we needto observe that:

bmin (i )
s(i )

=
nuac (i ) ¢nopuac (i )
nuac (i ) ¢nspuac (i )

=
nopuac (i )
nspuac (i )

;

immediately giving the bound on obtainable reduction. ¤

Table 6.4 shows the maximal reduction obtainable per round for 1-action
poker and the involved quantities. A striking observation is that for the ¯rst
round no reduction is obtained at all. This can be explainedby noticing that for
all states in a set of states that assignthe samecards, the observation received
is di®erent. This is also illustrated in ¯gure 6.1.

6.2.3 Bound implications

In the previous sectiona lower bound on the maximally obtainable compression
using model minimization for POMDPs aspresented in section5.2.5wasderived
for 1-action poker. For this derivation, only the requirement on the observation
model as speci¯ed by theorem 5.2.4 was considered. The actual reduction will
be lower as also the requirement on the reward model must be satis¯ed.3

Now we will argue that this bound indicates that the presented method of
model minimization for POMDPs is not suitable for real-life poker variants. We
will consider Texas' Hold-em as an example here. Starting with an analysis
of the similarities and di®erencesbetween 1-action poker with respect to the
derivation.

Lemma 6.2.2 is does not depend on the action dynamics of the game in
concern, therefore it is directly applicable to Texas' Hold-em.

3The requirement on the transition model is trivially satis¯ed.
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i noc(i ) nac (i ) nuac (i ) nspuac (i ) nopuac (i )

1 2 4 52!
48!4! = 2:65¢105 4!

2!2! = 6 4!
2!2! = 6

2 3 7 52!
45!7! = 1:33¢108 7!

2!2!3! = 210 7!
4!3! = 35

3 1 8 52!
44!8! = 7:52¢108 8!

2!2!3!1! = 1680 8!
7!1! = 8

4 1 9 52!
43!9! = 3:679¢109 9!

2!2!3!1!1! = 15; 120 9!
8!1! = 9

Table 6.5: The relevant quantities for deriving a lower bound on obtained com-
pressionapplied to Texas' Hold-em under assumptionsasexplained in the text.
i denotesthe round.

In contrast lemma 6.2.1is not directly applicable, it is very well possiblethat
two states with a di®erent bet-sequenceare stochastic bisimilar. For example,
considera two statesin the last bet-round that areequal in all respects(assigned
cards, money in the pot, etc.) except for the bet-sequencein the ¯rst round. In
this particular caseit is possible,even likely, that our opponent will act the same
in these two states, inducing the samestate dynamics. Therefore these states
can be stochastic bisimilar, even though the (full) bet-sequencesare di®erent.

Also, the number of states per unique assignedcard combination for round
i , nspuac (i ), is larger. This is becausethere are 19 bet-sequencesstarting in
the ¯rst round, giving multiple 4 states in the ¯rst round for the same card
assignment. Nine out of these 19 bet-sequencestransfer to the next round.
This meanthat in round two there are a total of 9¢19 = 171bet-sequences,etc.

It is clear that an analysis similar to that of 1-action poker would become
very complex for Texas'Hold-em. Therefore we make the following assumption:
we treat the gameas if there is only one state per unique card assignment per
round.5 This meansthat within each round we collapseall the states that di®er
only on their bet-sequenceinto onestate. It should be clear that, in general,not
all these states can be collapsedin such a way while still producing a reduced
model inducing an optimal policy. E.g. this would suggest that, for a state
in which the opponent has raised at all occasionsand another state in which
he only called, the optimal action is the same. In fact this suggeststhat the
opponent behavior speci¯esno information whatsoever and thereforewould only
be correct for an opponent playing a uniform random policy.

Now we arguethat even with this assumption, that is clearly over-estimating
the possiblereduction, direct application of model minimization for POMDPs
still presents a bound on the obtainable reduction.

This is supported by table 6.5, which displays the relevant quantities based
on the assumption of one state per unique card assignment per round. As an
example, the maximum obtainable reduction for round 3 is 8

1680 ¼ 0:005. Al-
though this seemslike a big reduction, the minimum number of blocks becomes
7:52¢108 ¢8 ¼ 6:02¢109, which is still is impractical for computation.

4The exact number is 15 states for both players: 10 outcome nodes and 5 decision nodes.
5Note that this di®ers from nspuac (i ) as this latter notion does not di®erentiate between

states that assign a particular card to a di®erent player (or to one of the sets of table cards).
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6.3 Bisimilarit y revised

As shown in section 5.2.3 aggregation of arbitrary states generally does not
preserve the Markov property, becausethe within block distribution can be de-
pendent on the full history. After that, conditions wereposedon the transitions,
observations and rewards for stateswithin blocks such that this within block dis-
tribution becomesirrelevant. As a result, the blocks and thus aggregatestates
possessthe Markov property. This gave the intuition behind why a stochastic
bisimulation inducesa reducedmodel that can be usedto calculate an optimal
policy for the original POMDP. Unfortunately, asshown in this chapter, the re-
quirement on the observation model puts a bound on the obtainable reduction,
that makesapplication for real-life poker gamesimpractical.

6.3.1 Uniform distributions

Another approach would be not to pose conditions on the transitions, obser-
vations and rewards directly, but on the within block distributions itself. In
other words, the condition now is that the within block distribution, p(¢), is not
dependent on the full history.

An obvious way to accomplish this is to require that for all blocks p(¢) is
always uniform.6

Theorem 6.3.1 When a block B i , for which the within state distribution p(¢)
is uniform, is used as aggregate state, this state possessesthe Markov property.

Pro of We can simply replacep(s) by 1
jB i j in equations5.2, 5.3 and 5.4, giving:

P(B j jB i ; p(¢);a) =
1

jB i j

X

s2 B i

X

s02 B j

P(s0js; a)

R(B i ; p(¢); a) =
1

jB i j

X

s2 B i

R(s;a)

P(ojB i ; p(¢); a) =
1

jB i j

X

s02 B i

P(ojs0; a):

All of theseare history independent, concluding the proof. ¤
As a consequence,a partition for which all blocks satisfy the requirement of

uniform within block distribution, yields a reducedMarkovian model. Of course,
guaranteeing this uniformit y can in generalbe hard, but in very structured and
speci¯cally tree-like MDPs as described in this thesis this can be easier.

Figure 6.2 depicts the problem. We want to guarantee that pB j (¢) for block
B j is uniform, i.e., pB j (s1) = pB j (s2) = ::: = 1

jB i j . A condition that jumps to
mind is that for all states sj 2 B j it should hold that

P
s2 S P(sj js; a) is equal

under all actions. This condition, however, is insu±cient: it doesnot take into
account that the probabilities for reaching the predecessorstates s 2 S can be
di®erent. Moreover, in general theseprobabilities can changeover time.7

6Actually , the requiring that p(¢), the within block distribution for the blocks B i is only
¯xed (not uniform), is enough. However, for clearnessand easeof explanation we will assume
uniform within block distributions.

7As an example, consider the case that state s1 in ¯gure 6.2 links back to one of its
predecessors.
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S1

S2

S3

Block j

S1

S2

S3

Block j

Figure 6.2: The problem of guaranteeing a uniform within block distribution.
Left shows arbitrary predecessors.Right shows predecessorsto be in the same
block, allowing to guarantee a uniform distribution for block j.

In order to guarantee that pB j (¢) is uniform, we posethe requirement that
all states s 2 S that can transition to B j are in the same block B i with pB i (¢)
uniform and

P
s2 B i

P(sj js; a) = c, for all sj 2 B j and someconstant c.
In general,the requirement that a block hasoneunique predecessorblock can

limit the applicabilit y. For the special casewherean MDP has a tree structure,
however, this requirement is lessof a burden, becausenodes in a tree have at
most one predecessor.

6.3.2 Future research

It is not trivially clear that, when changing the requirements as posedsection
5.2.4 to the requirement speci¯ed in the previous section, the resulting reduced
MDP will still induce an optimal policy for the original MDP.

In fact it might bevery well possiblethat the original constraints on the tran-
sition and reward model will needto be maintained. It is intuitiv ely plausible,
however, that the constraint on the observation model from theorem 5.2.4 may
be dropped when, at the sametime, the constraint specifying ¯xed within block
distributions is satis¯ed. This is becausethe actual dynamics of the POMDP
are not in°uenced by the observation model; observations only provide informa-
tion regarding what the true state is. Trying to prove this intuition would be a
¯rst step for future work.

Of course,even if it is proventhat it is possibleto abandonthe limiting obser-
vation constraint, there might be other bounds that limit model minimization's
applicabilit y for real-life problems. This would be a secondstep for research.
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Unifying winnings and
securit y
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Chapter 7

Coevolution and securit y

We have focusedon best-responseagainst a ¯xed opponent given that we know
how he plays. I.e., we assumedwe had a perfect opponent model. Of coursethis
is, in general,not the case,which could make our calculated policy vulnerable.

In this chapter wewill discusscoevolution. This techniquecanbeusedto ¯nd
policies that are more secureagainst multiple opponent policies. The general
idea is to ¯nd a policy that is secureagainst a certain group or population of
opponent policies, then to evolve that population and ¯nd a new policy that is
secureagainst the new population. By repeating this procedure,the ¯nal policy
will be secureagainst all opponent policies; converging to a Nash equilibrium.

The objective of this investigation is twofold. On one hand it describes
an alternativ e way of calculating a Nash-equilibrium. Although the two-player
zero-sumcasecan be solved in polynomial time using linear programming as
described in chapter 2, for large problems this remains expensive.

On the other hand, it tries to provide a way to compromisebetween secu-
rit y and best-response payo®, thus unifying the game- and decision theoretic
perspectives.

7.1 Coevolution

The idea behind evolutionary algorithms is that there is population of individ-
uals that represent candidate solutions. By evaluating thesecandidatesagainst
one or more tests their ¯tness is determined and the ¯ttest produce the next
generation. Coevolutionary methods di®er from evolutionary methods in the
way they treat the tests. Instead of having one evolving population of candi-
date solutions and a ¯xed set of tests, two evolving populations are maintained:
one for the candidate solution and one for the tests.

In the poker games discussedin this thesis, the population of candidate
solutions could consist of a number of policies for the gambler, in which case
the corresponding tests would be a set of policies for the dealer. How well one
of the gambler policies performs is measuredby the outcome achieved against
all the tests.

64



7.2 Nash equilibrium solution concept Chapter 7 Coevolution and security

7.1.1 Solution concepts

For coevolution to have any meaning it must specify a goal or solution concept.
This can be expressedas a set of candidate solutions satisfying somerequire-
ments.

Formally, let C and T be the sets of respectively all possiblecandidate so-
lutions and tests. The the outcome of a particular candidate C 2 C against a
test T 2 T is given by the interaction function or game, G : C £ T ! R. In the
presenceof chancemovesin this gameG(C; T) is de¯ned to be the expectation
of the outcome, E(C; T).

An exampleof a solution concept expressedusing thesevariables is:

f C 2 Cj8C 02C 8T 2T : G(C; T) ¸ G(C0; T)g:

This solution concept is known as `simultaneous maximization of all out-
comes'. As it requires that there is a single solution that maximizes the out-
comesagainst all possible tests, this is a very strong strong solution concept,
but has limited application scope. In [15] an brief overview of various other
solution concepts is given, among which the Nash-equilibrium, which we will
treat in the next section.

7.1.2 Memory

An often encountered problem in coevolutionary approachesis that of forgetting
[21], i.e., certain components of behavior, or traits, are lost in a next generation
only to be neededagain at a later stage. This is especially the casefor games
with intransitiv e cycles, such as the Rock-Scissors-Paper game, discussedin
section 4.2.2.

In order to counter this forgetting of trades, memory mechanisms are em-
ployed. The idea is that in the coevolutionary path to the solution concepts
various traits will have to be discovered. Traits that constitute the solution will
have to be remembered by the memory.

7.2 Nash equilibrium solution concept

In this sectionwe give an outline of a memory mechanism for reaching the Nash-
equilibrium solution concept for symmetric zero-sumgamesaspresented in [21]
(\Nash-memory").

7.2.1 Symmetric games and Nash equilibria

In a symmetric game the form of the policy for both players is identical: they
can take the same actions in the same information sets 1, as is the case in
Rock-Scissors-Paper. Put di®erently: both players selecttheir (possibly mixed)
policy from the sameset of pure policies available for the game.

Symmetric zero-sumgamealways have a value 0, becausethis is the expec-
tation of a policy played against itself: 8¼ E(¼; ¼) = 0 or, expressedin terms of

1This implies players tak e actions simultaneous.
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Figure 7.1: One iteration of Nash-memorycoevolution.

candidate solutions and tests: 8¼ G(¼; ¼) = 0. This meansthat a Nash equi-
librium policy provides a security-level payo® of 0 and that therefore we are
searching for a, usually mixed, policy ¼such that 8¼0 G(¼; ¼0) ¸ 0.

Let S(¼) denote the security set of policy ¼, i.e., S(¼) = f ¼0jG(¼; ¼0) ¸ 0g.
Now, the Nash-equilibrium solution concept can be expressedas:

f ¼j8¼0 : ¼0 2 S(¼)g:

7.2.2 Comp onents of the Nash-memory

Let N and M be two mutually exclusive sets of pure policies. N is de¯ned
to be the support of mixed policy ¼N which will be the approximation of the
Nash-policy during the coevolution process. Therefore this is the candidate
solution.2

The policies that are not in N are not neededby ¼N to be secureagainst
all encountered policies. These unused policies are stored in the set M . The
fact that ¼N is secureagainst all policies means that N [ M µ S(¼N ). Put
in coevolutionary terms, M holds those policies, that are currently not needed
to be secureagainst all encountered policies (N [ M ), in order not to forget
particular traits they might embody.

Apart from the candidate solution ¼N and an additional memory M , the
Nash-memory mechanism speci¯es a search heuristic H . This is an arbitrary
heuristic that delivers new tests against which the candidate solution is evalu-
ated.

7.2.3 The operation

We now turn to the actual working of the Nash-memory. To start, M is ini-
tialized as the empty set and N is initialized as a set containing an arbitrary
pure policy and ¼N as the `mixed' policy that assignsprobabilit y 1 to this pure
policy.3 Then the ¯rst iteration begins.

2An alternativ e view is that the Nash-memory maintains a `population' of candidate solu-
tions consisting of one individual, which in turn consists of multiple of pure policies.

3 In [21] the initialization is tak en somewhat di®erent, but this doesn't a®ect the working
of the memory mechanism.
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Algorithm 3 Nash-memorymechanism
¼N = initializePolicy
N = support( ¼N )
M = ;
For iteration = 1:nr iterations

W= ;
T = H() //set of tests from search heuristic
Forall t in T

If G(t, ¼N ) > 0
W = W[ f t g

End
End
all policies = N [ M [ W
// Calculate a new policy secure against all policies with
// linear programming:
¼N = LP(all policies)
N = support( ¼N )
M = all policies n N // unused policies stored in M

End

Figure 7.1 shows one iteration of the Nash-memory. First, a set of test-
policies, T , is delivered by the search heuristic. The policies in this set are
evaluated against ¼N , to de¯ne the set of `winners':

W = f ¼2 T jG(¼; ¼N ) > 0g:

When this set is non-empty, clearly ¼N is not a Nash-equilibrium policy, as
it is not secureagainst all policies, and therefore should be updated.

First a payo®matrix of all policies in M [ N [ W played against each other
is constructed.4In this matrix the rows correspond to policiesplayed by the ¯rst
player, the columns to those of the secondplayer. The entry (i; j ) gives the
(expected) outcome of policy i against j , G(¼i ; ¼j ).

This matrix can than be usedto de¯ne a linear program. Relating to section
2.2.3 and 2.3.4. the payo® matrix corresponds with A . Therefore this can be
solved as outlined in section 2.3.4. The result will be the new policy ¼0

N , the
policies to which it assignspositive weight is the new set N 0, the other policies
are stored in M 0.

The full algorithm is shown on the current page. BecauseS(¼N ), the set
of pure policies against which ¼N is secure, grows monotonically with each
iteration, repeated application will converge to a Nash-equilibrium, provided
that the search heuristic is able to ¯nd policies that beat our current estimate
(that is, a non-empty W is found).

When resourcesare limited, it might not be feasible to store all policies
encountered. Therefore it is possible to limit the size of M , by discarding
policies that have not been recently used by ¼N using some heuristic. This,
however, might re-intro duce the problem of forgetting and will therefore not be
consideredany further in this thesis.

4Of course the outcomes of pure policies in M [ N against each other can be cached,
so only the outcomes of policies from W against other policies will have to be calculated to
construct this matrix.
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7.3 Coevolution for 8-card poker

In this sectionwe apply the Nash-memorymechanism on 8-card poker. In doing
so, we extend the Nash-memory for usagewith asymmetric games.5 Secondly,
we use the method to calculate a best-responsepolicy as described in chapter
3 to generate new tests. I.e., the search heuristic H we use is a procedure
bestResponse(¼) that constructsand solvesa POMDP model of the gameplayed
against an opponent that usespolicy ¼.

7.3.1 Asymmetric games

In order to apply the Nash-memory mechanism to 8-card poker, we need an
extension to allow tackling asymmetric games.

A simple solution is to createa new compound gameconsistingof two games
of 8-cardpoker; oneplayedasgambler and oneplayedasdealer. This compound
gameis symmetric and a particular policy i is given by ¼i =

D
¼i

gambl er ; ¼i
deal er

E
.

We refer to this as naive symmetrization.
Using this new representation the Nash-memorymechanism can directly be

applied without further changes. However, it is clear that the °exibilit y with
which the new mixed policy is constructed is constrained: it is not possibleto
put more weight on a particular gambler policy ¼i

gambl er without putting the
sameweight on the corresponding dealer policy ¼i

deal er .
In order to overcomethis limitation we proposean extension of naive sym-

metrization. Observe that in algorithm 3 there are only two reasonswhy the
game must be symmetric: to determine whether a test policy beats the cur-
rent mixed policy, G(t; ¼N ) > 0, and becausethe next Nash-approximation is
constructed from all encountered policies (M [ N [ W).

To overcome this, the proposed symmetrization applies the Nash-memory
mechanism per player. I.e,. we maintain one sets N p; M p; Wp; Tp and a Nash-
approximation, ¼p;N , for each player p = 1; 2 (gambler, dealer). If, without loss
of generality, we assumethat the search heuristic deliversa single test policy for
both players,T1 and T2, we can test whether the compound policy T = hT2; T1i 6

beats the compound policy ¼N = h¼1;N ; ¼2;N i , as:

G(T; ¼N ) = G(T2; ¼2;N ) + G(T1; ¼1;N ):

If G(T; ¼N ) > 0, then the current Nash-approximation, ¼N , is not secure
against compound policy T. In this casethe components of T are taken to be
`winners': W1 = T2 and W2 = T1.7

This results in two setsM 1 [ N1 [ W1 and M 2 [ N2 [ W2 with pure policies
for respectively gambler and dealer. By constructing the payo®matrix for these
pure policiesand applying linear programming we calculate¼0

1;N and ¼0
2;N , from

which M 0
1; N 0

1; M 0
2 and N 0

2 are constructed. The compound policy:

¼0
N =

­
¼0

1;N ; ¼0
2;N

®
;

5 It is already indicated in [21] that such an extension is possible.
6Note that a test policy T1 for player 1, is a policy for his opponent, player 2, and vice

versa.
7The remark from note 6 applies here too.
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Algorithm 4 Asymmetric Nash-memoryusing bestResponseheuristic.
For p = 1,2 //for both players

¼p; N = initializePolicy(p)
N(p) = support( ¼p; N )
M(p) = ;

End
While !converged

For p = 1,2
N stoch(p) = mixed2StochasticPolicy( ¼p; N ))
T(p) = bestResponse(N stoch(p))

End
G(T,¼N ) = G(T(1), ¼1;N ) + G(T(2), ¼2;N ))
If G(T,¼N ) > 0

For p = 1,2
W(modulo(p,2)+1) = T(p)
NMW(p)= N(p) [ M(p) [ W(p)

End
¼1;N , ¼2;N = LP(NMW(1),NMW(2))
For p = 1,2

N(p) = support( ¼p; N )
M(p) = NMW(p)n N(p)

End
Else

converged = true;
End

End

is secureagainstall combinations of gambler and dealerpoliciesfrom M 0
1; N 0

1; M 0
2

and N 0
2 in the compound game.

7.3.2 Best-resp onse heuristic

The search heuristic is an important aspect for coevolutionary approaches. It
should be powerful enough to discover improvements to the current candidate
solution. Within the Nash-memory mechanism this meansthat it has to ¯nd
policies that beat the current Nash-approximation.

The approach as outlined in chapter 3 provides a suitable candidate: cal-
culating the best-response policies against the current Nash approximations,
¼1;N ; ¼2;N . The best-response policies obtain the highest payo® possible. A
desirablesidee®ectis that this provides a convergencecriterion: when the best-
responsepoliciesare not able to attain a positive payo®in the compound game,
i.e. G(T; ¼N ) = 0, then ¼N is a Nash-policy.

However, using the approach from chapter 3 we can calculate a best response
against a stochastic policy. In contrast, the Nash-approximations, are mixed
policies. This means it is necessaryto convert a mixed policy to a stochastic
policy. For now weassumethis is doneby a proceduremixed2StochasticP olicy.
How this procedureworks will be covered in detail in section 7.4.
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policy information sets
number probabilit y J Q K Jb Qb Kb

1 .2 1 1 1 1 1 1
2 .3 1 0 1 0 1 1
3 .5 0 0 1 0 0 1

Table 7.1: A mixed policy for the gambler in 3-card poker. Shown is the prob-
abilit y of betting (`1').

7.3.3 The resulting algorithm

The resulting algorithm is shown on the precedingpage. Note that M p; Np; Tp; Wp

are denoted M (p); N (p); T(p); W (p) with p = 1; 2 representing the player num-
ber.

The expressionmodulo(p;2) + 1 assuresthat the assignments W1 = T2 and
W2 = T1 are performed as explained in section 7.3.1.

The procedureLP () constructs the payo®matrix for the two setsof policies
and solves the linear program de¯ned. The entries in the payo® matrix can
be cached to prevent re-calculating outcomes between pairs of pure policies.
In particular, becauseonly one pair of new policies is provided per iteration,
only the outcomesof thesehave to be evaluated against the policies already in
memory, i.e. W1 against M 2; N2; W2 and vice versa.

7.4 From mixed to sto chastic policies

In this section we explain how we can transform a mixed policy to a equivalent
stochastic policy. First wewill re-intro ducesomerelevant conceptsand illustrate
the problem. Next, in section 7.4.2 we show that the realization weights are an
adequatetool to tackle this problem and after that we discusscomputing them.

7.4.1 Problem and concepts

Recall a policy is a mapping from information sets to actions. A deterministic
or pure policy speci¯es exactly oneaction for each information set. A stochastic
policy, on the other hand, is a singlepolicy that speci¯es a probabilit y distribu-
tion over actions for each information set.

A mixed policy is a set of, usually pure, policies together with a probabilit y
distribution over this set.8 Intuitiv ely it is possible,at least for tree-like games,
to convert a mixed policy to a stochastic policy. Exactly how to do this is not
trivial, though.

We will make useof an example3-card poker game. It is exactly like 8-card
poker only with three cards: J, Q and K. Table 7.1 shows a mixed policy for
the gambler for this game. Shown are the information sets the gambler has in
this gameand the probabilit y of betting in those information setsaccording to
3 policies. Also shown are the probabilities of playing each of the three policies.

A naive approach to convert the mixed policy shown would be to multiply
to the rows, i.e the probabilities of betting according to the policies, with the

8 In general, the policies in the set can also be stochastic, but not mixed, policies themselves.
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probabilit y of the respective policy and add the results. This problem with this
approach, however, is that doesnot respect the fact that the chanceof reaching
an information set alsodependson the policy. Expresseddi®erently , it doesnot
take into concernthe probabilit y that a policy realizes a certain move.

Example 7.4.1 As an exampleconsiderinformation set `Jb' in table 7.1. When
applying the naiveapproach the probabilit y of betting in the resulting stochastic
policy would become0:2 ¢1 + 0:3 ¢0 + 0:5 ¢0 = 0:2. In the original mixed
policy, however, policy number 1 would specify `bet' (`1') after observing the
jack (information set `J'). Therefore information set `Jb' would never be realized
using policy 1. As the other policiesspecify never to bet at `Jb', the probabilit y
of betting at `Jb' in the stochastic policy is therefore 0. ¤

In the above the word `realizes' is stressedwith good reason. The problem
in concernis very much related to the sequenceform and its realization weights.

Recall from section 2.3.2 that a sequencecorresponds with a path from the
root of the game-treeto a node n. The sequence¾k (n) for player k is the string
consisting of the concatenation of all labels of edgescorresponding with player
k's moves and observations. Equivalently , a sequence¾k (n) corresponds with
an information set of player k concatenatedwith an action that can be taken
at that information set. As each node from the tree corresponds to exactly
one sequence,the number of sequences,m; is bounded. We also write ¾l

k ; with
1 · l · m.

Also recall that the realization weight ½i
k (¾l

k )9 of a sequence¾l
k under policy

¼i
k for player k, is de¯ned asa conditional probabilit y: ½i

k (¾l
k ) is the probabilit y

that player k takes all the actions speci¯ed by ¾l
k given that all corresponding

information setsare reached.
In the next subsection, we will show that the realization weights are an

appropriate tool for our problem of converting a mixed policy ¹ k for player k
to a stochastic one.

7.4.2 Using realization weights

Here we show that using realization weights, we can transform a mixed policy
to a stochastic policy that describes the samedynamics, i.e, induces the same
outcomes.

Formally, we want to ¯nd the probabilit y of an action a at an information
set I k , P(ajI k ; ¹ k ) corresponding to ¹ k for player k. The crucial step in this
problem is that we have to weight the contribution to P(ajI k ; ¹ k ) of a policy
¼i

k 2 ¹ k by the probabilit y that information set I k is actually realized by ¼i
k .

Theorem 7.4.1 To transform a mixed policy ¹ k for player k to a stochastic
policy, realization weightsfor all policies ¼i

k 2 ¹ k are su±cient. For a particular
action a and information set I k , the stochastic policy is given by:

P(a j I k ; ¹ k ) =
P

i P(¼i
k ) ¢½i

k (¾k (I 0
k ))

P
i P(¼i

k ) ¢½i
k (¾k (I k ))

; (7.1)

where ¾k (I k ) is the sequence that leads to information set I k and ¾k (I 0
k ) is the

sequence that result from appending action a to ¾k (I k ).

9We denote the realization weight with ½here.
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Pro of When N players play policies (¼1; :::; ¼N ), the probabilit y of reaching
a node n in the game-treeis given by:

P(nj¼1; :::; ¼N ) = ¯ (n) ¢
NY

k=1

½k (¾k (n)) ;

where ¯ (n) is the product of all chance moves on the path from the root to
n. In order to discriminate between the probabilities of movesof the player in
concernand its opponents, this can be rewritten to:

P(nj¼1; :::; ¼N ) = ½1(¾1(n)) ¢¯ (n) ¢
NY

k=2

½k (¾k (n)) ;

in which k = 1 is an arbitrarily chosenplayer we focus on. Similarly, the actual
chanceof reaching a particular information set I 1 can be given as:

P(I 1j¼1; :::; ¼N ) =
X

n 2 I 1

Ã

½1(¾1(n)) ¢¯ (n) ¢
NY

k=2

½k (¾k (n))

!

:

As player 1 can not discriminate between the nodes of I 1, clearly his se-
quencesfor thesenodesare the sameand we write ¾1(I 1); giving:

P(I 1j¼1; :::; ¼N ) = ½1(¾1(I 1)) ¢
X

n 2 I 1

Ã

¯ (n) ¢
NY

k=2

½k (¾k (n))

!

:

Now let Popp =
P

n 2 I j

³
¯ (n) ¢

Q N
k=2 ½k (¾k (n))

´
denote the opponent (and

nature) component of the realizing I 1. When there are multiple policies¼i
1 2 ¹ 1,

each played with a probabilit y of P(¼i
k ); the probabilit y of realizing I 1 becomes:

P(I 1j¹ 1; Popp ) = Popp ¢
X

i

P(¼i
1) ¢½i

1(¾1(I 1)) :

Next we turn our attention to realizing both I 1 and the desired action a.
For a single policy ¼i

1 2 ¹ 1, this probabilit y is:

P(I 1; aj¼i
1; Popp ) = Popp ¢½i

1(¾1(I 1)) ¢P(aj¼i
1; I 1):

For the mixed policy ¹ 1 this becomes:

P(I 1; aj¹ 1; Popp ) = Popp ¢
X

i

P(¼i
1) ¢½i

1(¾1(I 1)) ¢P(aj¼i
1; I 1):

Finally we can give the probabilit y of action a given I 1 for mixed policy ¹ 1:

P(a j I 1; ¹ 1; Popp ) =
P(I 1; aj¹ 1; Popp )
P(I 1j¹ 1; Popp )

=
Popp ¢

P
i P(¼i

1) ¢½i
1(¾1(I 1)) ¢P(aj¼i

1; I 1)
Popp ¢

P
i P(¼i

1) ¢½i
1(¾1(I 1))

=
P

i P(¼i
1) ¢½i

1(¾1(I 1)) ¢P(aj¼i
1; I 1)

P
i P(¼i

1) ¢½i
1(¾1(I 1))

(7.2)

= P(a j I 1; ¹ 1):
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Now note that the sequence¾1(I 1) followed by action a de¯nes a new se-
quence, let's call this sequence¾1(I 0

1): The realization weight of this new se-
quenceunder policy i is ½i

1(I 0
1) = ½i

1(¾1(I 1)) ¢P(aj¼i
1; I 1). Therefore we can

rewrite equation 7.2 totally in terms of priors and realization weights:

P(a j I 1; ¹ 1) =
P

i P(¼i
1) ¢½i

1(¾1(I 0
1))

P
i P(¼i

1) ¢½i
1(¾1(I 1))

:

Now observing that the focus on player k = 1 was an arbitrary choice and
that this procedurecan be extended for any information set and action proves
the theorem. ¤

7.4.3 Calculating realization weights

Having establishedthat realization weights for the policies¼i
k 2 ¹ k will give the

solution to the problem, the next goal is to determine them. In contrast to the
Gala system, we do not want to ¯nd realization weights that de¯ne an optimal
policy, but simply want to extract the realization weights from a policy ¼i

k .
Let ¾k be the sequencefor reaching somenode n where player k is to move.

Then the continuation ¾k ±a is also a sequencefor player k and the realization
weights are given by the following recurrencerelation:

½i
k (¾k ±a) = ½i

k (¾k ) ¢P(aj¼i
k ; n): (7.3)

BecauseP(aj¼i
k ; n) is a probabilit y distribution that sumsto 1 10, the total

realization weight of continuations of a sequence,¾k , sum to the realization of
that sequenceitself. I.e ½i

k (¾k ) = ½i
k (¾k ±a1) + ::: + ½i

k (¾k ±an ), exactly as was
required in section 2.3.3.

As ½i
k (r oot) = 1 for any policy i , starting at the root and iterativ ely applying

equation 7.3 while walking through the game-tree extracts all the realization
weights.

We can also formulate this slightly di®erent. Recall that in the proof of
theorem 7.4.1, we wrote ¾k (I k ) for the sequencefor player k for reaching any
node in I k , an information set for that player. When using this notation for
equation 7.3, we get:

½i
k (¾k (I k ) ±a) = ½i

k (¾k (I k )) ¢P(aj¼i
k ; I k ):

Now, observe that the continuation ¾k (I k ) ± a will correspond with the se-
quencefor all successorinformation sets, I 0

k , that can be reached from I k when
action a is chosen. By formalizing this it is possible to expresseverything in
terms of information sets.

De¯nition 7.4.1 The realization weight of an information set I k of player k
under a policy ¼i

k will be denoted½i
k (I k ) and is de¯ned as the realization weight

of the sequenceof any node n 2 I k :

½i
k (I k ) :´ ½i

k (¾k (n)) :

Note, that the realization weight of an information set of another player, i.e.,
½k (I l ); k 6= l is unde¯ned.

10 In this setting where we considered pure policies ¼i
k , P (aj¼i

k ; n) is 1 for exactly one action.
In general, however, a mixed policy might also have stochastic policies in its support.
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Algorithm 5 Calculate information set realization weights(¼k )
Forall IS in initial ISs(k)

rw(IS)=1
append(ISq,IS) //ISq is a queue

End
While !empty(ISq)

IS=pop(ISq)
Forall a in ACTIONS

Forall sucIS in successor ISs(IS,a,k)
rw(sucIS)=rw(IS) ¢P(a|IS, ¼k )
append(ISq,sucIS)

End
End

End

As above, let I 0
k be any information set for player k, that can be reached

from I k when playing a: The recurrencerelation now becomes:

½i
k (I 0

k ) = ½i
k (I k ) ¢P(aj¼i

k ; I k ): (7.4)

This formulation expressesthe closerelation betweeninformation sets,action
probabilities and realization weights more naturally . Also it gives a further
formalization of the step taken to obtain equation 7.1 from equation 7.2. Using
de¯nition 7.4.1, the latter can be rewritten as:

P(a j ¹ k ; I k ) =
P

i P(¼i
k ) ¢½i

k (I k ) ¢P(aj¼i
k ; I k )

P
i P(¼i

k ) ¢½i
k (I k )

; (7.5)

consecutively applying 7.4 gives:

P(a j ¹ k ; I k ) =
P

i P(¼i
k ) ¢½i

k (I 0
k )

P
i P(¼i

k ) ¢½i
k (I k )

:

Backwards substitution using de¯nition de¯nition 7.4.1, then immediately
givesequation 7.1.

The new recurrencerelation (eq. 7.4) also de¯nes an algorithm to ¯nd the
realization weights for information setsvery naturally . This algorithm is shown
on the current pageand consistsof two phases: the ¯rst phase¯nds all initial
information sets for player k, that are the information sets in which the player
makeshis ¯rst move of the game. The realization weights of these information
sets are initialized to 1.11 The secondphase consists of a pass through the
game-tree ¯nding successorinformation sets and calculating their realization
weights.

11 The sequenceof an initial information set, is the root sequence,; .
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Q/J Q/K

Start0 1

1 -1 2 -1 -1 -2

PC1/PC2

Q

Qb

... ...

Figure 7.2: Partial game-treefor 3-card poker. The information setsQ and Qb
for the ¯rst player are clearly indicated.

7.4.4 Calculating the sto chastic policy

At this point, calculating a stochastic policy from a mixed policy has become
almost trivial. Once the realization weights for the information sets are calcu-
lates, all one has to do is apply equation 7.5. We will give an example for the
mixed policy from table 7.1.

Example 7.4.2 Figure 7.2 shows a part of the game-treefor 3-card poker. It
shows 2 information sets: Q and Qb. In this example we will calculate the
stochastic policy for theseinformation sets.

The ¯rst thing we need to do is calculating the realization weights of the
information sets under the di®erent policies that make up the mixed policy
from table 7.1.

As the gambler makesits ¯rst move when in Q, this is an initial information
set and therefore its realization weight is 1 under all policies. In contrast Qb is
not an initial information set and its realization weight is given by:

½i (Qb) = ½i (Q) ¢P(`0'j¼i ; Q);

where `0' indicates the action pass.12 This leads to the following table of
realization weights:

policy ½i (Q) ½i (Qb)
1 1 0
2 1 1
3 1 1

Table 7.2: Realization weight for the policies in the support of the mixed policy.

Now we can apply ¯ll out equation 7.5 for Q, yielding:

12 Note we omit the subscripts indicating the player (whic h is `gambler' throughout this
whole example).
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Figure 7.3: Results for the Nash-memoryapproach to 8-card poker. The dashed
lines indicate the Nash-value.

P(`1' j ¹; Q) =
P

i P(¼i ) ¢½i (Q) ¢P(`1'j¼i ; Q)
P

i P(¼i ) ¢½i (Q)

=
0:2 ¢1 ¢1 + 0:3 ¢1 ¢0 + 0:5 ¢1 ¢0

0:2 ¢1 + 0:3 ¢1 + 0:5 ¢1

=
0:2
1

= 0:2:

For Qb this gives:

P(`1' j ¹; Qb) =
P

i P(¼i ) ¢½i (Qb) ¢P(`1'j¼i ; Qb)
P

i P(¼i ) ¢½i (Qb)

=
0:2 ¢0 ¢1 + 0:3 ¢1 ¢1 + 0:5 ¢1 ¢0

0:2 ¢0 + 0:3 ¢1 + 0:5 ¢1

=
0:3
0:8

= 0:375:

Concluding the example. ¤

7.5 Exp erimen ts

In this section we will describe some experiments performed using the Nash-
memory mechanism as outlined in this chapter.

7.5.1 8-card poker

Algorithm 4 wasimplemented and applied to 8-card poker. Figure 7.3 shows the
obtained results. It shows that it only takesa few iterations to obtain a policy
that is fairly secure. This is a nice property, as it indicates that this technique
might be applied for larger gamesto obtain an approximate Nash policy.
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Figure 7.4: Two larger poker-games.Left: 4-bet 8-card poker. Right: 2-round,
3-bet-per-round 6-card poker.

It also indicates that only a relatively small number of policies is neededto
be secure.Further investigation madethis even more plausible, as it turned out
that the number of pure policies used by the mixed policy is even lower than
the ¯gure suggests:when reaching the Nash level (iteration 12) only 6 out of 12
pure policies are assignedweight for the both gambler and dealer policy.

Another observation that can be drawn from the ¯gure is that, although
convergenceto Nash equilibrium is monotonic, becausewith each iteration the
approximate Nashbecomessecureagainst more policies13, the worst casepayo®
doesnot increasemonotonically. Apparently , a particular policy against which
it is not secureyet might becomea best-responseand do more damage.

7.5.2 Some larger poker games

After the encouragingresults for 8-card poker someexperiments wereperformed
on larger poker games. We show resulting curves for two of them here. The
¯rst is an 8-card poker variant that allows up betting u to 4 coins bets, with
a maximum raise of 2 coins. The game-treefor this gamecontains nearly 4000
nodesand has 274 sequencesfor each player.

The secondgameis a 2 round poker gamewith a deck of 6 cards,both players
receive onecard and play a bet-round, after which 1 public card appearsface-up
on the table. Then a ¯nal bet-round is played. In both bet-rounds a maximum
of 3 coins coins can be betted per player. This game-treefor this gameconsists
of over 18,000nodesand has 2162sequencesfor both players.

For these games,the obtained results are shown in ¯gure 7.4. As was the
casefor 8-card poker, the Nash-memory is able to obtain a reasonablesecurity
level in a relatively low number of iterations.

Also the small number of policiesneededfor the support of the mixed policy
was con¯rmed for these larger games. For 4-bet 8-card poker N contained 18
policies out of 100 on convergence.At iteration 150 for the 6-card poker game,
the number of policies with positive weight was 29.14

13 More formal, the set S(¼N ) grows monotonically .
14 The algorithm was not fully converged at this point, as the compound policy still received
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Figure 7.5: The tradeo® between security and higher payo® for 8-card poker.
The estimated opponent model is uniform random.

For the larger gamesthere seemto be more oscillations in worst-casepayo®.
This can probably be explained in the following way: becausethe game-treefor
thesegamesis larger and the horizon is deeper, more actions a®ectlater stages
of the game. Therefore the relatively small adjustment of the mixed policy can
in°uence the realization weights of a lot of information sets. When a particular
set of information setsis given more weight, but the policy speci¯ed for this set
is not optimal, this can be exploited by the opponent.

7.5.3 Securit y vs. best-resp onse payo®

As argued before, playing a Nash-equilibrium is too conservative, when the
opponent is not expected to play optimal. On the other hand playing a best-
responsepolicy may present risks, asthe opponent model may be inaccurate. In
this experiment a way to ¯nd a tradeo®betweenpotential winnings and security
is examined.

The idea is asfollows. The opponent model delivers two estimated opponent
policies, one gambler and one dealer policy.15 First, the best-responsepolicies
against these estimated opponent policies are calculated. These best-response
policies are used to initialize the Nash-memory mechanism, which then is run
until convergence.The result is a seriesof mixed policies (for both gambler and
dealer), starting with the best-responseagainst the estimated opponent policy
and ending with a Nash-equilibrium.

Each of theseresulting mixed policies,however, canalsobeevaluated against
the estimated opponent policy. When we do this for all of them, we know the
worst-casepayo®and the outcome against the estimated opponent model.

Figure 7.5 shows this evaluation for 8-card poker. It also shows a line that
is a weighted averagebetween the worst-casepayo® and that obtained against
the estimated opponent model. One should interpret the weights for this line
(0:85 : 0:15 in this case)as the amount of trust in the opponent model versus

a worst casepayo® of -0.027 instead of 0.
15 Expressed di®erently , it delivers an estimated opponent policy for the compound game.
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Figure 7.6: The security / potential winnings tradeo® for another estimated
opponent. Especially for player 2 there are no useful peak values between the
best-responseand Nash-policy.

the amount of trust that the opponent plays a best-responseagainst the mixed
policy.

Given such a trust ratio, any existing peeksin the weighted averageidentify
those mixed policies that have a bene¯cial estimated- and worst-caseoutcome
with respect to the amount of trust. As a consequencethesepolicies should be
considereda candidate. We have not consideredwhich of these mixed policies
should actually be used. One idea would be to randomly choosebetweenthem.

Unfortunately, whether thesepeek policies exist dependsvery much on the
estimated opponent model. An example in which these peeksare missing is
shown in ¯gure 7.6. In particular the procedureseemsto fail to identify useful
mixed policies, when the best-response(or someother `good'-response)against
the estimated opponent model is not in the support of a Nash equilibrium.

Another issue observed is that the payo® against the estimated opponent
is much larger for the ¯rst (best-response) policy than for any of the mixed
policies.

7.6 Discussion

When comparing the Nash-memory approach with solving the sequenceform
(as in Gala) with respect to performance there are a couple of interesting dif-
ferences.At this point, calculating a Nash-equilibrium using the Nash-memory
approach consumesmore time. However, it spends its time di®erently: mostly
on constructing and solving the POMDP models, to calculate the best response,
and determining outcomesbetweenthe encountered pure policies. Far lesstime
is spent on linear programming, asthe sizeof the linear programsto be solved is
generally smaller. E.g. for the 2-round 6-card poker experiment the maximum
sizeof the matrix was 150£ 150 versus2162£ 2162for solving sequenceform.
Also, the linear programssolved have a simpler constraint matrix (a row matrix,
forcing the weights of the pure policies to sum to 1).

We expect that considerablespeed-upcanbe obtained by streamlining the of
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implementation of POMDP model construction and solving. Moreover, approx-
imate methods could be usedfor both solving the POMDP and evaluating the
rewards. This might lead to this approach becomingcompetitiv e the sequence
form solving in terms of performance. The anytime nature of the Nash-memory
approach makes it even more appropriate for a lot of domains.

We will make a few remarks regarding the tradeo® as explained in section
7.5.3. Perhaps the best-responseheuristic is not the most appropriate to use
during the operation of the Nash-memorywith as goal to search for a suitable
candidate policy that trades o®potential gain for security. There is a large gap
betweena failing opponent model and the opponent predicting our policy acting
to minimize our pro¯t. Put di®erently , perhaps the worst-casepayo® is a too
negative measureand we needto search for a weaker form of security.

A direction for this could be to analyze the type and magnitude of errors
made by an opponent model. When this knowledge is available it could be
possibleto generateother opponent policiesthat fall within the expectedbounds
of error for the opponent model. The Nash-memory mechanism can than be
employed to construct policies that are secureagainst all of them.

A di®erent questionregarding the Nash-memorymechanismthat needsmore
research is the following. Currently the Nashmemory is basedon mixed policies.
Would it be possibleto directly usestochastic policies, or policies expressedin
terms of realization weights? In this casewe would not needto convert between
mixed and stochastic policies as explained in section 7.4.

Another direction of future research would be to try to avoid solving a linear
programming from the start in each iteration. There might be an approach
to adjust the weights of the mixed policy without solving a complete linear
program.

A ¯nal pointer is to focuson extending this approach to gameswith multiple
players or gamesthat are not zero-sum. A form of symmetrization might also
be possiblein this case.Calculating a best-responseagainst two (or more) ¯xed
opponents can be doneby transforming the gameto a POMDP, ¯nding a secure
mixture of policies could be done using any of the methods described in [45].
Perhaps an incremental weight-adjusting algorithm, as mentioned above, will
also provide opportunities for thesedirections.
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Chapter 8

Conclusions

In this thesis we have addressedpartially observable card games,speci¯cally
poker games. In our covering of thesegames,we have shown two perspectives:
the gametheoretic approach, that speci¯es a Nash-equilibrium that guarantees
a security level payo® and an agent centric (POMDP) approach, yielding a
best-responsepolicy that exploits weaknessesof a given opponent policy. We
have experimentally shown that the POMDP approach was able to obtain the
maximum payo®,even against a Nash-policy.

Next, we presented an investigation of methods that allow for tackling large
POMDPs and thus larger poker games. In particular we discussedmodel mini-
mization for POMDPs and madeplausible that direct application of this method
will not give enough reduction for real-life poker variants as Texas' Hold-em.
We also identi¯ed the bottleneck and gave a pointer to a potential solution.

Finally, we consideredan alternativ e way of calculating Nash-equilibria us-
ing a coevolutionary approach. This processalsogivesa natural way to identify
policies that make a bene¯cial tradeo®betweensecurity and potential gain. Al-
though it dependson the opponent policy and the usedsearch heuristic whether
a policy giving a favorable tradeo®is found. This can be seenas a ¯rst step in
unifying the gametheoretic and agent centric approach.

8.1 Future work

Most directions for future work were identi¯ed in the last two parts of this
thesis. As mentioned above, in the secondpart a modi¯cation for model min-
imization for POMDPs is suggested.Future research should focus on whether
this modi¯cation still allows for a equivalencenotion that satis¯es the original
bisimulation theorem (5.2.1). If this is possible, it would be interesting to see
whether such a new aggregation concept will alow for tackling real-life poker
games.

Apart from state aggregation such as model minimization, we also brie°y
discussedother approaches for dealing with large (PO)MDPs. The most rel-
evant leads that were identi¯ed are the approximate methods. Especially the
tra jectory sampling approaches seempromising, as they provide performance
bounds independent of the number of states.

Roughly speaking, we identi¯ed three typesof future work in the last part.
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Chapter 8 Conclusions 8.1 Future work

The ¯rst type would be to try and generalizethe coevolutionary computation
of Nash equilibria to gameswith more than two players or gamesthat are not
zero-sum. A secondtype would be to try to prevent solving a linear program
from start, by using someweight adjusting scheme. The last type would be to
focuson the tradeo®betweenworst-case(security) and best-case(best-response)
payo®. This direction would involve investigating di®erent search heuristics that
present opponent policies that are closer to the estimated opponent model.

A more general question that would be interesting for future research is
whether the conceptof realization weights canbegeneralizedto arbitrary MDPs.
As illustrated in this thesis,sequenceform and their realization weights allow for
more e±cient operations in extensive form games.Therefore an extensionof re-
alization weights to arbitrary MDPs or POSGsmight alsopresent opportunities
within theseframeworks.
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App endix A

Gala system mo di¯cations

As mentioned in chapter 4, there were somechangesnecessaryto get Gala up
and running. Here we will brie°y document these changes. Gala is written
in SWI-prolog. Two of the changeswere necessaryto work with the current
version (v. 5.4.3).

The Gala function compare ranks (in poker.gl) needs to return `<', `>' or
`=', becausethis is what the build in function predsort now requires as return
arguments.

In the new versionsof SWI-Prolog, operators are local to modules, therefore
it is necessaryto de¯ne the operators with the user scope.

Another necessarychange involved the solving of the linear program. The
Gala systemincluded a Matlab ¯le which usedthe deprecatedlp function. This
hasbeenchangedto usethe `linprog' function available in current releases.This
new procedure takes its arguments in a di®erent format. Also it was not clear
whether the algorithm the new function implemented changed.

Except for the modi¯cation, also somepractical additions have beenmade.
Theseinclude a simulation module and various functions to extract policiesand
translate to understandable languageand modify thesepolicies.
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