GametheoryandAl: auni ed approah to poker
games

Thesisfor graduation as Master of Arti cial Intelligence

University of Amsterdam
x

b

X
FACULTEIT DER NATUURWETENSCHAPPEN, WISKUNDE EN INFORMATICA

Frans Oliehoek

2 Septenber 2005






Abstract

This thesis focuseson decisionmaking in partially obsenable card gamesand,
in particular, poker games. An attempt is made to outline both the game
theoretic, asan agert-centric approad to such games,analyzing di®erencesand
similarities, aswell as strong and weaker points and "nally proposinga view to
make a tradeo® betweenthese.

The gametheoretic approad for this type of gameswould specify a Nash-
equilibrium, i.e., a pair of policies that are a best responseto ead other. Al-
though a policy found in this way guaranteesa minimum payo®, it is consena-
tivein the sensethat it is unable to exploit any weaknesseshe opponert might
have.

This motivatesan agert-centric perspective, in which we proposemodeling a
simple poker gameas a Partial Obsenable Markov Decision Process(POMDP)
for a player who is playing againsta xed opponert whosepolicy is known (e.qg.
by repeated play). The resulting deterministic policy is a best responseagainst
the xed opponert policy. Suc a best-respnsepolicy doesexploit weaknesses
in the opponert's policy, thus yielding the maximum payo® attainable.

In order for the results obtained for such a simplied poker gameto be of
signi cance for real-life poker games, various methods for dealing with large
(PO)MDPs are treated. These could be usedto tackle larger gamesusing the
best-respnseapproad. We examine the application of one of these methods,
model minimization, on poker gamesin more detail. The result of this exami-
nation is that the reduction gainedby direct application of model minimization
on poker gamesis bounded and that this bound preverts this method from
successfullytackling real-life poker variants.

Finally, in a coewolutionary framework, we try to unify the gametheoretic
and agert-centric approad by making a tradeo®betweenthe security the former
o®ersand the potential gain of the latter. A secondarygoal in this approac is
examining excient calculation of Nash-equilibria.






Acknowledgmen ts

First, 1 would like to thank my supervisor, Nikos Vlassis. He has been great
in supporting me with his his feedbad, insights and the discussionswe had
about them, often stretching the afternoon well into the evening. Moreover,
without his high expectations and accomparying enthusiasm this thesis would
have never becomeinto what it now is.

Second,Matthijs Spaan,desenesmy thanks. Especially during the rst half
of my graduation project he has beena big support by explaining conceptsand
helping out during implementation. Also, | would like to thank him for the
work he put into what becamemy “rst publication.

Edwin de Jongis the last personl want to mertion with name. He hasbeen
very kind and helpful in sharing his knowledge on coewolution, which resulted
in chapter 7.

Finally, I'd liketo thank my mother, brother, girlfriend and other friends for
putting up with me during this period. They newver seizedto support me and
my work, for which | am more than grateful.



contents

1 Intro duction

1.1.1 Whygames? . . . . . . . ..
1.1.2 Typesofgames. . .. .. ... ... ... .. .......
1.1.3 Outcomesand utilities . . . .. ... ... ... ......
1.2 Researbbongames. . . . . . . . . .. .. i
1.3 Thesisfocus. . . .. . . . . . . ...
1.4 Relatedwork . .. .. .. ... . .. .. ...
1.5 Twopokergames. . . . . . . . . . . i i
151 8-Cardpoker . ... .. ... ... ... ...
152 Texas'Hold-em . ... ... ... ... ... ........
1.6 Outline ofthesis . . . . ... .. ... .. ... . ... ...

I Games and best-resp onse play

2 Game theory
2.1 Represemation . .. .. ... ... ...
2.11 Extensiveformgames . . . ... ... ... .. ......
212 POSGS . . . v i
2.1.3 Strategicformgames. . . . ... ... ... ... ... ..
2.14 Purepolicies . . . . ... .
2.2 Solutions . . . . ...
2.2.1 Nashequilibria . ... ... .................
222 Solvinggames. . . . ... ... .
2.2.3 Solving two-player zero-sumgames. . . . . .. ... ...
2.2.4 Properties of Nashequilibria . . . .. ... ........
23 Theexponertial gap . . . . . . . . .
2.3.1 Galalanguageand generatingthe gametree. . . . . . . .
2.3.2 SEqUENCES. . . . .« o v i
2.3.3 Realizationweights . . . . . .. .. ... ... ...
2.3.4 Solving gamesin sequenceform . . . . . .. ... ... L.
2.4 Remainingproblems . . . . ... ... ..

3 MDPs & POMDPs
3.1 MDPS . . . . e e
3.1.1 The MDP framework . ... .. ... ...........
3.1.2 SolvingMDPs . ... ... ... ...

Vi



CONTENTS CONTENTS

3.2 POMDPS . .. . . . . e 29
3.21 The POMDP framework . . . . ... ... ... ...... 29
3.2.2 The relation betweenMDP and POMDP . . . ... . .. 30
3.23 SolvingPOMDPs . . . ... ... ... . ... . ...... 31

3.3 From gameto POMDP . . .. ... ... ... ... ....... 31
3.3.1 8-cardpokerasaPOMDP .. ............... 32
3.3.2 Best-responseplay: Solvingthe POMDP . . .. ... .. 33
3.3.3 Discussion. . . . ... 34

Exp erimen tal results 35

41 The Galasystem . . . .. ... ... ... ... 35
4.1.1 Modications and additions . . . . ... ... ....... 35
4.1.2 Description of resulting policy . . . . . .. ... ... ... 35
4.1.3 Which are optimal policies?. . . . .. ... ........ 36
4.1.4 Conclusionsofverication . . ... ............. 38

4.2 Bestrespnseplay . . .. .. ... e 38
4.2.1 8-cardpokerasaPOMDP ... .............. 39
4.2.2 Alternating learning . . . .. ... ... ... ....... 40

Scaling up: reduction and appro ximating metho ds 41

Represen ting large state spaces 42

5.1 State Represemation . . . . .. .. .. ... ... ... ... 42
5.1.1 Factoredrepresettations . . . . .. .. ... .. .. .... 43
5.1.2 Methods for factored MDPs . . . . . . ... ... .. ... 45
5.1.3 Finding reducedmodels . . . . .. ... ... ....... 45
5.1.4 Other approaches. . . . . . .. .. . ... .. ..., 46

5.2 Model Minimization . . . .. ... .. ... ... ... . a7
5.2.1 Aggregation and partitions . . . ... .. ... ... ... 47
5.2.2 Equivalencenotions . . . ... ... ... ... ... ... 47
5.2.3 The Markov property . . . .. ... ... ......... 48
5.2.4 Markov requirements . . . . .. ... 49
5.2.5 Computing stochastic bisimilarity . . . ... ... .. .. 51
5.2.6 Complexity and non-optimal spliting . . . . ... .. .. 53

Poker & aggregation 54

6.1 Implicit states. . . . . . . ... 54

6.2 Bisimilarity forpoker. . . . . . .. .. ... ... . . 55
6.2.1 1-actionpoker . . ... ... ... ... 55
6.2.2 Optimal split for 1-actionpoker. . . . ... .. ... ... 57
6.2.3 Bound implications . . . . ... ... 59

6.3 Bisimilarity revised. . . . . . ... L oL o 61
6.3.1 Uniform distributions . . ... ... ............ 61
6.3.2 Futureresear® . . . .. ... ... ... ... 62

Vii



CONTENTS CONTENTS
Il Unifying winnings and security 63
7 Coevolution and security 64
7.1 Coewlution . . . . . . . . . . 64
7.1.1 Solutionconcepts. . . . . ... ... 65

7.1.2 Memory . . . . . . . 65

7.2 Nash equilibrium solution concept . . . . ... .......... 65
7.2.1 Symmetric gamesand Nash equilibria . . . . ... .. .. 65

7.2.2 Componerts of the Nash-memory. . . . . ... ... ... 66

723 Theoperation. . . ... ... ... ... ... ... 66

7.3 Coewlution for 8-cardpoker . . . . ... ... ... ... ... 68
7.3.1 Asymmetric games. . . . . . . .. .. 68

7.3.2 Best-respnseheuristic. . . ... ..o L L. 69

7.3.3 The resulting algorithm . . . . . ... ... ........ 70

7.4 From mixed to stochastic policies. . . . .. ... ... ...... 70
7.4.1 Problemandconcepts. ... ... .. .. ......... 70

7.4.2 Usingrealization weights . . . .. ... ... ....... 71

7.4.3 Calculating realization weights . . . . . ... ... .. .. 73

7.4.4 Calculating the stochastic policy . . .. ... .. ... .. 75

75 EXperiments. . . . . ... 76
7.5.1 8-cardpoker . ... . ... ... 76

7.5.2 Somelarger pokergames . . . .. .. ... ... ... .. 77

7.5.3 Security vs. best-resppnsepayo® . . ... ... ... L. 78

7.6 DISCUSSION. . . . . . . . e 79

8 Conclusions 81
8.1 Futurework . . ... . .. .. .. 81

A Gala system modi cations 83

viii



Chapter 1

In tro duction

Playing gamesis something that comesnatural to humans. We easily under-
stand the rules and by playing against more experiencedplayers we pick up the
subtleties and overcomeditculties for a particular game. In cortrast, learning
a computer to play a gameis a considerablemore ditcult process.

Especially when chance moves and partial obsenability are involved, as is
the casefor gameslike poker, gamesquickly becomeintractable. An often
used solution for this problem is to have a computer play according to some
heuristics that are de ned by human knowledge about a particular game. This
essetially comesdown to programs playing a set of predetermined rules. The
major downside of this approad is that these type of programs have a very
limited capability to adjust their play and, therefore, are beaten rather easily
by human playersor other program designedspeci cally to courter the heuristics
behind the rules.

In this thesis we will examine frameworks that give a fundamertal basis
for gamesand are lessvulnerable than rule-based programs based on human
expertise.

1.1 Games

In the last certury a lot of researt has been dewoted to the study of games.
Beforediving into the details of researt on poker and games,we will “rst givea
brief overview of someof this researt and answer the necessaryquestion\Wh y
one would researti gamesin the rst place?"

1.1.1 Why games?

Probably the best reason for studying gamesis that gamescan be used to
model a lot of real-life situations. Becauseof this, gametheory hasbeenwidely
applied in "elds as economics,biology, (international) politics and law. Also in
computer sciencegametheory hasfound more and more applications. Examples
of these are interface design, discourse understanding, network routing, load
sharing, resourceallocation in distributed systemsand information and service
transactions on Internet [35].



Chapter 1 Intro duction 1.1 Games

] | full information | partial information |
deterministic Chess,Go Battleships
stochastic Backgammon, Monopoly Poker

Table 1.1: Examples of various gametypes characterize by the forms of uncer-
tainty.

This shows that gamesare useful for a large classof problems. Particularly
most situations in which multiple interacting ertities have to make decisions
are suitable to be modeled as a game. In fact the interest in gameshas been
renewed by the researt in multi-agent systems.

We should mention that the by ‘game'we do not mean arcade computer-
gamessud as Doom. Howewer, the ideas and techniques that are considered
heremight alsobe employedin certain aspectsof thesetypesof computer-games.
This could also be of importance, as the computer-gameindustry is one of the
fastest growing sectorswithin the entertainment branch.

Apart from their relevancegamesalso have someproperties that make them
very suitable for researt): Gameshave a setof clearly stated rules and they have
a speci ¢ goal. This makesit possibleto test the succesof di®erent approaces
for a speci ¢ game. As an example, the researt performed on chessbrought
many scierti ¢ advances.

1.1.2 Typesof games

Gamescan be characterizedby various propertiesthey embody. Someimportant
characteristics are induced by the type(s) of uncertainty presen in a game[51].
Onetype of uncertainty is opponent uncertainty, meaningnot knowing how your
opponert will play. This is a form of uncertainty is shared by most, if not all
multi-pla yer games.

Another type of uncertainty is known as e®ectuncertainty: It is possible
that a player doesnot know all possiblee®ectsof an action, e.g. opening a box
in a role playing game. This type of uncertainty is not further consideredas
this stretchesthe boundary of \a set of well de ned rules".

Both typesof uncertainty discussedabove are interesting on itself, but are
lessuseful for characterizing games. The following two di®erert typesof uncer-
tainty do provide important characteristics: The presenceof chance movesin a
game and whether the players can fully obsene the current state of the game.

Chancemovesare causedby the presenceof outcome uncertainty. Outcome
uncertainty occurs when all possiblee®ectsof an action and their probabilities
are known, for example when throwing a dice. Gameswith chance moves are
referred to as stochastic games those without as deterministic.

When one or more playerscan't fully obsene the current state of the game,
the gameexhibits state uncertainty. We say the player has partial or imperfect
information regarding the state and consequetly speak of partial information
games.

Table 1.1 givesexamplesof gameswith the outcome and state uncertainty.



1.2 Researt on games Chapter 1 Introduction

1.1.3 Outcomes and utilities

Another important factor in characterizing a game is what kind of outcomes
is has. In general an outcome of a game speci es a reward for ead player
independertly. This meansthat there may be outcomesthat are good for all
players, outcomesthat are bad for all players and outcomesthat are good for
one, but bad for another player. This implies gamescan also be speci ed by
the type of preferencesthe players hold over the outcomes. One such type are
strictly competitive games:whenthe playersin the gamestrictly prefer di®eren
outcomes,the gameis said to be strictly competitiv e.

Now, lets make the idea of preferencemore concrete. The preferencesthe
player holds over outcomesis expressedby a utility function, U. This is a
mapping from outcomesto real numbersin such a way that for all outcomeso,
and oy it holds that, if the player preferso; over o, then U(o1) > U(0y).

The utilit y of a certain outcome is also referred to as the payo® When
the payo®sfor all players sum to 0, we speak of a zero-sum game. Clearly, a
two-person zero-sumgameis strictly competitiv e.

The gamesthat are consideredin this thesis are poker variants that have a
outcomesexpressedin won or lost money. The amount of money won and lost
by the playerssumsto zerofor thesegames® Howewer, for the gameto be zero-
sum, the utilit y payo®sshould sum to one. Therefore we make the assumption
that the utilit y function for all playersis equal to the amount of money won or
lost.

Also, when a game includes chance moves, the players must also have pref-
erencesover di®erert lotteries of outcomes. Strictly spoken this requiresa well-
founded choice on the desired attitude towards taking risks. Howewver, as most
gamestypically deal with only small winnings and losings, players are usually
consideredrisk neutral. Therefore we can simply use the expectation of these
lotteries.

The issuesdealt with here belongto the eld of utilit y theory. More infor-
mation can be found in [6].

1.2 Research on games

Although researth on gameshas been mathematically formalized only relative
recertly, related insights can be traced back to philosophersfrom anciert times.
As an example, at one point Saocrates sketchesthe setting of a soldier waiting
with his comradesto repulsean eneny attack. He reasonsthat if the battle will
be won, the e®ort of the soldier is not neededand therefore he would better not
participate, avoiding risk of injury. On the other hand it the battle will be lost,
the soldierschance of getting hurt are even higher and therefore, he should not
participate in the battle in this caseeither. This kind of reasoningis very much
related to ideasin current gametheory.

In the “rst half of the twentieth certury a lot of researt was performed on
games. Important cortributions were made by Zermelo, von Neumann, Mor-
gensternand Nash and others, leading to a formalization that could be called
the “classicalgametheory'.

1Unless played in the casino, where the house takes a percentage of the pot.



Chapter 1 Intro duction 1.3 Thesis focus

With the advent of computers, again lots of gameshave beenstudied. Until
the late 90's, most of the e®ort focusedon fully obsenable games. An exam-
ple of a fully obsenable game on which computer sciencereseard focusedis
badkgammon. In 1992 TD-Gammon was introduced in [57]. The program was
able to compete with the world-class player winning some gameslosing some
others.

The most prominent, however, wasthe researt performed on chess:the lit-
erature on chessis extensive including dedicatedjournals. This researt resulted
many advancesin computer science,especially seard techniques. In 1997 for
the rst time the world-champion at that time, Garry Kasparov, was defeated
by a computer, ‘DeepBlue'.

Sincethen more and more attention hasshifted to partial information games.
Poker was identied as a next ‘bendimark' problem for partial information
games[1, 5] and indeed more and more researd has focusedon poker in the
last decade.We will give a brief overview in section1.4.

1.3 Thesis focus

In this thesis, the focus will be on frameworks for learning good policies for
partially obsenable card games,speci cally poker variants. Theseare stochastic
games. As mertioned, we assumepayo®sare equalto the amount of moneywon
or lost sothat they are zero-sumand therefore strictly competitiv e in the two-
player case.

1.4 Related work

In this section we discusssomerelated work on partial obsenable card games
and poker in particular. It only givesa brief overview, as for a more detailed
description quite someknowledgeis required in advance.

Probably one of the rst to mathematically study poker was von Neumann
[58]. He created an abstract small poker game, still known as \v.on Neumann
poker", which he studied in detail. A similar approac wastaken by Kuhn [37],
who studied a simpli ed poker game very similar to “8-card poker', which will
be useas an examplethroughout this thesis (seesection 1.5 for a description).

More recertly, poker received a lot of attention from the "eld of computer
scienceand arti cial intelligence. The Gala system[35] provided a way to solve
partial obsenable games,like poker, of a higher order of magnitude than was
possible before. In [5, 4] a poker program called Loki is described that plays
the gameof Texas'Hold-em (also, seesection 1.5) basedon opponert modeling.
The successopf this program, Poki, [3] madeit to a commercialproduct. In [36]
describesan approac basedon Bayesiannetworks. A gametheoretic approact
to a medium sized poker game called Rhade Island hold-em is given in [51],
employing seeral techniques to make the size of the game manageable. A
similar approacd for Texas'Hold-em is given [2].

Finally, also someother partially obsenable card gamesreceived attention.
Before 1995a lot of researt focusedon bridge [1]. More recertly, the game of
hearts was investigated [22].



1.5 Two poker games Chapter 1 Introduction

1.5 Two poker games

As we will bediscussinga lot of poker variants in this thesis,wewill “rst describe
two poker variants to familiarize with someconcepts. The “rst is a small game
from literature [35] called 8-card poker. The secondis a real-life poker game,
usedto determine the world-champion, called Texas'Hold-em.

1.5.1 8-Card poker

In this thesis we will use a simple poker variant, 8-card poker, to illustrate
various conceptsmore clearly. An additional bene't is that the gameis small
enoughto be solved exactly, aswe will in chapter 2. 8-Card poker is played by
two players: a dealerand a gambler, who both own two coins. Before the game
starts, ead player puts one coin to the pot, the ante. Then both players are
dealt one card out of a ded of eight cards (1 suit, ranks 1{8).

After the players have obsened their card, they are allowed to bet their
remaining coin, starting with the ganbler. If the gambler bets his coin, the
dealer hasthe option to fold or call. If the dealerfolds he losesthe ante, and if
he calls shovdown follows. If the gambler doesnot bet, the dealer can choose
to bet his coin. If the dealer does so, the ganbler will have to decide whether
to fold or call. If the game reachesthe shavdown (neither player bets or the
bet is called), the player with the highest card wins the pot.

1.5.2 Texas' Hold-em

Texas'Hold-em is a real-life poker variant. In fact, it is not one particular poker
variant; there are seweral variants of Texas' Hold-em as well. All of these are
played with anywhere from two to over ten players, although we will mostly
focus on the two player poker games.

The main di®erencebetween di®erert variants of Texas' Hold-em is the
amourt of money that can be bet or raised. In this respect, there are limit,
no-limit and pot limit games. We will discusslimit Texas'Hold-em here rst.
The limit version of the game speci es two amounts, with the highest amount
usually being twice the lower amourt, e.g. 4/ 8. The lower amount speci es
the value of a single bet or raisein the rst two bet-rounds, the higher amourt
for the last two bet-rounds.

As might be clear, bet-rounds, of which there are four in total, take a certral
place in Texas'Hold-em, therefore we will "rst describe how one bet-round is
played.

In a bet-round the rst player to act has?2 options: check and bet. When he
cheds, he doesn't place a bet, when he bets does place a bet (of 4) thereby
increasing the stakes of the game. The second player has di®eren options
depending on what the rst player did. If the “rst player chedked, the second
player has the sameactions chedk and bet. If the ‘rst player bet, the second
player can fold, call or raise. Folding meansthat the player givesup, causing
the opponert to win.? When a player calls a bet, he pays enough money to
the pot to match the opponert's bet. Raising meansthat the player calls the

2Tedhnically, the st player can also fold, as can the second player after the Tst player
checked. However, as at these point the player doesnot have to pay to stay in the game, this
action is dominated by checking.



Chapter 1 Intro duction 1.6 Outline of thesis

| name | description |
Royal °ush AK,Q,J,10 of the samesuit
Straight °ush | v e consecutiwe cards of the samesuit
4-of-a-kind 4 cards of the samerank
full house 3-of-a-kind + one pair, e.g.: J,J,J,4,4
°ush 5 cards of samesuit
straight 5 consecutiw cards, .e.g. 7,8,9,10,J
3-of-a-kind 3 cards of the samerank
2-pair 2 pairs, e.g. 6,6,4,4,J
pair 2 cards of samerank, e.g. 4,9,10,K,K
high-card the highest card, e.g. 2,5,7,8,Q o®-suit

Table 1.2: Hand-typesfor Texas' Hold-em.

opponert's bet and placesa bet on top of that. In this example, with a single
bet costing 4, raising comesdown to placing 8 in the pot.

A bet-round is endedwhen no player increasedthe stakesof the gamein his
last turn, i.e. both players cheded or the last bet was called. Also, there is a
maximum of 4 bets, so 16 in this example, per player per bet-round.

Now the bet-round has beendescribed, the structure of the whole gameis
as follows. First the playersin concernpay the ante which is called the blind
bet.® After that all playersreceiwe two private card out of a standard ded of 52
cards. This is followed by a bet round. When the rst bet-round ended, three
public cardsare placed, face-up,on the table, this is called the °op. The second
bet-round follows and when ended a single public card is placed on the table.
This stageis called the turn. After the turn the third and beforelast bet-round
starts, this meansthat a single bet now costs 8 and therefore a maximum of

32 per player can be bet in this round. This third bet-round is followed be a
“fth and last public card placed on the table: the river. After the river the last
bet-round is played, alsowith a single bet of 8.

When both players didn't fold up to this point, shondown follows and the
player that hasthe highestcombination of "v e cardsformed using his two private
cards and the table cardswins the pot.

The variants no-limit and pot-limit di®erin the betsthat canbe placed. As
suggestedby the name, in no-limit poker any amourt can be betted or raised.
In pot-limit hold-em, the maximum bet is determined by the amount of money
that is currently in the pot.

1.6 Outline of thesis

This thesis is divided in 3 parts. In the rst part we discussgamesand best-
response play. First, game theoretic notions and solutions are introduced in
chapter 2 and we identify two weak points in the outlined game theoretic ap-
proach: the incapability of exploiting weaknesse®f the opponert and the prac-
tical limitation on the size of problemsthat can be addressed.In chapter 3 we

3In Texas' Hold-em only one or two, depending on the total number of players and the
exact variant, pay ante.



1.6 Outline of thesis Chapter 1 Introduction

presert a method to calculate a best-respnsethat exploits the weaknesse®f
the opponert. At the end of the rst part we provide experimental results for
both the gametheoretic and best-respnseapproad.

In the secondpart we discussmethods for handling bigger gamesusing the
best-respnseapproac. In chapter 5 an overview of relevant literature is pre-
serted. For someof the discussedmethods, we analyze their applicability for
poker gamesin chapter 6.

Finally, in the last part, we examine a way of providing a tradeo® between
the security of the gametheoretic solution and the potential winnings of best-
response play. This is done in a coewlutionary framework and discussedin
chapter 7. Chapter 8 concludesand summarizesdirections for future researt
identi ed throughout the thesis.



Chapter 1 Intro duction 1.6 Outline of thesis




Part |

Games and best-resp onse
play



Chapter 2

Game theory

As the name implies, game theory is the traditional approac for analyzing
games. It is usually divided in two parts: cooperative and non-cooperative
gametheory. The cooperative gametheory takesa looserapproac and mostly
dealswith bargaining problems. The non-cooperative gametheory is basedon
exact rules for games,so that solutions can be studied in detail. As the type
of gamesdiscussedin this thesis are strictly competitiv e, we will focus on the
non-cooperative part and leave the cooperative gametheory untouched.

A natural “rst questionto ask hereis what it meansto solve game?In other
words: What is a solution for a game? In general, a solution of a gameis a
speci cation for ead player how to play the gamein ead situation that can
arise. That is, it speci es the best strategy or policy for eah player.!

In this chapter, we will “Tst give an introduction in necessaryconceptsand
methods from gametheory. This includes di®erent ways gamescan be repre-
sented, approacesfor solving gamesand properties of these “solutions'. Next
we will describe the Gala system preseried in [35] and how it can be usedto
solve games.

2.1 Representation

There are di®eren types of represenations for games. The most familiar of
which is a represeration by the rules of the game. If someoneexplains how
to play a certain game this is the represertation that would be used. The
descriptionsin section 1.5 are good examples.

Although sud represenations by rules are the easiestway to describe games,
in order to perform reasoningabout game dynamics and outcomes, more for-
mal represertations are needed. In this section some commonly used formal
represertations are discussed.

2.1.1 Extensiv e form games

A commonly usedrepresertation for gamesis the so-calledextensiveform. We
can model 8-card poker as an extensive form game with partial (imp erfect)

1in game theory the term ‘strategy' is usually adopted, while Al the term “policy' is
generally used. In this thesis, we will use the term “policy".

10



2.1 Represeltation Chapter 2 Game theory

Figure 2.1: The partial game-treeof 8-card poker for the deals(4; 2) and (4; 6).
Gambler's decision nodes are black, dealer's are grey. The diamond represent
the chancemove at start. The payo®sare given for the ganbler.

information [38]. The extensive form of a gameis given by a tree, in which
nodes represen game states and whoseroot is the starting state. There are
two types of nodes: decision nodesthat represen points at which agerts can
make a move, and chancenodeswhich represen stochastic transitions “taken by
nature'. In 8-card poker, the only chancenodeis the starting state, in which two
cards are chosenat random from the 8-card dedk and are dealt to the agerts.

In a partial information game, an agent may be uncertain about the true
state of the game. In particular, an 8-card poker agert may not be able to
discriminate betweensomenodesin the tree. The nodesthat an agert cannot
tell apart are grouped in information sets From this perspective a game-tree
for a perfect information gamecan be seenas a special casein which ead node
has a unique information set assaiated with it.

In Fig. 2.1 a part of the game-tree of 8-card poker is drawn. At the root
of tree ("Start' node) a card is dealt to ead agert. At ead decisionnode the
agerts can choosebetweenaction 1 (bet), and action 0 (fold). The "gure shows
two deals: in the rst the dealerreceivescard 2, in the secondhe receives card
6. The ganmbler receives card 4 in both cases. Therefore the gambler cannot
discriminate betweenthe two deals. This is illustrated by the information sets
indicated by ovals. The leaves of the tree represen the outcomesof the game
and the corresponding payo®s. In the "gure only the payo® of the gambler is
shown, the payo® of the dealer is exactly the opposite, as 8-card poker is a
zero-sumgame.

An assumption that usually is made with the analysis of extensive form
gamesit that of perfect recall. This assumptionin fact is not a very strong one.
It embodiesthat at a certain node or phasein the game, the players perfectly
remembers the actions he took and obsenations he received.

2.1.2 POSGs

As merntioned in the introduction, much of the researd in multi-agent systems
has renewed the interest in gametheory. The framework that is often usedin

11



Chapter 2 Game theory 2.1 Represettation

t=1

t=2

Figure 2.2: Simultaneous actions in an extensive form game. By using infor-
mation sets, the rst players move is hidden for the secondplayer, modeling
simultaneous actions.

this "eld is that of Stochastic Games The partially obsenable variant of this
is referred to as Partial ly ObservableStachastic Game(POSG) [27, 18].

POSGs are very similar to extensive form games. The major di®erence
is that in a POSG, actions are usually taken simultaneous by all players (or
agerts). l.e., it speci es the spaceof joint actions A as the cross-praluct of
the individual actions: A = A; £ :: £ A, for n players. As in a multi-agent
ernvironment agens usually take actions simultaneous, this framework is very
natural to describe such systems. However, in an extensive form gameit is also
possibleto model simultaneous actions, as illustrated in "gure 2.2.

Another di®erencebetween the two frameworks are that in a POSG the
players receive explicit obsenations speci ed by an obsenation model versus
the implicit modeling of such obsenations through the use of information sets
in extensive form games.

A POSG is more generalthan an extensive form game. The latter can be
seenas a special caseof the former with a tree-like structure.

2.1.3 Strategic form games

Another commonly used represenation is the strategic- or normal form. A
strategic form two-player gameis given by a matrix and is played by a row and
column player. The gameis played by ead player independertly selecting a
row/column and the outcome s given by the corresponding matrix entry.

Example 2.1.1 In table 2.1 the gameof "Chicken' is shown. The story usually
told for this game concernstwo teenagerswho settle a dispute by driving head
on at eat other. Both players have the action to drive on or to chicken out.
When the “rst player choosesto chicken out while the the secondplayer chooses
to drive on, the payo®is 0 for the “rst player and 2 for the secondplayer. When
both teenagersdecideto drive on they will crash and therefore both receive a
payo® of -1. When both player chicken out the shameis lessthan when only
one decidesto do soand both players receiwe a payo®of 1. o

The strategic form represenation is in fact based on the notion of pure
policies. A pure policy for a player speci es exactly oneaction for ead situation
that canoccur. Sorather than an action, “chicken out' actually is a pure policy
for Chicken. We will elaborate on the notion of pure policy in section2.1.4.

12



2.1 Represeltation Chapter 2 Game theory

| b [ ¢
D[ -1-1]20
cCl o0z 11

Table 2.1: The game "Chicken'. Both players have the option to (D)riv e on or
(C)hicken out.

When all players have chosena pure policy this determinesthe (expected)
outcomeof the game? This outcomeis the ertry in the matrix for the respective
row and column corresponding to the chosenpolicies.

2.1.4 Pure policies

Here we will preseri a more precisede nition of what we referred to as pure
policies.

Seenfrom the perspective of the extensive form, a pure policy for a player
speci es what action to take in ead decisionnode for that player. Recall that
in a partial information game, a player can't discriminate betweenthe nodes
within the sameinformation set. This meansthat the player will have to play
the sameaction in eat of thesenodes. This leadsto the following de nition.

De nition  2.1.1 In an extensive form game, a pure policy, also called deter-
ministic policy, is a mapping from information setsto actions. In a strategic
form game, a pure policy is a particular row or column.

As an example, in 8-card poker the dealer could follow the rule that he will
always bet after receiving card 5 and having obsened that the ganbler passes.
A collection of suc rules for all combinations of cards and opponert actions
would make up one pure policy.

It is possibleto corvert an extensive form gameto onein strategic form, by
enumerating all pure policies available for the players. In this transformation
all information regarding the structure of the gameis eliminated: the resulting
normal form game only cortains information regarding the outcomes. This
makesit more dixcult to understand what the gameis about. For exampleit is
not possibleto derive who moves rst from this represenation. However, when
only interestedin which outcomescertain policies can cause,it is very suitable.

Also, it is important to seethat the number of pure policies grows expo-
nertially in the number of information sets: for ead information set there are
number-of-actions choices. Therefore, if n denotesthe number of information
setsfor a player and a is the number of actions he can take at thesenodes, the
number of pure policiesthe player hasis a". This exponertial blow-up preverts
methods for strategic form gamesto be applied to all but the simplesgames.

2When there are chance moves in the game, the expectation over the outcomes is deter-
mined.

13



Chapter 2 Game theory 2.2 Solutions

2.2 Solutions

In this section we make the notion of solution for a game more precise. First
the so-calledNash equilibria are explained. Next, someapproacesto solving
gamesare brie°y reviewed. For the special caseof two-player zero-sumgames
with partial information like poker the approad is explainedin more detail.

2.2.1 Nash equilibria

The game theoretic solution of a game speci es how ead player should play
given that the opponent also follows this advise that is it provides an optimal
policy for eat player. This solution of a gameis given by one or more of its
Nash equilibria.

De nition 2.2.1 Let Ya= h/A;Y; ;Y i be atuple of policies for N players
andlet Y4 = Ha; i Y 1 Y150 Y i bethe tuple of N j 1 policiesfor player
k's opponerts. Also, let the expected payo®of a policy ¥ for player k be given
by Hy (Y& Y% «)-

A tuple of policies Ya= H/;Ys; ;Y i is a Nash equilibrium if and only if
for all playersk = 1;:::;;N:

8yp i Hk(Ya: ¥ k), Hi(R:% k)

That is, for ead player k, playing %% gives a reward equal or higher than
that obtained when playing someother policy ¥4 given that all other players
do not deviate from their policies speci ed by % . Soeadh Y% 2 Yiis a best
responsefor the opponerts policies % .

For example, in the Chicken in table 2.1, (C, D) is a Nash equilibrium, as
chicken out is the rst player's best responseto the secondplayer's policy to
drive on and vice versa. Likewise, (D, C) is alsoa Nash equilibrium.

2.2.2 Solving games

The question to answer now is what tuple of policies to recommend as the
solution. Clearly it should be a Nash equilibrium, asotherwisethere would be a
better policy for one of the players and he would better usethat. This presens
us with the question how to "'nd a Nash equilibrium.

In extensive form gameswith perfect information we can nd the equilibria
by using Zermelo's badkward induction algorithm [59]. For partial information
games, however, this algorithm doesn't work becauseactions will have to be
chosenfor information sets instead of nodes. Taking a certain action in one
node of the information set might give an outcome completely di®ereri than
obtained when performing that same action from another node in the same
information set.

For strategic form gameswe can use elimination of (strictly) dominated
policies. For a certain player we considerif there are policies for which all the
outcomesare (strictly) dominated by the outcomesfor another policy. If this is
the case,this policy is removed, reducing the matrix. This is repeated, iterating
over the players, until no further reductions take place. Although this approact
will in most casesreduce the matrix, there is absolutely no guarartee that it

14



2.2 Solutions Chapter 2 Game theory

will result in exactly onepolicy for ead player. Also, when deleting non-strictly
(weakly) dominated policies, equilibria may be lost.

In general, a Nash equilibrium might not exist in pure policies for games
with partial information. We overcomethis by allowing randomizel policies.
Randomized policies allow particular pure policies or actions to be played with
some probability. A famous result, by Nash [4Q] is that for a strategic form
game, there always exist at least one Nash equilibrium in randomized policies.
When combining this result with the equivalence between extensive form and
strategic form games[38], we obtain the following theorem:

Theorem 2.2.1 Any extensive-form game with perfect recall has at least one
Nash equilibrium in randomizal policies.

As the intuitiv e description above already indicated, there are two kinds of
randomized policies: mixed policies and stochastic policies, which we will now
de ne.

De nition  2.2.2 A mixed policy, 1, is a non-empty setof pure policiestogether
with a probability distribution over thesepure policies. The set of pure policies
to which ! assignspositive probability is also called the supprt of * .3

De nition  2.2.3 A stochastic policy, !, is a single policy that de nes a map-
ping from information setsto probability distributions over actions. l.e. for
ead information set, a stochastic policy de nes what action to take with what
probabilit y.

There is a relation betweenmixed and stochastic policies: for every mixed
policy, there is a stochastic policy that results in the same behavior and vice
versa? At this point, this exact relation is not important, but we will elaborate
onthis in chapter 7, wherewe show how to corvert a mixed policy to a stochastic
policy (7.4.2).

2.2.3 Solving two-player zero-sum games

In the previous section we brie°y discussedsolving gamesin general. Theorem
2.2.1tells that there is at least one Nash equilibrium for every extensive form
game. In general, nding such an equilibrium is dixcult [44]. For two-player
zero-sumgames,however, things are easier.

In a zero-sumgame, it is reasonableto assumethat a player will try to
be as harmful as possiblefor the opponert, becausehis payo®will increaseas
that of the opponert decreases.In the worst casean opponert will predict the
players move successfullyand then act to minimize the latter's payo®, thereby
maximizing his own. This giveslead to playing a security or maximin policy.

De nition 2.2.4 Let H; be the payo® matrix for player 1 and let | 1;} » be
the policy spacesfrom which respectively player 1 and player 2 can choose a
policy. Then a policy ¥4 that satis es:

3In this thesis, policies are indicated with %sin general. The notation ! is used when the
policy can only be a randomized policy.

4This holds for games with a tree-lik e structure as the ones we focus on in this thesis. In
general, this might not hold (e.g. in POSGs without tree-lik e structure).

15



Chapter 2 Game theory 2.2 Solutions

| v | A
Yo || 1] 45
B +3 ] +2

Table 2.2: A simple zero-sumgame in strategic form with 2 policies for each
player. Shown is the payo®for player 1.

arg max min Hi(Ya;Y%)
Ya2) 1 Y92, 2

is called a maximin policy for player 1. The maximin value given by:

= i 1/, 1
vi= max min Hi(Ya;Ys)

is the payo®player 1 is guaranteed to obtain and is called the security value
for player 1. Therefore % is also called a security policy. Likewise,a policy ¥
that maximizes:

= i 1/, 1
V2= max min H2(Ya:Ys) (2.1)
is @ maximin policy for player 2 with payo® matrix H,. Note that for a
zero-sumgameH; = j H, and therefore equation 2.1 can be rewritten to:

i V2= min max Hi(Ya;%):
Y2 Va2, 1Yp2]| 2 l(‘l ‘2)

Therefore j v, is alsoreferred to asthe minimax value for player 1.

We will illustrate the precedingde nition with an example here.

Example 2.2.1 In table 2.2, a simple strategic form gameis displayed. When
player 1 assumesplayer 2 will predict his policy correctly, he will getj 1 when
playing ¥4 and +2 when playing ¥4. His security policy is given by choosingthe
largest of these: ¥4 giving a security payo®of +2, this is the maximin value for
player 1.

Similarly, player 2 will get a worst-casepayo® of | 5 when playing ¥» and
i 3 when playing ¥4. Therefore player 2's security policy is ¥» with a security
payo®of j 3. This translates to a minimax value of +3 for player 1. o

In example 2.2.1 we restricted the policies that the players could pick to be
pure policies. That is, wede ned | ;;! » from de nition 2.2.4to be the spaceof
pure policies. In pure policiesthe gamehasno Nash equilibrium and the security
valuesfor the players are di®erer. Theorem 2.2.1tells that there should be an
equilibrium in randomized policies. For zero-sumgamesvon Neumann already
showed this in his minimax theorem [5§]:

Theorem 2.2.2 In atwo-player zer-sumgame,a policy pair ¥4; %5 is in equi-
librium if and only if both:

2 Y& maximizesvi = maXy,z: , MiNy,2: , H1(Ya; %)

16



2.2 Solutions Chapter 2 Game theory

P2

Payoffplayerl
P OFRP NWDMOO

Payoffplayer2
g b~ W II\) = O -

0O 02 04 06 08 1 0 02 04 06 08 1
PhHbi L Phb,L

Figure 2.3: Calculating maximin valuesusing mixed policies.

2 Y5 maximizesvo = maXy,o: , Miny, 21 , Ha(Ya; %),

wher | 1;| 2 are the spaces of randomizel policies. In this casevi = j v, i.e.
the maximin and minimax valuesare equal. This valueis called the value of the
game.

Again, we will give anillustration of this using the examplegamefrom table
2.2.

Example 2.2.2 Let r bethe probability that player 2 useshis rst policy, Y.
As a consequencehe probability that he useshis secondpolicy, ¥4, is 1 r.
Now player 1 can de ne the expected payo® of his policies as follows:

Ei(va) = re( 1)+ (1ir)es
Ei(Y) = re3+ (1 r)¢

Similarly, if t is the probability of the “rst player using his ‘rst policy, Y4;
the expected payo®for the secondplayer's policiesis given by:

EaYe) = tel+ (1 t)¢( 3)
Ex(¥8) = te(i 5)+ (1i t)¢(i 2):

Also note that, becausethe gameis zero-sumthe expectation of the outcome
for both playerssumup to 0, i.e. E1(Y2) = | E2(¥); etc. This allows us to
expressthe players' expected outcome in terms of their own policy.

Figure 2.3 graphically shavs the two situations. For player 1, ¥4 corresponds
with P(¥4) = 0. The "gure shows payo® he can expect for t = P(%4) against
both opponert's policies. Now if player 1 assumesthat player 2 will always
predict his policy and act to minimize his payo®, he will getthe payo®indicated
by the thick line. In order to maximize this, player 1 should play his policy ¥4
with a probability of 0:14 (t = 1=7): This is the rst players security policy,
obtaining a payo® of 2:42 which is the value of the game.

In a similar way, the second players security policy is playing ¥ with a
probability of 0:43 (r = 3=7), this yields him a security level payo®of j 2:42;

The pair of policiesfound make up a Nash-equilibrium in mixed policies. No
player can increasehis pro t by unilaterally deviating from his current policy,
sothe policies are a best responseto ead other. a

17



Chapter 2 Game theory 2.2 Solutions

lie © © o oo
°

- 0.8 .
£ .
&>)~ 0.6 °
Is) °
o
< 0.4 °
)
B ® Nashequilibrium
a 0.2 °

0 o0 0 0 0 0 o

0O 02 04 06 08 1
Player2 policy: P, L

Figure 2.4: The best-respnse functions for the game of table 2.2. The best
responsefunction for player 1 is given in black, that for player 2 in gray. It can
clearly be seenthat a player is indi®erert betweenits own policies when the
opponert plays the Nash policy.

This example, of course,is very simple: both players only have two policies
they can choosefrom. In the generalcase nding a solution is more ditcult.
Howewer, von Neumann and Morgenstern showed [58] that for every two-player
zero-sumgamewith a "nite number of pure policies a solution can be found:

Theorem 2.2.3 The normal form of a two-player zer-sum de nes a linear
program whosesolutions are the Nash-equilibria of the game.

Loosely speaking, a linear program is a maximization problem under con-
straints. In a normal form gamethe matrix, A, givesthe outcome of two pure
policies played against ead other. Now considerthe casethat the players both
play a mixed policy. Let x denotethe vector of probabilities with which the row
player selectsits pure policies. Similarly y denotesthe vector of probabilities
for the column player's pure policies. Then, the outcome of thesemixed policies
against ead other is given by:

xT Ay

The vectorsx and y should both sumto 1, giving constraints. Togetherwith
the desireof both playersto maximize their own payo®this can be transformed
to a linear program, which can be solved using linear programming. Linear
programming will be discussedin more detail in section 2.3.4.

2.2.4 Prop erties of Nash equilibria

As it is important to fully understand the concept Nash equilibrium, we will
summarize someof the important properties that have beendiscussed.

18



2.3 The exponertial gap Chapter 2 Game theory

2 |n two-player zero-sumgames,a Nash policy® is a security policy and the
value of the gameis the security value for player 1.

A security policy givesthe rewards that a player can maximally obtain,
given that the opponert will predict his move and act to minimize this
reward. The resulting reward is the maximin or security value for the
player. In general,it is paranoid to assumethe opponert will do this, as
other players are assumedto maximize their own rewards, not minimize
that of another. In a two-player zero-sumgame, howewer, these goalsare
identical.

2 Nash equilibrium policies are best responsesto ead other.

In fact this was how the Nash equilibrium was de ned. We repeat it here
to make the next point clear.

2 A Nash policy is optimal given that the opponent(s) also play a Nash
policy.
When our opponert(s) do not play a policy from a Nash equilibrium,
playing a Nash policy is still secure,but not necessarilya best-respnse.

2 At a randomized Nash equilibrium the players are indi®erert among the
pure policiesin the support of the Nash-policies.

Actually this is not a property speci cally for a Nash equilibrium. In
general,a mixed policy is a best responseto someopponert policy if and
only if ead of the pure policiesto which is assignspositive probability is a
bestresponseto this opponert policy [6]. When this is the case,the player
is indi®erert betweenthese pure policies. This is illustrated in "gure 2.4.

2.3 The exponential gap

The major problem with the method outlined in 2.2.3is the exponertial blow-up
when converting to strategic form. To overcomethis problem Koller et al. [34]
introduced a di®erert represenation called sequene form, that is polynomial
in the sizeof the gametree. In [35 the Gala systemwas preseried which makes
use of this sequenceform represettation in order to solve gamesezxciently.

In this section we give an overview of the Gala system, the sequenceform
and exactly how to solve gamesusing linear programming.

2.3.1 Gala language and generating the game tree

The Gala system takes as input a description of a game. This description
is de ned according to the Gala language and consists of de nitions for: the
“name’ of the game,the “players', "parameters'for the game, variables' usedin
the game,the “°ow' and optional modulesreferencesrom within the game-°ow.

The “players' de ne which players participate in the game. In addition there
is a special player nature that accourts for all the chance moves. In principle,
there can be more than two playersin a Gala game,but the procedureto solve
a gameis only implemented for the two-player (zero-sum) case.

SFor concisenesswe will refer to a policy that is part of a Nash equilibrium as a Nash
policy.

19



Chapter 2 Game theory 2.3 The exponertial gap

‘Parameters' for the game directly in°uence the structure of the game, for
example how much stagesthe game does consist of, or which cards are in the
dedk.

“Variables' usedin the gameare usedto maintain valuesthrough the game
that for example determine the outcome or are revealedto one or more players.
For example Hand_of_playerl might be a variable in a poker game.

The “°ow' determines how the gameis played. It typically invokes some
modules that represen stagesof the game. For example (pay_ante, deal_cards,
bet_round) could describe the °ow for a simple poker game.

From this speci cation the Gala systemgeneratesthe game-treeby following
the °ow and generating nodesfor ead choice until the game ends. When this
happens the system badks up to the last node and tries whether there was
another choice available for the player to move at that node. If there is, that
choice is followed, if not it badks up further. In this way the full game-treeis
constructed in a depth-rst manner.

2.3.2 Sequences

In order to avoid the the exponertial blow-up inducedwhen cornverting to normal
form, the Gala system usesa di®erert represenation: the sequenceform. The
key obsenation is that pure policies result in particular paths in the game-
tree, therefore distributions over pure policies induce distributions over paths,
or sguen@s of moves. The probabilities of these paths can be expressedby
realization weights and can be conveniertly related to stochastic policies.

We will start with the sequencesA sequenceshould be interpreted asa path
from the root of the game-treeto a particular node. Along this path, the edges
have labels corresponding with actions and obsenations. To give someintuition
we will “rst give two examplesfor 8-card poker: \pass on ¢, is a sequencefor
the ganmbler and \b et on c after seeinga pass”, is one for the dealer, where c
refersto observinga particular card. We give the following formal de nition for
a sequence:

De nition 2.3.1 A sequence¥(p) for a player k is the concatenation of the
description of the previous decision node, di; of that player and the action at
dy that leadsto p.

The previous decision node, dy; for player k is the rst decision node of
player k encourtered when traversing from p to the root, excluding p itself.

The description of an decisionnode, di, is the concatenation of the labels of
all edgesencourtered when traversing the path from root to d¢. Theselabels
correspond with the obsenations and actions for player k.

By obsenations we meanobsened actions of the opponert (e.g. “bet', "pass’)
or nature (in the form of obsened cards).

Example 2.3.1 We will give some examplesof sequencedor ganbler using
‘gure 2.5 here. Let's take a look at node 1 and determine ¥gamoi er (1). We
“rst look for the previous decisionnode for gambler: we go up in the tree and
immediately readh the root, therefore there is no previous decision node and
Ygambl er @-=;.

20



2.3 The exponertial gap Chapter 2 Game theory

7 8 9 -end nodes

Figure 2.5: A partial game-treefor a simple poker variant from the perspective
of the gambler. His actions are P(ass) and B(et). The obsenations gambler
receives are quoted. Node 1 is somenode in which the gambler receivwed card
'Q'. 5{9 are end-nades.

Next we examinenode 4. When goingup in the tree we nd that the previous
decisionnode of gambler is node 1. The description of node 1 is "Obs(Q)". The
action takenat node 1 to reach node 4 is "P', therefore %gambi er (4) = Obs(Q),P".

Node 3, 8 and 9 all have the same previous decision node; also node 1.
The action taken at node 1 to reach them is also the same 'B'. Therefore
Ygambl er (3) = Ygambl er (8) = Ygambi er (9) ="0Obs(Q),B".

Finally for nodes 6 and 7, the previous decision node is 4. Node 4's de-
scription is "Obs(Q),P,Obs(b)', yielding ¥gambi er (6) = Obs(Q),P,Obs(b),P" and
Ygambl er (7) = Obs(Q),P,Obs(b),B". o

Note that the de nition of “description of the previous decisionnode' results
in exactly the for player k obsenable labels. Therefore this description is in fact
equal to the description of all the nodesin the sameinformation set. Viewed
in this way a sequencecan also be seenasthe description of an information set
concatenated with an action taken at that information set

2.3.3 Realization weights

A pure policy for player k speci es an action to take at ead information set,
therefore such a policy actually speci es a subset of all the nodes that can
be reached when player k usesthis policy. Similarly, a randomized (either
stochastic or mixed) policy for player k speci es the cortribution of player k in
the probability that a particular node, and thus sequencejs reached or realized.

Now supposewe want to represern a randomizedpolicy ! ¢ using sequence’,
we de ne the realization weights as follows:

6The represertation of a policy using realization weights over sequencesis more closely re-
lated to its stochastic representation than its mixed representation, but we keepthe discussion
general here.

21



Chapter 2 Game theory 2.3 The exponertial gap

De nition  2.3.2 The realization weight of sequence¥, denoted as?® (%) is
the probability that player k, playing accordingto *  will take the movesin %,
given that the appropriate information setsare reached in the game.

For example, the realization weight of the sequencebet on Q' in "gure 2.5is the
probability the gambler bets at node 1. The realization weight of the sequence
Ygambi er (6): “passafter observing a bet after passingafter observing Q' is the
probability of passingat node 1 times the probability of passingat node 4.

Of coursenot all arbitrary assignmeits of sequenceweights represen a ran-
domized policy. In particular, the realization weights of continuations of a
seguencemust sum up to the probability of that sequence.Translated to “gure
2.5 this meansthat * gampier ;) = * gambl er (%beton @) + * gambi er (¥pass on @) = 1,
because’bet on Q' and “passon Q' are cortinuations of the empty sequence.
These constraints can be put in a constraint matrix which will be used for
solving.

When all the realization weights for the set of sequenceswvailable to a player
satisfy the above condition they indeeddo describe a randomizedpolicy. There-
fore, when this is true for all players, a distribution over the outcomesof the
gameis de ned. To seethis, note that the realization weights give a distribution
over conditional plansin the sameway asthe weights for full policiesdo in the
normal form of the game.

The constraints the realization weights must obey also indicate how a real-
ization weight represeration of a policy can be cornverted to a stochastic policy.
Let ¥%(l) be a sequencefor player k that can lead to a particular information
setl. Let % (1) xas;:::; % (1) xa, be sequenceshat are cortinuations of ¥ (1),
that specify taking action a;;::;;a, at information set|l. The constraints for
realization weights tell us that:

(1)) = Te(F () £ag) + ot (%) £an):

Therefore, when we know the realization weights of % (1) and ¥%(l) &, the
probability of taking action a; at information set| is:

oy - kGR() ta)
P(aijl;*«) = L))

2.3.4 Solving games in sequence form

Here a brief overview on solving sequenceform using linear programming is
given. For a more detailed coveragewe refer to [34].

In order to solve a game we will have to formalize the outcomesover the
game. For a giventuple of randomizedpoliciest = H ;;1,;:::;1 v i the expected
payo®H for a player is given by:

X ¥
H(*) = h(p) ¢ (p) ¢ *k(%(P)

leaves p k=1

where h(p) is the payo®the player gets at leave p, and ~ (p) is the product
of the probabilities of the chance moveson the path to leave p.

For two player gamethis can be rewritten a formulation similar to that for
the normal form:

22



2.3 The exponertial gap Chapter 2 Game theory

H(x;y) = x' Ay
where x = (X1;X2;:::; Xm) is the vector of realization weights for player 1,
y, in the sameway, is the vector of realization weight for player 2. A is the
matrix of which entry a; givesthe outcome of playing % against %, weighted
by the chance moveson the path(s). That is, A is a matrix of which the rows
correspond to the sequencedor player 1 and the columnsto sequence®f player
2. Formally:
X —
aj = (p) ¢h(p):
p:%a (p)= %4 e (P)= %
~ Here the summation is over all p that are consistert with sequence€4 and
%,. Of courseonly leave nodes, p, will have a nonzerovalue for h(p). Therefore
the matrix A will have a lot of zero ertries.
Now we have all the tools to de ne the linear program. The best response
y to player 1's policy x is the following linear program:

max  (x'B)y
y
subjectto Fy = f; (2.2)
y, O

Here B is the payo® matrix for player 2, F is the constraint matrix for the
assignmen of realization weights y, so they satisfy the constraints mentioned
in the previous section and f is the column vector forcing them to add up to
the right number.” This equation is the primal objective of the linear program.
The dual objective function is:

min q'f
q
subjectto q'F, x"B: (2.3)
Equation 2.2 and 2.3 together de ne the complete linear program. The

optimal solution is for a pair y;q sud that the primal and dual objective are
equal:

q'f=q"Fy = x"By:
In a similar way the best responsefor player 1 can be constructed. This is
optimized over a pair x;p when:

e'p=x"ETp=xTAy (2.4)
Recall that an equilibrium in a gameis the point where the players' policies
are best responsesto ead other. Therefore, we now can construct a linear pro-

gram for an equilibrium for a zero-sumtwo player game. The primal objective
function is:

"When performing linear programming using normal form, the constraint matrices are a
single row, forcing the probabilit y of the pure policies to sum up to 1 (i.e a scalar f). The rest
of the procedure is the same.

23



Chapter 2 Game theory 2.4 Remaining problems

min e'p
y.p
subjectto  j Ay + ETp, O;
iFy =if; (2.5)
y, O:

Where A is the payo®function for player 1,soj A = B is the payo®function
for player 2. Also in this casethe program has a dual objective function, which
performs a maximization over g and x. The solution of the linear program gives
a pair of optimal policies speci ed in randomization weights.

2.4 Remaining problems

In this chapter the game theoretic approac to solving gameswas described.
We discussedwhat the gametheoretic notion of a solution for gameis and how
to nd suc a solution. We explained how an exponertial blow-up in size can
be avoided by making useof sequencdorm instead of strategic- or normal form.
The sizeof this sequencdorm is polynomial in the game-tree,allowing to tackle
bigger games.

Despite all this, we arguethat there are two problemswith this gametheo-
retic approac:

1. Although sequenceform is polynomial in the size of the game-tree, the
game-tree itself can be huge, rendering the approadc less practical for
real-life games.

2. The Nash equilibrium solution conceptis too consenative.

The rst problem is one of computation. The size of a game-treeis usually
highly exponertial in the size of its rule baseddescription. As an example, for
two-player Texas' Hold-em, which was discussedin the introduction, the game-
tree consist of O(10%*) nodes[2]. Clearly, this is a magnitude that is beyond
the limits of computation.

The secondproblem directly relatesto property discussedin section 2.2.4,
that expressedthat a Nash policy is optimal given that the opponent also plays
a Nash policy. In areal-life gameit is not very likely that an opponert actually
plays a Nash policy. This assumption is strengthenedby the “rst problem. In
this case,we would want to exploit any weaknesseshe opponert's policy might
have.

This is the reasonthat an opponert-based approac for poker is taken in
[4, 3]. It is alsoindicated in the setting of multi-agent systems[48]. The authors
of the latter identify other problemswith the usageof Nash-equilibriain [52]. In
this work they also proposean "Al Agenda’' for multi-agent settings, certering
around the question \ how to best represent meaningful classesof agents, and
then use this representation to calculate a best respnse'.

24



Chapter 3

MDPs & POMDPs

In the previous chapter we outlined the game theoretic approac for solving
gameslike poker and argued that its solution concept, the Nash equilibrium is
too consenative for these type of games. In this chapter we switch from the
“eld of gametheory to that of decision theoretic planning (DTP) and arti cial
intelligence.

DTP studiesthe processof automated sequetiial decisionmaking, in which
the major problem is planning under uncertainty: Planning what actionsto take
in an uncertain environment in order to obtain the best result. This problem
has been studied in various "elds of science(Al planning, decision analysis,
operations researt, cortrol theory, economics)and is complex. In general,the
“rst problem is determining what “obtaining the bestresult' means,usually this
involvesmaximizing someperformancemeasure. Luckily, for the poker-variants
investigated in this thesis, this is an easytask, as this performance measureis
given by the outcomesof the game?

After that comesthe harder task of formalizing the problem in concern
and solving it such that the obtained plan or policy indeed performs well with
respect to the performancemeasure.In this chapter, we will “rst introduce two
frameworks, that give suc a formalization for planning problems.

In section3.1 we rst introduce the Markov Decision Process (MDP) which
has been adopted of one of the standard frameworks for planning in arti cial
intelligence. After that, we introducethe Partial ly ObservableMarkov Decision
Process (POMDP) which extendsthe MDP.

Having explained the POMDP, in section 3.3, we shov how we can corvert
an extensive form gameto a POMDP model for a single player under the as-
sumption of a xed opponert, following the approac givenin [42]. Finally we
show how we can usethis model to calculate a best-respnsepolicy that exploits
the weaknesse®f the opponert.

3.1 MDPs

Markov decisionprocessegrovide a formal basisto a great variety of planning
problems. The basic class of problems that can be modeled using MDPs are

lindeed, this is exactly one of the reasons making games suitable for researd.

25



Chapter 3 MDPs & POMDPs 3.1 MDPs

systemsin which there is a decisionmaker (the agent) that can be modeled as
stochastic processes.

An MDP planning problem is given by: 1) the possibleworld states, 2) the
actions that can be performed at thesestates, 3) a transition probability model
describing the probability of transferring from one particular state to another
when a certain action is taken, and 4) the rewards that are assignedfor certain
transitions.

The goalis cortrolling the dynamical stochastic systemthe MDP describes:
This systemcanbein oneof the world statesand which state changesin response
to events.

One of the great advantagesof the MDP framework is its ability to deal with
outcome uncertainty; the uncertainty with respect of the outcome of an action.
Also, it allows for modeling uncertain exogenouseverts, i.e. evens not caused
by actions of the agert, and multiple prioritized objectives. Finally, MDPs can
also be usedto model and solve non-terminating processes.

It is for a great part becauseof this versatility and °exibilit y, that the MDP
framework has been adopted by most work on DTP and recert Al planning
[8, 26, 30, 50]. Also, it has serwed as a basis for much work on reinforcemert
learning [56, 39, 50].

3.1.1 The MDP framew ork

Formally, a MDP is a tuple: hS A;T;Ri, with S being the state-space,A the
set of actions available to the agent, T the transition model and R the reward
model. We will “rst elaborate on theseelemeris of an MDP.

The state-space,S, is the collection of world states. At ead time point t
the processcan be in exactly one of thesestatess 2 S.

At ead time t the agert selectsan action from the set of actions that is
available to him a 2 A. Theseactions are the only meansby which the agert
in°uencesthe process.Not all actions might be available in all states.

The transition model, T; speci esexactly how eat action takenby the player
changesthe current state. Formally it is a function, T : SE A ! P(S;S;A),
mapping from statesand actionsto a probability distributions over states. With
someabuseof notation we will denotethe probability of transitioning to s®from
s when performing action a by P(sYs;a).

In its most general form, the reward model, R, speci es the reward for a
particular transition. That is, is species a functon R : SE A£S ! R.
Usually, howewer, the reward model is given as:

X
R(s;a) = P(sYs;a) ¢R(s;a;s9:
s02s

In some cases,the reward can also be speci ed as a function of only the
state, giving R(s). Howewver, we will mostly usethe common form R(s;a), to
presene generality.

An important aspect of a MDP is that it respectsthe Markov property: the
future dynamics, transitions and rewards, depend only on the current state.
Formally:

P(St+1]St;a;St; 1;8¢; 15535 S0; @) = P(St+1)St; &)

26



3.1 MDPs Chapter 3 MDPs & POMDPs

and

R(st; ajst; 158 1;:5S0s @0) = R(st; a):

In aMDP, a policy speci eswhat action to takein a state, soit is a mapping
from statesto actions. In general,whether the MDP models a nite or in nite
processis relevant for the type of policy; the last action an agert takesin its life
will generally be a di®erert one from the ‘rst action, even if the circumstances
(state) are the same. The number of actions the agert takesin a MDP is called
the horizon, h.

To model the fact that, when a MDP has a nite horizon, the preferable
actions for a certain state will probably di®er for di®erert times (or stages,
non-stationary policies are used for these type of MDPs. A non-stationary
policy is a sequenceof action mappings ¥(s), with t = 0; 1;:::;h [49].

For anin nite-horizon MDPs, it is known that they have an optimal station-
ary policy ¥{s). This corresponds with the intuition that the stage will make
no di®erenceregarding what action to take at particular state.?

3.1.2 Solving MDPs

Now that the MDP model and the notion of policy within a MDP have been
explained, we turn to the question of how we canusea MDP to solve a planning
problem. It is clear that the goal is to nd an optimal policy with respect to
some objective function. The most common objective function is that of the
expected cumulative (discounted) reward.
For a "nite-horizon MDP of horizon h, the expected cumulativ e reward of a
policy, ¥ is simply the expected value of sum of the rewards:
0 #
E Rt )
t=1

where R, is the reward received at step t, which is given by:

X
Ri = R(st; Y(st)) P(stisti 15 Y% 1(St; 1)):
St 2S

For this measureto be bounded in the caseof an in nite horizon MDP, a
discourt factor, 0< ° < 1, is introduced. The expected cumulativ e discounted
reward is given by:

n #
R
E ot Rt
t=1

Now we caninductiv ely de ne the value of a state accordingto the stationary

policy Yas follows:

X
Vy(s) = R(S;%s)) + ° P (sYs; ¥(s)) Vuu(sY: (3.1)

s0

2To understand why, observe that when the horizon is innite, at each stage there are an
innite  number of actions still to be taken.

27



Chapter 3 MDPs & POMDPs 3.1 MDPs

For a nite horizon MDP with a non-stationary policy this de nition be-
comes:

X
Vi (s) = R(s;%(9)) + P (s%s;%(9)) V(s 3.2)

s0

with Vi = 0. Equation 3.2 denes the so-called the t-steps-to-go value
function.
Another equation similar to the above two is:

X
Vi (s) = R(;s) +° P (s9s:%(s)) Vii(sY:
SO
This equation can be usedto approximate the value function for stationary
policies, equation 3.1, to arbitrary accuracy becauseV,) (s) ! Viy(s) asn !
1 3This processis known as sumessiveapproximation. [9]

In the rest of this section we will focus on stationary policies. For non-
stationary policies similar results hold. Also note, that non-stationary policies
can be cornverted to stationary policies, by indexing states with their stageand
requiring all transitions to go to next stage. E.g. t°6 t+ 1) P(spjst;a) = 0.

Now the goalis to nd an optimal policy. It is known that optimal policies
share a unique optimal value function, denoted V". Given this optimal value
function an optimal policy, ¥ can be constructed greedily in the following way:

A !
X
Yi(s) = arg max R(s;a) + ° P(sYs;a) V(s9
a
g0
Soif we can nd V*® we have a way to solve the MDP. Here we discusstwo

ways to tackle this problem.
The “rst is to solve the system of Bellman equations:

A !
X
V(s) = max R(s;a) +° P(sYs;a) V(Y ;
a
SO
for all statesusing linear programming. [49, 14, 25

The secondoption is to usedynamic programming. By iterativ ely applying
the Bellman badckup operator, H:

A !
X
HV(s) = max R(s;a) + ° P(sYs;a) V(Y ;
a
SO
we can nd the approximate optimal value function. In the light of non-

stationary policies, the t-th application of H gives the optimal t-step-to-go
value function:

V2 = HV®

Sofor a MDP with horizon k, we canapply H k times to get (V,2y ;152 ),
which can be usedto extract an optimal non-stationary policy. For the in nite
horizon case,we are interested in the stationary policy V® = V|2, . Iterativ ely

3For a stationary policy, there are in"nitely many steps to go.

28



3.2 POMDPs Chapter 3 MDPs & POMDPs

applying H will corvergeto V* in "nite time. This technique is also known as
value iteration.[56]

A di®erert method we will not cover in detail is policy iteration. The basic
ideabehind this isto interleave policy evaluation (e.g. successie approximation)
with policy improvemert. In practice this convergesin few iterations, although
the amount of work to be done per iteration is more.

3.2 POMDPs

In the previous sectionthe MDP and its ability to deal with e®ectuncertainty
were presenied. In this sectionthe Partial ly ObservableMarkov Decision Pro-
cess (POMDP) is described. In addition to the represenational capabilities of
the MDP, the POMDP model alsoallows for dealing with problemsthat exhibit
state uncertainty, i.e. the agert doesnot know what the current state is, but
only receivesa hint regarding this true state through meansof an obsenation.

As before we will “rst describe the framework. After that we will relate
MDPs and POMDPs and, at the end of the section we will describe how to
solve POMDPs.

3.2.1 The POMDP framew ork

As mertioned, in the POMDP framework the agert does not know the true
state, but instead receives an obsenation that givesa clue regarding this state
when transferring to it. To deal with this the formal description is expandedto
incorporate the obsenations and their probabilities.

A POMDP is atuple hS;A;O;T;O;Ri, whereS;A;T;R are asbefore. The
set O are the obsenations the agert can receiwe.

The obsenation model, O, is a function O : A£ S! P(O;A;S) map-
ping from actions and statesto probability distributions over O. We will write
P(oja;sY) for the probability of obsenation o 2 O when transferring to state
sP2 S after action a2 A.

Note, that now the reward function R; can in principle also depend on the
obsenation. Howevwer, this can again be rewritten to R(s;a) in the following
way:

X X
R(s;a) = P(sYs;a) ¢P(gja;s% ¢R(s;a; s’ 0):
s02S 020

As the agert canno longer obsene the true state in a POMDP, a policy can't
simply be a mapping from statesto actions asfor a MDP. Instead, at time t the
agert must basehis policy onthe observablenistory hag; 0p); (ag; 01);:::; (a:; o)1,
very much like a player in an extensive form game must baseits policy on his
information sets.

Of course,maintaining sud an history takesup a lot of spacefor POMDPs
with alarge horizon and is impossiblein the caseof anin nite horizon. Also, this
would make the processnon-Markovian. Luckily, it turns out that maintaining
a probability distribution that represerts the belief over the states provides a
suzcient statistic of the history and thus a Markovian signal for the planning
task.

29



Chapter 3 MDPs & POMDPs 3.2 POMDPs

Action
Observation
b
— T

SE b

]

AGENT

Figure 3.1: The “state-estimator' view. (Image from [30])

A POMDP has an initial belief by, which is a probability distribution over
the state space,with by(s) de ning the probability of starting in a state s. Every
time the ager takesan action this belief is updated using Bayes' rule:

P(Os®a) e P(YSia)S)

B(s) = 52 D) ; (3.3)
where
X X
P(oja;b) = P(ojs®a)  P(sYs;a)l(s) (3.4)
s02S s2S

is a normalization factor.

Now, returning badk to the de nition of a policy, a policy in a POMDP is a
mapping from heliefs to actions.

A nice intuitiv e interpretation is given by the “state-estimator' view [12, 30,
which is depictedin "gure 3.1. At somepoint in time, the agert hasa particular
belief regarding the state of the world. He interacts with the world by taking an
action that is basedon that belief, as a consequenceéhe state changesand the
world givesbad an obsenation. This obsenation is fed to the state-estimator
together with the previous belief and action. The state estimator producesan
updated belief which in turn is mappedto an action by the agert's policy again,
etc.

3.2.2 The relation between MDP and POMDP

The MDP model asgivenin 3.1 sometimesis alsoreferredto asfully observable
Markov decision process(FOMDP). In [8] the authors explain how a FOMDP
can interpreted as a special caseof POMDP, namely a POMDP in which at
ewvery state the obsenation received is the state itself.*

Seenin this way, both models are part of a bigger family of MDPs. At the
other end of the spectrum, there is the non-observableMDP (NOMDP) . In this
model, no obsenation of any kind is received. Consequetly, a policy in suc a
model is an unconditional plan of actions.

4This is an idea is very similar to the view that a perfect information game can be modeled
by an extensive form game in which each node has its own information set.

30



3.3 From gameto POMDP Chapter 3 MDPs & POMDPs

3.2.3 Solving POMDPs

In section3.2.1we saw that we could compactly represen the obsenable history
using beliefsand that a policy in a POMDP is a mapping from thesebeliefsto
actions. Now the questionis how to 'nd an optimal policy.

When proceedingalong the samelines as before, we can de ne the value of
a particular belief, b; under a policy %as:

X
V() = R(b;s) + ° P (0ja; b)V*(KD);
020

P
where the reward, R(b;s) =  _,5 R(s;a)b(s) ° and the secondpart gives
the value of all successombeliefs weighted by the probability that they will be
realizedwhentaking action a: That meansthat P (oja; b) is asde ned in equation
3.4.
In a similar way, we can also use dynamic programming to calculate the
optimal t-steps-to-govalue function:

Vi (b)) = HVS(b);
where, H; the Bellman badup operator for POMDPSs is given by:
" #

X
VZ(b) = max R(b;s) + ° P(dja;bVe(KR) : (3.5)
020

However, since beliefs are probability distributions, the belief spaceis con-
tinuous (a simplex with dimensionality equal to the number of states). In the
general case,the optimal value over the belief spacecan be represetted by a
number of vectors (hyperplanes)that correspond to conditional plans, and the
value of a belief point is given by the maximum inner product of that belief with
ead vector. In this way, the value function can be represenied by those vectors
that are maximizing for somepart of the belief space. Finding those vectorsis
in generalan intractable problem even in the nite horizon case[43], and exact
algorithms are heavily relying on linear programming, [53, 11, 30].

In recert years, a lot of attention has shifted to approximate solving of
POMDPs. Examples are the PEGASUS [41] algorithm which is a model-free
policy searty method and PERSEUS [54] which is basedon randomized point
based(approximate) value iteration.

3.3 From game to POMDP

Returning badk to poker games,in this section we will shov how we can rep-
resent such gamesas a POMDP and how solving a resulting POMDP vyields
a non-consenative policy for the protagonist agert, i.e., one that exploits the
opponernt.

5Note that at a certain belief b, b(s) is the actual probabilit y of state s. In this sensethe
word “belief' can be slightly misleading.

31



Chapter 3 MDPs & POMDPs 3.3 From gameto POMDP

— Dbet/1 Start (observation)
pass/Wbet gtail > pass/0 @) .* L {4 s_statename
- get card

(Bet)
— S 46b

(Pass) ?
i

(a) Extensive form game. (b) POMDP model.

Figure 3.2: Conversionfrom extensive form for 8-card poker (left) to a POMDP
model for the ganbler (right). The decision nodes for the protagonist agert
becomestatesin the POMDP model. The deterministic choicesof the opponert
becomestochastic transitions.

3.3.1 8-card poker as a POMDP

The crucial assumption that lies at the foundation of this approac is that
the policy of the opponert is xed and known. For example, estimated from
repeatedplay. Giventhis assumptionwe know probability of transitioning from
a particular decisionnode to a next decision (or outcome) node.

With this insight we can model all the decisionnodesfor the player in focus
together with the outcome nodesas statesin a POMDP. In this POMDP, the
deterministic decisionsof other playersare cornverted to stochastic transitions for
the protagonist agert. This is illustrated in "gure 3.2, which shovs a POMDP
model for the gambler.

More formally, let the state-spacefor the POMDP, S, consist of the set of
nodes in the game-tree at which the protagonist agert selectan action a; 2
f pass;betg, including the start state®, together with the outcome nodes, the
end-states

For transitions from somestate in S to another that doesnot involve a move
from the opponert, the transition model is clear. E.g. when the protagonist
agert folds the transition is not in°uenced by the opponert. In the casethat
for a transition from s to s®an opponert move is involved, we needto consider
the probabilities that he chooseshis actions with.

Let T bethe setof decisionnodesfor the opponert. Theseare all the nodes
from the game-treenot in S. At ead opponert nodet 2 T he selectshis action
a accordingto a policy % = P(ajt). This leadsto:

X X
P(s%s;ai) = P(s9t; & )P (g jt)P (tjs;a); (3.6)
a t2T

where P (tjs; a;) represerts the probability induced by any chancemovesbefore

SWe will assumethat the agent has to bet at the start node to pay the ante. In fact this
is a form of "dummy' move.

32



3.3 From gameto POMDP Chapter 3 MDPs & POMDPs

the opponert selectshis action and P (sft; a ) that of any chance moves after
the opponert selectedaction a;. Also, becausethe transitions are over a tree,
we know that ead node has a unique predecessorthus equation 3.6 reducesto:

P(s9s;ai) = P(s9t; & )P (ajt)P (tjs; &):

In this a; and t are exactly that action and opponert node that make s°
possible,i.e. P(s9t; &) > 0.

Having covered the construction of the transition model, we still need to
de ne the reward- and obsenation model. The reward model for poker games
is trivial. It is possibleto usethe simple version of the reward function: R(s):
For all the non-end-statesR(s) = 0, the reward of the end-statesis given by the
corresponding outcome nodes.

The obsenation model alsois very simple. When a player reachesa certain
state he is certain to make the corresponding obsenation. E.g. when arriving
in state s 42in gure 3.2b, heis certain to obsene card "4'".

One point of attention is that the actions of the opponert are also obser-
vations for the protagonist agert, but these remain deterministic.: when the
transitioning to state s 42b, the agert is certain the receivwe obsenation “bet'.
Therefore P (0js% a) is 1 for exactly one obsenation 02 O.

3.3.2 Best-resp onse play: Solving the POMDP

In section 3.2.3 we described solving POMDPs, which illustrated that this is a
hard task in general. In this sectionwe explain that for the special caseof poker
gamesthis task is relatively simple.

Recall from section 3.2.1that a belief in fact is a compressedrepresenation
of the obsenable history and that becauseof this, for an extensive form game,
there is one belief per information set.

Also obsene the game-treefor the discussedpoker gamesis nite. There-
fore the number of information sets and thus corresponding beliefs is nite.
Moreover, the horizon of these gamesis relatively low and the sets A and O
are relatively small, therefore the number of beliefsis not only "nite, but also
small. A "nal obsenation is that the initial beliefis xed and known.

To solve the resulting POMDPs, we therefore simply generateall possible
beliefsand their transition probabilities, yielding a fully obsenable MDP. This
MDP is then solved using exact value iteration as described in 3.1.

The construction of this belief MDP is straightforward. The chanceof reath-
ing a next belief is equal to the chance of receiving the obsenation that leads
to that belief, i.e.:

P(db;a) = P(oija; b);

where a; and o, are the action and obsenation leading to belief b° and
P (oija; b) is the changeof receiving obsenation o; after action a from belief b,
asde ned in equation 3.4.

The reward of a particular belief bis alsoftrivially de ned as:

X
R() = R(s)l(s);

s2S
giving us the complete description of the belief MDP.

33



Chapter 3 MDPs & POMDPs 3.3 From gameto POMDP

3.3.3 Discussion

Although in this thesis we focus on two-player poker games,the method for
calculating a best-resppnsepolicy aspreserted in principle works for any number
of opponerts. Howewer, with a large number of players, the game-tree grows
exponertially. Therefore the size of gameswith multiple players that can be
tackled using this technique will be practically bounded.

Another remark that should be madehereis that it is alsopossibleto usethe
reward model that is dependert on both state and action R(s; a), this eliminates
the needto include end-statesand end-state beliefs. As roughly half of the states
are end-statesthis would save considerablespace. In fact this should be seenas
manually performing one badkup step of value iteration.

A last issueis regarding our assumptionof knowing the "xed opponert policy.
For this assumption to be justi ed, it is vital to have a good opponert model.
Howevwer, this is a separatetopic of researt and therefore not further treated
in this thesis. For researt on opponert modeling we refer to [4, 13, 3]. In this
chapter we have shown that, given a perfect opponert model, we can calculate
best-respnseto that policy. Of courseno opponert model will be perfect in
practice. We return to the issueof being more secureagainst errors that might
comefrom errors in the opponert model in chapter 7.

34



Chapter 4

Exp erimen tal results

4.1 The Gala system

41.1 Modications and additions

At the time of writing it is sewen years after the Gala system was published.
Therefore some modi cations were neededto get everything to work. Most of
the changesinvolved the Gala systemscode. Some other modi cations were
necessarywith respect to linear programming. These changesare described in
the appendix.

Becauseof the required modi cations, it wasnecessaryto verify whether the
Gala system indeed outputs optimal policies, as these will be used as a basis
throughout this thesis. In [35) the optimal policy is given for 8-card poker, so
this wasusedto compareto. In this sectionthe resulting policies, a description
of the comparisonsmade and the conclusionof the veri cation are given.

4.1.2 Description of resulting policy

As expected, the Gala system provided a dealer and gambler policy. These
policies, howewer, are di®erert from the optimal policy givenin [35]. The only
modi cation madethat would seemto explain this is the usageof a di®erert LP
algorithm. This thought resulted in a secondtest: solving the dual of equation
2.5: which speci es optimization over the policy of the dealer (x).

This resulted in a third pair of of policies, di®erent from both others. This
strengthens the assumption that the di®erenceis causedusing a di®erert LP
algorithm: the algorithm gives di®erert outcomeswhen switching the primal
and dual objective function, so nding a di®erert optimal solution than another
algorithm seemsmore likely. The three pairs of policies are depicted in “gure
4.1.

Obsene that all encourtered policies exhibit "blutng'. l.e., all specify to
bet on the lowest one or two cardsin somesituation. In fact, blutng is game
theoretically optimal, as already shown in [35].

Another striking obsenation wasthat the value resulting from the LP opti-
mization was+0.0625. When optimizing accordingto equation 2.5, we minimize
e’ p, which according to equation 2.4 is the payo® for player 1, which in the

35



Chapter 4 Experimental results 4.1 The Gala system

Gambler strategy at start of game Gambler strategy after seeing a bet

[,
[,

4
©
4
©

o
=)
o
=)

o
~
o
~

Probability of betting
Probability of betting

o
[N}
o
N}

o

o

4 2 6 8
Card received Card received
Dealer strategy after seeing a pass Dealer strategy after seeing a bet
1
= 0.8 = 0.8
< <
£ £
17 17
S 06 S 06
s} [s}
2 2
204 g 04
Qo o
<} <} 1
% 02 % 02 1
1
1
0 0
2 4 6 8 2 4 6 8
Card received Card received
’ LP normal optimized on x = = = GALA paper ‘

Figure 4.1: The three resulting policies

used Gala poker gameis the dealer. Therefore this indicates that the value of
the game,is 0.0625coin per gamein the favor of the dealer.

4.1.3 Whic h are optimal policies?

As explained in the previous section solving the 8-card poker game using the
Gala system preseried more questions. Out of three pairs of policies, which
are optimal? And, can it be correct that the value of the gameis in favor of
the dealer? To answer these questions, the only viable approach seemedto do
simulations. For ead pair of policies v e runs of a million gameswere simulated
and the averagepayo®per deal wasdetermined. By using the averageoutcomes
of di®erent deals, we remove the e®ectof somedeals appearing more frequent
then others, thereby in°uencing the averageoutcome.

The outcomesof these simulations are shawn in "gure 4.2a-c. Figure 4.2a
shaws the results for policies found by our modi ed Gala implementation using
the new LP algorithm, which we will refer to asthe "LP policies'. 4.2b shows
the “Gala paper policies', i.e. those from [35]. As they were read from paper,
these are quite inaccurate. Figure 4.2c shows the results for the policies that
resulted from LP using the dual equation, i.e. “optimized on x'. And "nally
4.2d shows the averageover all simulations.

Although the averageoutcome for a particular deal is di®eren for the three
policy pairs, the average over these di®erert deals lie very closetogether. It
seemsthat if a combination of policies givesa higher payo® for a player for a
certain deal, this is compensatedby a lower payo® in the same row/column.

36



4.1 The Gala system Chapter 4 Experimental results

Dealers' expected profit for different deals Dealers' expected profit for different deals
dealers' card dealers' card
4 4
15 15
1 1
e}
g 0.5 g 0.5
o o
» »
k] 0 & 0
Qo Qo
£ £
S, 0.5 s, 0.5
-1 1
-1.5 15
Average over card combinations = 0.0625 Average over card combinations = 0.062738
(@) LP policies. (b) GALA paper policies.
Dealers' expected profit for different deals Dealers' expected profit for different deals
dealers' card dealers' card
4 4
15 15
1 1
e}
e 0.5 g 0.5
o o
» »
o 0 b 0
Qo Qo
£ £
S, 0.5 S, 0.5
1 1
15 15
Average over card combinations = 0.062444 Average over card combinations = 0.062468
(c) LP policies optimized on x. (d) Average over all simulations.

Figure 4.2: Outcomesfor di®eren policy-pairs, determined by simulating 5M
games

37



Chapter 4 Experimental results

4.2 Best-respponseplay

| al

%)

LP policies 6.2500e-02|| 6.7685e-04
Gala paper policies 6.2738e-02|| 5.0112e-04
LP policies optimization on x 6.2444e-02|| 2.2613e-04
Gala paper dealervs LP ganbler 6.2107e-02|| 4.1600e-04
Gala paper gambler vs LP dealer 6.2500e-02|| 4.9861e-04
LP ganbler vs. “optimized on x' dealer || 6.2342e-02|| 4.0139e-04
LP dealer optimized on x' ganbler 6.2644e-02|| 7.4739e-04

Over all simulations

| 6.2468e-02] 5.1074e-04]

Table4.1: Mean (*) and standard deviation (34 of expectedpro t for the dealer
for the di®erent simulations

For example look at the rst row in "gure 4.2 a and b: Although the gambler
has a higher payo®for card 2 and 3 in b comparedto a, this is compensatedby
a higher lossfor cards 5-8.

The averageover all dealsis closeto the +0.0625 coin/game predicted by
the LP algorithm, for all the policy pairs. This indicates that this is the true
value of the game.

Still theseresults didn't allow usto point one pair of policiesout asbeingthe
optimal. Therefore we performed more veri cation by simulating gameswith a
dealer policy selectedfrom one pair versusa gambler from another pair. Again
ead simulation consistedof 5 runs of a million games. The results of this are
listed in table 4.1.

As the table shaws, the results are very closefor all the experiments, sug-
gesting that all policies are equally good. Moreover, the standard deviation
over all simulations is not signi cantly higher than those within the di®eren
simulations. If some particular policies would actually be better than others,
one would expect the standard deviation for that the di®erert experiments to
be lower than the over all standard deviation.

Therefore it is, in the author's opinion, safeto concludethat all the found
policies are indeed optimal and that the value of the gameis +0.0625 in favor
of the dealer.

4.1.4 Conclusions of veri cation

We found that the outcomesof the di®eren policies are closeenoughto justify

that all are optimal. This meansthat the modi cations, although they caused
‘nding di®erert optimal policies, did no harm and we conclude that we can
safely use policies produced by the modi ed Gala implemenrtation.

4.2 Best-resp onse play

The procedurefor calculating best-respnse policies as given in chapter 3 was
implemented. This section describes someperformed experiments.

38



4.2 Best-responseplay Chapter 4 Experimental results

Gambler strategy at start of game Gambler strategy after seeing a bet
1 I
1
gos —-uad gos |
E 1 g 1
206 ! 206 i
o 1 5] 1
2 i £ 1
§0.4__,...I i g 04 I
o i Qo 1
=} 1 [ i
o 02 i 1 o 02
i | |
1 1
1
0 0
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Card received Card received
Dealer strategy after seeing a pass Dealer strategy after seeing a bet
. 1 -———
i | -
1 i 1
gos i | 208 1
g ' : g '
= 06 1 1 L 06 -=1
1 ° 1
= I i 2 1
= f =
E 0.4 . i e 0.4 1
s . | E !
o 02 -=d 1 a 02 1
i | R—
1 | i
0 ———t————— 0
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Card received Card received
POMDP = = = = GALA

Figure 4.3: Resulting POMDP policies. Obtained when trained against Nash
policies.

421 8-card poker as a POMDP

The “rst experiments wereperformedon 8-card poker. As for this game,optimal
policiesand the corresponding value of the gamewasavailable, this madea good
test-bed for the best-respnseprocedure.

We proceededby calculating best-resppnsesagainst the found Gala policies.
As expected,the POMDP approach was able the reach a payo®of j 0:0625and
+0:0625for respectively gambler and dealer policies.

It turned out that when playing against the Nash-policies from Gala, there
are multiple best-respnse policies. This is in accordancewith the fact that
a mixed policy is only a best responseto a particular policy when all of the
pure policiesit assignspositive support to are best-respnses,as mertioned in
section2.2.4. Figure 4.3 shows the resulting policies. For the casesthat betting
and passinghave the sameexpected value (corresponding with the indi®erence
betweenthe di®eren pure policies), the probability of betting is plotted as0:5.

The “gure clearly shows that when the Nash-policy speci es either bet or
pass with a probability of 1.0, then so doesthe POMDP policy. When the
Nash-policy speci es a both actions with some positive probability, the plot-
ted POMDP policy speci es 0.5, indicating indi®erence. In fact the Nash and
POMDP policies are very similar, only the latter is missing the particular ran-
domization that guarantees the security level payo®. The lacking of this “defen-

39



Chapter 4 Experimental results 4.2 Best-respponseplay

sive capability' becomesclearin the light of the assumptionthat the opponert's
policy is xed.

4.2.2 Alternating learning

After having experimentally establishedthat the POMDP-approach to poker
gamesindeed provides a best-respnsepolicy, we performed some experiments
on alternating learning for 8-card poker. The idea is to start with a arbitrary
policy for one of the players, learn a best responseto that policy, in turn take
the resulting policy and learn a best-resppnseto that policy, etc.

It turned out that this didn't lead to any kind of convergence. This result
is con rmed by theory [21], and tells us the game contains intransitiv e cycles.

An exampleof another gamewith such transitivities is Rock-Paper-Scissors.
As rock beats scissors,scissorsbeats paper and paper beats rock, clearly the
alternation of best-resppnsepolicies will never corverge.

40



Part 11

Scaling up: reduction and
appro ximating metho ds

41



Chapter 5

Representing large state
spaces

In the previous part we showed that a partially obsenable card game can be
transformed to a POMDP. The assumptionsthat were necessaryare that the
opponert is playing a xed policy and that we know that "xed policy. In this
setting we can exactly solve the POMDP, yielding a best-respnsepolicy.

This approach overcomesone of the identi ed problemsa Nash equilibrium
policy exhibits: being too consenative. The secondproblem remains. As men-
tioned, the POMDP represertation describedin section3.3 hasa state for every
decisionnode in the game-treebelongingto the modeled player. Therefore the
sizeof this represeration is still of the sameorder asthe full game-tree,which
for realistic gamesis intractable.

In this chapter, we presert somemethods for dealingwith large state spaces.
First, the issue of represening state spacesfor large MDPs and POMDPs is
covered. After which we will focus on reducing the size of the represenation
through state aggegation. The ideais to reducethe e®ectie size of the state
spaceby grouping together states that are equal with respect to someequiva-
lence notion as value and optimal action. In speci ¢ we focus on an approach
called model minimization .

5.1 State Representation

The size of state spacesfor realistic problems is the main reasonthat MDPs
and POMDPs have not beenfrequertly usedto tackle them. As a consequence,
a lot of researt has focusedon dealing with these large spaces,especially for
the MDP framework. Howewer, as noted in section 3.2, a POMDP can be seen
as an extension of a MDP, therefore most of these methods can be extendedto
the POMDP framework as well.:

So far, we have presenied the state spaceas an enumeration of all states,
S = fs1;S2; 155500, this is called an extensional or explicit representation It is
also possibleto describe the state spacewithout enumerating all of them, by

1For conciseness,in this chapter we will often use the term MDP to denote the general
family of Mark ov decision processesincluding the partial observable case.

42



5.1 State Represemation Chapter 5 Represeting large state spaces

| factors [ denoted | description |
location Loc The robots location: (K)itc hen or (O)xce
hold co®ee RHC Robot Holds Co®ee?
co®eerequest CR Is there aunlled co®eerequest?
tidy Tidy Is the oxce tidy?
[ actions [ denoted | description
move M move from K to O or vice versa
pickup co®ee PC pickup co®ee
deliver co®ee DC deliver co®eeto the oxce
clean C make the oxce tidy again
\ evers | denoted | description
mess Mess The otce becomesa mess
requestco®ee| Co®e! Someonewants: \ Co®e!"

Table 5.1: The o+ce robot's world

talking about properties of states or sets of states. Suc represerations are
is called intensional or implicit representations. Often, the full state spaceis
thought to be the Cartesian product of seweral discrete properties or factors,
for this reasonthe term factored representationsis also commonly used. A big
advantage of implicit represenations is that can be much smaller.

Very much related to implicit represenations are abstraction and aggega-
tion. Abstraction is the processof removing properties of (particular) states
that are deemedirrelevant or of little in°uence. The term aggregationrefersto
the processof grouping or aggregatingstatesthat are similar accordingto some
equivalencenotion. The resulting aggegate states canthen be usedto represett
the grouped statesin a reduced model.

In this section, rst factoredrepreseniations will beillustrated in more detail.
Next, methods working directly on thesefactored represettations will be brie°y
covered. After that, we will treat methods that separatemodel reduction from
solving. In the last subsectionwe will mention someother approacesof dealing
with large state spaces.

5.1.1 Factored representations

As mertioned, factored represerations are basedon the idea that a state can
be described with some properties or factors. Let F = fFy;F;;:::;;Fxg be the
set of factors. Usually the factors are assumedto be booleanvariables and easy
extention to the non-boolean caseis claimed.?

Now, a state is represerted by an assignmen to the k factors and the state
spaceis formed by all possible assignmeis. This immediately illustrates the
fact that a factored represenation is typically exponertially smaller than the
full state space.

Example 5.1.1 We will give a simplied example from [8] to illustrate the

2|n the author's opinion, this extention may very well be possible, but often is not “easy'
and far from clear.

43



Chapter 5 Represeting large state spaces 5.1 State Represemation

Figure 5.1: On the left, the 2TBN for action move, M, is shavn. Also shown are
the CPTs for Loc and Tidy. For Tidy adecisiontree represenation is illustrated
on the right, indicating the probability Tidy is true after the action.

concept. Supposewe are designinga robot to help in out an otce ervironment.
Its tasks are to deliver co®eewhen requestedand to tidy the ozce if it's messy

The relevant state variables or factors are the robots location, whether it
holds co®ee whether there is a co®eerequest and whether the oxce is tidy or
not. Of coursethe robot will have sewral actions at its disposal: move from
the kitchen to the oxce and vice versa, pickup and deliver co®eeand clean the
ozce.

Finally in his world there are two events that can take place, changing the
state of the world: the otce can becomea messand someonein the oxce can
call for co®ee.Table 5.1 summarizes'the otce robot's world'. o

In order for this presenation to be usable, we needa way to represets the
transition probabilities, the rewards and, in caseof partially obsenability, the
obsenation probabilities. Also, we would liketo nd a way to do this without
explicitly enumerating all the combinations.

A way of doing this is by using two-stage temporal Bayes nets (2TBNS)
[10, 8]. A 2TBN consistsof the set of factors F at time t and the sameset at
time t + 1 and represerts the in°uence of an action on the factors. Figure 5.1
depictsthe 2TBN for the action move, M. The "gure alsodepicts the conditional
probability table (CPT) for the post-action factors Loc and Tidy. Under the
action move Loc at time t + 1 is only dependent on Loc beforethe action. The
robot will successfullymove to from the kitchen to the oxce (and vice versa)
with a probability of 90%. The variable Tidy at t+ 1 dependson two pre-action
factors: Tidy and RHC. When Tidy is false before move, it will remain false
after the move; moving doesnot get the otce cleaner. When the ozce is tidy,
there is a standard probability of 5% that the oxce becomesa messby the
peopleusing it. Howewer, when the robot moveswhile it holds co®ee there is
a chance of spilling the co®eejncreasingthe probability of the otce not being
tidy after the move to 20%.

The 2TBN from this example cortains no arrows between the post-action

44



5.1 State Represemation Chapter 5 Represeting large state spaces

factors. Such networks are called simple 2TBNs. When there are connections
betweenthe post-action factors, this meansthey are correlated. In sud a case
we speak of geneal 2TBNs. General 2TBNs require a more careful approad,
for more information we refer to [7] and [8].

When using a 2TBN for ead action we can fully represent the transition
model compactly. Still, whenthe number of relevant pre-action factorsincreases,
the CPTs grow exponertially. To courter this, the CPTs can often be repre-
serted more compactly using decisiontrees. For example, gure 5.1, also shows
a decisiontree for the CPT for Tidy. It illustrates that whether the robot has
co®eds not relevant wheniit is already a mess.

As describedin [29] further reduction in sizecanbe gainedby using Algebiic
Decision Diagrams (ADDs) instead of decisiontrees. ADDs are an extention on
ordered binary decisiondiagrams (OBDDs) that have beensuccessfullyapplied
to reducethe state spacein the eld of systemveri cation. Other examplesof
this approac are givenin [55, §].

Up to now the explanation focusedon represetting the transition model in a
factorized way. The extensionto rewards and obsenation is quite simple though.
For rewards we can de ne a conditional reward table (CRT) for ead action.
When dealing with POMDPs the samecan be done for obsenations. In [19]
these are referred to as complete observation diagrams. Both the rewards and
obsenations can also be represened compactly using decisiontrees or ADDs.

In this sectionwe brie°y outlined factored represernations basedon 2TBNs.
There are also other approaces such as using probabilistic STRIPS represen-
tation. For more information we refer to [8].

5.1.2 Metho ds for factored MDPs

Above we discussedhow to compactly represen large MDPs, but we did not
discusshow to solve these MDPs represerted in such a way. Here we will give
a brief overview of methods working directly on factored represenations.

As we saw the reward function ascan be represerted using a decisiontreesor
ADDs. Also note that the reward function speci esthe initial value function, V;.
This haslead to various approacesthat perform the bellman badup directly
on these data structures. Examples are structured successie approximation
(SSA) and structured value iteration (SVI). For a comprehensie overview, we
refer to [8, 9.

The referred works focuson MDP, but there are alsosomeapproadesspecif-
ically for POMDPs. One exampleis a factored approac for POMDPs basedon
the incremertal pruning algorithm [11] described in [28] and an approximating
extensionto it presered in [19].

5.1.3 Finding reduced models

In the previous subsection we mertioned some methods that solve factored
MDPs directly. A di®erert approad is to try and nd a smaller model through
state aggregation. This reduced model explicitly represerts (enumerates) the
aggregatestates, which in turn implicitly represen parts of the original state
space. The aggregatestates correspond to a partition of the original state space.
If the reducedmodel is small enoughit can be solved exactly and will induce a
policy for the original MDP.

45



Chapter 5 Represeting large state spaces 5.1 State Represemation

In [16, 24] a method model minimization is proposed,that guararteesthe
optimal policy for the reduced model will induce an optimal policy for the
original MDP. This approad is extended in [17, 33] to nd further reduced
models that induce an approximately optimal policy.

The advantage of this line of approad is that oncethe reducedmodel is con-
structed, we can use standard solving methods that are well understood. Also,
whenthe parametersof the model change(but not the structure of the partition
inducing the reducedmodel), we do not needto recalculate the reduction. Fur-
thermore, in [24] the authors discussequivalencesbetween this approac and
methods that operate directly on factored represertations giving deeper insight
in how these methods work. We will treat the model minimization method in
more detail in section5.2.

5.1.4 Other approac hes

Of course,there are a lot of other approadesaswell, somebasedon the above
approadies. In [20] a non-factored approad is preserted using aggregatestates
in the pruning phaseof the incremertal pruning algorithm it is basedon. The
method, however, doesrely on an explicit represetiation of the full state space
for performing the bellman backup.

A factored approach for POMDPs using basis functions to represern the
value function is preseried in [26]. It is basedon the assumption of additiv ely
separable rewards, that is the assumption that di®eren factors of the state
give di®erert componerts of the reward. The total reward is the sum of these
componerts. The ideais that if rewards can be modeled additiv ely, so can the
value functions.

Another family of methods for dealing with large (PO)MDPs are basedon
sampling approaces. In section 3.2.3 two of these, PERSEUS [54] and PE-
GASUS [41] were already mertioned. The former is basedon sampling belief
points that are typically encourtered. Then a value function and thus policy is
calculated basedon thesebelief points. The latter is basedon the view that the
value of a state can be approximated by sampling a small number of trajecto-
ries through the state. PEGASUS combinesthis perspective with policy seard.
Work basedon a similar view is preseried in [31, 32].

A Tnal direction of recert work is that given in [46, 47]. Here the belief
spaceis compressedn such a way that information relevant to predict expected
future reward is presened. This compressionis combined with bounded policy
iteration to give the VDCBPI algorithm they proposefor large POMDPs.

The alternative approades listed in this section are also relevant in the
cortext of poker gamesand further researt in this direction is required. Es-
pecially the tra jectory sampling approacieslook promising, asthese guarartee
performancebounds independert of the number of states. We performed a few
experiments using PERSEUS for poker games,but this didn't give immediate
results. Becausethe belief points are sampled randomly, relatively few beliefs
of gamesreaching shovdown are sampled. Further investigation along this trail
might include methods that interleave sampling and policy calculation. l.e., in
a subsequehn iteration, beliefs are sampled using the policy from the previous
iteration.

46



5.2 Model Minimization Chapter 5 Represeting large state spaces

5.2 Mo del Minimization

Although the intuition of state aggregationis clear, formalizing it leadsto the
intro duction of quite a few concepts. Also, care hasto be taken when grouping
states. In particular, when aggregatingarbitrary states, the resulting aggregate
states and transition model will violate the Markov property.

In this section we will “rst formalize state aggregation by introducing the
various concepts. An important conceptis that of equivalencenotion. In par-
ticular, we will elaborate on the equivalence notion of stochastic bisimilarity ,
which is the certral conceptin model minimization [16, 24]. By shawing that
this state aggregation method presenesthe Markov property, an intuition be-
hind its working is given. After that weturn our attention on actually computing
reducedmodels using stochastic bisimilarit y and discusssomeissuesrelevant in
this procedure.

5.2.1 Aggregation and partitions

As mertioned state aggregationreducesthe e®ectiwe sizeof the state space. The
result of aggregationis a partition, P, of the state spaceS = fs;;:::;spg that
groups states together in aggegate states or blocks® l.e., P = fB1;B>;:;;Bm g,
where the blocks B; are disjoint subsetsof S. The block B; of P to which s
belongsis also denoted s=P.

A partition PCis a re nement of P if eac block of Pis a subsetof a block
of P. If oneof its block is a proper subset,P%is ner than P: The other way
around, PCis called a coarsening of P if ead block of P?is a superset of some
block(s) of P and P?is coarser than P if it is a coarseningof P and one of its
blocks is the union of someblocks in P.

In order to perform the aggregationan equivalene notion is usedto deter-
mine what states are identical for the purposesunder interest. An equivalence
notion in fact is an equivalencerelation, E, that inducesa partition, P, of the
state space: P = S=E. We use s=E to denote the equivalenceclassof s under
E. This equivalenceclasscorresponds with the block s=P.

From an equivalencerelation E and its induced partition S=E; we can con-
struct a reduced MDP. We will use M =E to denote this MDP that is de ned
over the aggregatestates.

5.2.2 Equiv alence notions

[24] "rst introducestwo simple equivalencenotions. The st is action sequen@
equivalen®. Two statesi 2 M and j 2 M ° action sequenceequivalert if and
only if for all possiblesequencesf actions, a;; ay;:::;a,, of any length n that
start in i andj, the distribution over reward sequencest;ry;::i;ry, arethe the
same. This also applies for two statesin the sameMDP, i.e. whenM = M ©,

It is alsoshawn that this notion is inadequateasit is not able to discriminate
between states with a di®erent optimal value. This is becausea policy for a
MDP de nes a conditional plan, meaningit canrespond to what transitions are
actually taken, while an action sequencecan be seenas an unconditional plan.

3The term “block' is used to refer a group of states in the partitioning process, while the
term “aggregate state' is typically used to denote a block being used as state in a reduced
MDP .

47



Chapter 5 Represeting large state spaces 5.2 Model Minimization

This obsenation immediately leadsto the secondequivalencenotion, namely
optimal value equivalen@. Under this notion, two statess 2 M andt 2 M?°
equivalent if they have the sameoptimal value. However, becausethe optimal
value of a state does not corvey information regarding the dynamics at that
state, this notion is also found inadequate.

In [24] the authors posethat an adequate equivalencenotion should be a
re nement of both action sequenceequivalenceand optimal value equivalence
and intro duce stochastic bisimilarity for Markov decision processes

De nition 5.2.1 Let M = IS;A; T;Ri , M%= nS%A; T%RY be two MDPs
with the sameactions. let E p S£ SCbearelation. E is a stochastic bisimulation
if eahrs2 S (and t 2 SY is in somepair in E, and if for all pairs E(s;t), the
following holds for all actions a:

1. R(s=E) and RYt=E) are well de ned and equal to ead other.

2. For statess®2 M and t°2 MO sudc that E(s%t9 then P(sEjs;a) =
P (t°<Ejs; a).

Two statess 2 M and t 2 MP? are stochastically bisimilar if there is a
stochastic bisimulation that relates them. Again, this de nition also applies
when M = M ? and therefore for two states in the sameMDP.

In [24] the authors prove many properties of stochastic bisimulations. We
will summarize someof them in the following theorem:

Theorem 5.2.1 Stochastic bisimilarity restricted to the statesof a single MDP
is an equivalene relation that is a re nement of both action sequen® equivalene
and optimal value equivalen®. Moreover, for any equivalene relation E that is
a stochastic bisimulation, an optimal policy for M =E induces an optimal policy
for the original MDP M.

Pro of For the proof we refer to [24]. We provide an intuition in section5.2.3
and 5.2.4. o

5.2.3 The Mark ov prop erty

This subsection shows that the Markov property may be violated when per-
forming aggregation on arbitrary states. Assumethe current state is s 2 B;.
For a particular action a, we have that the probability of transferring to a state
in B; when performing that action is given by:

X
P(Bjjs;a) = P(sYs; a): (5.1)
s02 B
Let p(9 be a distribution over all states in B;. We refer to this as the
within block distribution of B; and will also denote it pg, (9 if there is a need
to disambiguate. This allows us to de ne the transition probability betweenB;
and B; in the following way:

P(B;jBi;p(9;a) p(s) ¢P(Bjjs;a)

S)Z(Bi

p(s) ¢P (sYs;a): (5.2)
s2B; s02 Bi

48



5.2 Model Minimization Chapter 5 Represeting large state spaces

Block i Block j

Figure 5.2: A partition satisfying equation 5.5.

This shows that the transition betweenblocks is depend on the distribution
p(®. This distribution, howewer, can in general depend on the full history of
the (PO)MDP . The result is that the transition to a next block doesn't solely
depend on the current block, but potentially on the full history, breading the
Markov assumption.

For the reward* and obsenation model we can derive in a similar way:

X
R(Bi;p(9;a) = p(s) ¢R(s;a) (5.3)
s2B;

and, for a certain obsenation o:

X
P(0iBi;p(9;a) = p(s% ¢P (0js’; a): (5.4)
s02B;

Which show that the reward and obsenation model depend on the full his-
tory in the generalcase.

5.2.4 Mark ov requiremen ts

After having obsened that arbitrary state aggregationin generaldoesnot pre-
sene the Markov property, we will now examine under what conditions this
property is presened and shav how this relatesto stochastic bisimilarit y.

To ensurethat the transition model remains Markovian, we needto ensure
that for all blocks B;;B; and actions a the transition probability, P(B;|B;;a),
is independert of the state distribution within the blocks. A condition that will
satisfy this requiremert is the following:

Theorem 5.2.2 Given a partition P. If for all B;;B; 2 P and all actions a it
holds that:

0 1

X X
8s,:5,28;, @ P(sYsi;a) = P(s%s2; @)A ; (5.5)
502 Bj SOZ Bj

4As mentioned in chapter 3, there are multiple ways to specify the reward and observation
model: R(s;a), R(s), O(0js%a), O(ojs). Although the POMDP models we consider can be
expressed with the simpler forms and that is also used in [24], we will use the more general
forms in this chapter.

49



Chapter 5 Represeting large state spaces 5.2 Model Minimization

then the transition model for the reduced model induced by partition P sat-
is es the Markov assumption.
Proof Let P(BjBj;a)” 28, P (sYs1; @) for an arbitrary s; 2 B;. Substi-
tuting in equation 5.2 gives:

. X
P(BjjBi;a)  p(s)
s2B;
P(BjjBi;a)

P(B;jBi;p(9;a)

which is independert of the history and therefore satis es the Markov as-
sumption. o

The condition isillustrated in "gure 5.2. Note that it is exactly this condition
that is satis ed by point 2 in de nition 5.2.1.

Next, we posea condition that guaranteesthat the reward model that does
not depend on the within block distribution and thus on the history.

Theorem 5.2.3 If for all blocks B; and all actions a, it holds that:

8s1:5,28,  R(s1;8) = R(sz;a):

That is, the states within all blocks have the same immediate reward with
respect to all actions. Then the reward model is not dependent on the within
state distribution.

Pro of Let ¢; bethe immediate reward for the all statesin someblock B; and
someaction a, substitution in (5.3) gives:

X
R(Bi;p(9;a) = p(s) ¢cy
s2Bj
= C1
concluding the proof. o

This says as much as\when taking an action from a state in B; the reward
is always the same,no matter what the actual state is" and corresponds with
point 1in de nition 5.2.1.

The fact that de nition 5.2.1 implicates theorems 5.2.3 and 5.2.3 means
that areducedMDP M =E, whereE is a stochastic bisimilation, will satisfy the
Markov property. This in turn implicates that any actions taken or rewards
received do not depend on the history and thus provides an intuition why the
action dynamics of such a reduced model are presened and theorem 5.2.1.

Although de nition 5.2.1 focuseson MDP and therefore does not mertion
the obsenations, we will alsogive a similar condition for the obsenation model.
This will expressas much as\when reading a state in B; the probability of
a particular obsenation is xed and doesn't depend on exactly what state is
reached".

Theorem 5.2.4 If for all blacksB; all observationso and all actions a, it holds
that:

8505028, P (0js);a) = P(0js3; a):
Then the observationmodel is not degendenton the within state distribution.

50



5.2 Model Minimization Chapter 5 Represeting large state spaces

Pro of Let ¢, be the probability P(ojs?;a) for an arbitrary s 2 B; substitu-
tion in (5.4) givesthe proof in the sameway as above. a

5.2.5 Computing stochastic bisimilarit y

Theorem 5.2.1tells us any stochastic bisimulation canbe usedto perform model
reduction by aggregatingthe statesthat are equivalent under that bisimulation.
The smallest model is given by the coarsestbisimulation and is referred to as
the minimal model.

In [24] two type of approades are given to nd the coarsestbisimulation.
The “rst typeis by nding the greatest xed point of an operator |. However,
as this is done by iterativ ely applying | (E) starting on Eq = S £ S, this type
of approad is infeasible for very large state spaces.

The other, more interesting approad, is basedon de ning a property called
stability that can be tested locally (between blocks), but assuresbisimilarit y
when it holds globally.

De nition  5.2.2 A block B; 2 P is stable with respect to another block B;
if and only if for all actions a, the reward R(Bj;a) is well de'ned and it holds
that:

8s,:5,28; P(Bjjs1;a) = P(Bjjsz; @):

A Block B; 2 P is called stable when it is stable with respect to all blocks
B; 2 P.

When all blocks in partition P are stable, then P is called homayeneus®.
In this case,the equivalencerelation E that inducesthis partition is also called
stable and it is guaranteed to be a stochastic bisimulation.

Note that the formula in de nition 5.2.2is closely related to equation 5.5.
The di®erenceis that the latter additionally requiresthe formula to hold for all
blocksB 2 P. Wetherefore concludethat if a partition P is homogeneousit will
satisfy the requiremert of theorem 5.2.2 and therefore the transition model of a
reduced model basedon this partition will not violate the Markov assumption.

The requiremert that “the reward R(B;;a) is well de ned' is related to the-
orem 5.2.3 in the sameway. Therefore, the reward model of reduced model
M =E will respect the Markov assumption when the partition S=E it induces
is homogeneous.In [16] a de nition of stability is given that does not include
the requiremert on rewards. In this case,the model minimization algorithm
will needto be extendedto guarantee that the requiremert from theorem 5.2.3
holds.

To compute the coarsesthomogeneougpartition and thusthe minimal model,
an operation P° = SPLI T(B;C;P) is used. SPLI T(B;C;P) takes a parti-
tion P and returns a partiton P°in which block B is replaced by sub-blocks
fB1;::1; Bkg sud that all B; are maximal sub-blocks that are stable with respect
to block C.

The model minimization algorithm shawvn on the following page works by
iterativ ely cheding if there are unstable blocks and splitting them until all
blocks are stable.

SPrecisely stated, P possesseghe property of stochastic bisimulation homogeneity.

51



Chapter 5 Represeting large state spaces 5.2 Model Minimization

Algorithm 1 Model minimization
P = fg /ftrivial one-block partition
While P contains blocks B, Cs.t. Bis not stable w.rt. C
P = SPLIT(B,C,P)
end
return P //coarsest homogeneouspartition

As mertioned, in [16] a stability notion is usedthat does not include any
requiremert on the rewards. We will call this T-stability to emphasizeit only
posesarequiremert on the transition model. The versionof SPLI T making use
of T-stabilit y will be denotedSPLI T-T. We canadapt the model minimization
algorithm to useSPLI T-T by changing the initial partition it works on.

[16] de nes the immediate reward partition, Pj , to be the coarsestpartition
for which the requiremert of theorem 5.2.3holds. l.e., it groupstogether all the
states that have the samerewards for all actions. As the requiremert of theo-
rem 5.2.3 holds for the immediate reward partition, clearly it should also hold
for any re nement of that partition. Also, repeated application of SPLI T-T
on a partition P is guaranteed to yield a partition that is a re nement of P.
Therefore it can be concludedthat a modi'ed version of model minimization
using SPLI T-T applied to the immediate reward partition yields the coarsest
homogeneougartition that satis es the requiremert of theorem 5.2.3°

So far this section has focused on model minimization for fully obsenable
MDPs. Now we turn our attention to partial obsenable MDPs. The gen-
eralization of model minimization to POMDPs given in [16, 24] is based on
guararteeing that the requiremert stated in theorem 5.2.4 holds. It is donein
the sameway as shavn above for the requiremert on the reward.

Let the observationpartition , P,, be the coarsestpartition that satis es the
requiremert of theorem 5.2.4, i.e., the partition that groups together all the
states that have the sameobsenation probabilities for all actions.

Again, any re nement of the obsenation partition will also satisfy the re-
quirement of theorem 5.2.4. Now let the initial partition, P, be the coarsest
re nement of both the obsenation partition and the immediate reward parti-
tion, which we calculate as follows:

P:fBi\BjjBiZPir;BjZPog

This initial partition satis es the requiremerts of both theorem 5.2.3 and
5.2.4. Now performing model minimization by repeatedly applying SPLI T-T
will result in the coarsesthomogeneougartition and it will satisfy the require-
merts of theorems5.2.3,5.2.4and 5.2.27 The resulting algorithm is shovn on
the next page.

Another approac would be to incorporate the requiremert of theorem5.2.4
in de nition 5.2.2. That is, by adding\and the obsenation probability P (0jB;; a)

6When using the notion of T-stabilit y, the notion ‘homogenous' also doesn't include
the requirement on the rewards within blocks anymore. (Think of “homogeneous' as "T-
homogeneous' in this context.)

"The fact that it satis'es the requirement of theorem 5.2.2 follows trivially from the fact
that model minimization produces a homogenous partition.

52



5.2 Model Minimization Chapter 5 Represeting large state spaces

Algorithm 2 Model minimization for POMDPs
Pr = immediate reward partition(S)
Po = observation partition(S)
P = coarsest refinement(Pr, Po)
While P contains blocks B, Cs.t. Bis not T-stable w.rt C
P = SPLIT(B,C,P)
end
return P //coarsest homogeneouspartition

is well de ned for all obsenations o and actions a". Using this de nition of sta-
ble it is possibleto use the normal model minimization algorithm (shown on
the facing page).

5.2.6 Complexit y and non-optimal splitting

The model minimization algorithm presenred in the last paragraph runs in time
polynomial of the resulting number of blocks, assumingthat SPLI T and the
stability test can be computed in constart time.

Unfortunately theseassumptionsgenerally do not hold and therefore model
minimization problem has been shonvn to be NP-hard in general. One of the
problemsis that to represen arbitrary partitions, blocks have to be represerned
as mutually inconsistert DNF formulas over the factors of the MDP. Manipu-
lating these formulas and maintaining the shortest description of the blocks is
hard. Although this complexity result seemsvery negative, this givesworst-case
behavior. Moreover, even if nding a reduced model is costly in terms of time,
it will probably still be preferable over solving the original MDP, asthat might
be costly in terms of space.

To reduce the cost of manipulating and maintaining block descriptions,
[16, 24] introduce other block descriptions. These alternative partition rep-
reserations are cheaper to manipulate, but lesspowerful than unconstrained
DNF formulas. The result is that not all blocks and thus partitions can be
represened.

To deal with this, a non-optimal splitting procedure,SPLI TY is introduced.
Intuitiv ely SPLI T? needsto split “at least as much' as the optimal SPLI T,
to guararntee a homogeneouspartition as result. Formally, SPLI T is called
adeguate if SPLI TYB; C;P) is always a re nement of SPLI T(B;C;P).

Model minimization making useof an adequateSP LI T operation is referred
to as adeguate minimization. Clearly, adequate minimization typically doesn't
“nd the minimal model, becauseit can't represen it. From this perspective, a
tradeo®is made betweeneaseof computation and the reduction that is achieved
in the resulting reduced model.

53



Chapter 6

Poker & aggregation

In the previous chapter various aspects of dealing with MDPs with large state
spaceswere covered. In this chapter we will apply someof the methods men-
tioned to poker games. Speci cally, the theory of aggregationis related to poker
games.

We show that the reduction gained by direct application of model mini-
mization for POMDPs to poker gamesis boundedand arguethat this approac
thereforeis of lesspractical value for thesetype of games.In our analysiswe also
identify the bottleneck and suggesta direction for further researd to alleviate
this problem.

6.1 Implicit states

As discussedn section 5.1 implicit or factored represertations are often usedto
describe large states spaces.Here, we will intro duce factored represenations for
poker games. To characterize a state in poker completely, we needto know: the
sequence®f actions taken, the private card(s) of both playersand, if applicable,
the rst, second,third, etc. set of public (table) cards.

For example, for 8-card poker, we would get the following state represerta-
tion:

| factor | description | value |
BS bet-sequence 01
PC1 | private card of player 1 7
PC2 | private card of player 2 1

Table 6.1: Implicit state represertation for 8-card poker.

which describes a state for gambler in which he obsened a bet from the
dealer (1) after passing(0) himself at the start of the game.

It is clear that there are some restrictions to the assignmen of the vari-
ables, e.g. a state that would assignthe samecard to PC1 and PC2 would not
correspond to a true state of the game.

Of course,the goal of an implicit represenation is that it allows for reason-
ing about groups of states, the blocks for state aggregation, without explicitly

54



6.2 Bisimilarit y for poker Chapter 6 Poker & aggregation

| factor | value | [ factor | value |
BS 01 BS 01
PC1 | 7-8 PC1 | 7_8
PC2 1-5 PC2 1 5

Table 6.2: Two ways of represerting blocks for 8-card poker.

represening them. As an example,table 6.2 shavs two ways we could represert
blocks for 8-card poker.

While the “rst represenation is simpler, it is less powerful as it cannot
represen blocks that contain states with non-adjacen cards.

6.2 Bisimilarit y for poker

In the previous section someways of implicitly represering states and blocks
were discussed. So now we will investigate how we can use the methods from
chapter 5to nd areducedmodel for poker games.

First, in section 6.2.1 we will introduce an example poker game called 1-
action poker. This will be usedin section 6.2.2 to show that the reduction
in size gained by direct application of model minimization for POMDPs as
proposedin [24] is bounded. The reasonis that this approach makesuse of the
requiremert from theorem 5.2.4 on the obsenation probabilities asexplainedin
section5.2.5. We will arguethat this bound is prohibitiv e for direct application
to real-life poker variants.

6.2.1 1l-action poker

Here we will introduce 1-action poker. This is also a 2-player poker variant
player with a ded of 8 cards: 1{8. Both players have to pay 1 coin ante after
which they receiwe 2 private cards ead. In corntrast to 8-card poker, in the
betting round, the players do not have additional coinsto bet. l.e the player
can only do one action: ched (0).

In 1-action poker, there are three “bet'-rounds. At the end of the rst two of
these bet-rounds, a public card is dealt, face-up, on the table. After the third
and last bet-round, the players show their cardsand the player with the highest
private card wins.

This gameis not very entertaining, but is useful for our explanation and is
closely related to real hold-em poker variants. The fact that the player with
highest private card wins, meansthat the table cards do not in°uence the out-
comes,but only serne as a clue!

Figure 6.1 shows a part of the game-treeof 1 action poker. Indicated is that
the game consists of 3 rounds, at eac of which both player take one action
(‘ched'). Becausethe playerscan only take this one action, the only branching
points are the chance moves in the game. The rst corresponding with the

1This is useful for clarity and does not a®ect the generality: the game could be altered to
let the table cards e®ectthe outcomes asis usual in poker (pair, straight, etc.), although this
would also typically mean that the game should be played with a multi-suited deck.

55



Chapter 6 Poker & aggregation 6.2 Bisimilarit y for poker

Stat Round
(PLP2}
‘ Lennit® e,
Plnode et e e’ EINSRELIT
L4 L1234 1423 M
O P2 node

<> chance node ? ?

. other chance <>
moves Ve, {rc1}

dadeseiy
theevees

Figure 6.1: A part of the game-treeof 1 action poker.

dealing of the private cards, the onesafter that corresponding with the turning
of the public table cards.

Table 6.3 shows a factored state represetiation for a POMDP for the “rst
player (gambler) in 1-action poker. The valid valuesfor factors PC1, PC2, TC1
and TC2 are in fact subsetsof the ded, asis indicated by the brackets.

| factor | description | | factor | value |
BS the bet-sequence BS 00
PC1 private cards player 1 PC1 | f7,1g
PC2 \ 2 PC2 | f5,4
TC1 | table card beforeround 2 TC1 f3g
TC2 \ 3 TC2 -

Table 6.3: The implicit represertation for 1-action poker and an example state
for player 1 (gambler). BS "00' meansboth players played action '0', therefore
it is the ‘rst player's move again. At this point TC1 is revealed and round 2

starts. TC2 is unassignedat this phaseof the game.

56



6.2 Bisimilarit y for poker Chapter 6 Poker & aggregation

6.2.2 Optimal split for 1-action poker

Here we will use 1-action poker to make some claims on output produced by
the model minimization algorithm as presened in section 5.2.52 The focus
will be on the in°uence of requiremert from theorem 5.2.4 on the obsenation
probabilities.

Lemma 6.2.1 When model minimization for POMDPs applied to a POMDP
for 1-action pokerresultsin partition P. Then it holdsthat, for all blocksB; 2 P
and for all statess;;s; 2 B, BS(s1) = BS(s;)

Pro of Notice that, there are only three bet-sequencesn the gameat which
a player takesan action. Let's call thesebs with 1 - i - 3. Becausethere is
only oneaction the playerscantake, the bet-sequencechangesdeterministically.
Also, all end-stateshave the samebet-sequence("00,00,00'), which we will call
bSend -

Now, suppose,BS(s;1) 6 BS(s,). That meansthat the bet-sequenceof one
of the states has more stepsto go to reach bs.nq. Let's denote this BS(s;) >
B S(sz) and assumeit holds. In this casethere are two possibilities: either 1)
B S(s;) = bsng Or 2) it is not.

In casel) s, is an end-state and s; is not. This meansthat R(s;) 6 R(Sp),
howevwer this is in contradiction with the result that model minimization calcu-
lates a homogeneougartition P.

In case2) BS(s;) and BS(s;) have deterministic successors:BS(s?) and
BS(s9) and it holds that BS(s?) > BS(sJ). Again, there are two cases(s] is
an end-state and s{ is not), inductively giving that s and sJ cannot be in the
sameblock. This in turn givesthat block B; is not stable, again contradicting
the result that model minimization calculatesa homogeneougartition P. =

Intuitiv ely, this lemma meansthat all blocks in the partition resulting from
model minimization are “located within the bet-rounds'.

De nition  6.2.1 The assigna cards speci ed by a state, s, is the set
AC(s) = PC1[ PC2[ TC1[ TCZ

Lemma 6.2.2 When model minimization for POMDPs applied to a POMDP
for l-action poker resultsin partition P. Then it holds, for all blocks Bj 2 P
and for all statess;;s, 2 Bj, that:

1. For all observations,o, P(0js;) = P(0qjsz).

2. If block B; is not located in the last bet-round, then AC (s;) = AC(S).

Pro of 1. Followstrivially from the fact the model minimization for POMDPs
satis es the requiremert from theorem 5.2.4. In the remainder we prove 2.

Suppose AC(s1) 6 AC(sz). SinceB; is not located in the last bet-round,
there will be another card obsenation. Now let ¢; 2 AC (s1)nAC(s;) be a card
assignedby s; but not by s, and o; be the obsenation of that card. This means
that there is a transition from s; to a state s 2 B; sudh that P (0;js3) > 0. For
s; there is not such a transition, because:

2Note that becausethere is only 1 action we will omit requirements “for all actions' and
use R(s) and P (ojs) in most of this explanation.

57



Chapter 6 Poker & aggregation 6.2 Bisimilarit y for poker

2 by 1. P(01jBj) > O for all statesin B;, and

2 ass; already assignscard c;, there is no state s‘l) it can transfer to suc
that P(0yjs?) > 0.

Therefore 0 = P(Bjjs1) 6 P(Bjjsz) > 0. Again, this cortradicts that P is a
homogeneougartition. o

Using the lemmasabove, we will show that the requiremert on the obsena-
tion model for usein optimal SPLIT for POMDPs sewerely limits the maximal
obtainable reduction.

To show this we rst needto de ne somemore concepts. First, let a round
be a stagein the gameasindicated in "gure 6.1. Round i, indicates that there
areij 1 actionstaken by the protagonist agen. As seenalready, becausethere
is only oneaction, around is assaiated with a speci ¢ bet-sequence E.g. round
0 correspondswith the start of the gameand round 4 with the end of the game:
bet-sequence00,00,00'. Also, let the d be the size of the dedk. Then we can
de ne:

2 ng(i) - the number of assignedcards at round i.
2 nec(i) - number of obsened cards when reaching round i.

2 Nyac (i) = W’w - denotesthe number of unique assignedcard
conmbinations at round i. This is the number of unique ny(i) subsetsof
a d-elemen set. E.g. at round 2 a total of v e cards have beenassigned
(2 ¢2 private cards, plus onetable card). Sony,.(2) = % = 56.

2 Ngpuac (i) - the number of states per unique card combination at round i
. As there is only one bet-sequenceper round, this is the number of ways

the nyac (i) cards can be assigned.E.g. Nspuac (2) = 5 = 30.

2 3(i) = Nyac (i) ®ngpuac (i) - the number of statesat round i.

2 Nopuac (1) = mz ﬂii(('i)))moc(i)! - the number of possibleobsenations per
unigue assignedcard combination when reading round i. E.g. when
reaching round 2 there are ny,c (2) = 56 unique card combinations, and
they assignn.(2) = 5 cards. When reaching oneof these,wejust obsened

a single table card (= nq(2)), sowe could have 5 obsenations.

Theorem 6.2.1 Let b(i) be the numker of blacks, resulting from model mini-
mization for POMDPs as given in section 5.2.5, that lie within roundi. Also
let Nopuac (i) and ngpyac (i) be as de ned atove. Then for i - 2; i.e. blocks not
located in the last bet-round,

Bimin (1) = Nyac (i) ¢n0puac (i)

is a lower-tound for b(i) in 1-action poker.
As a consajuene, the reduction in size obtainablefor statesin theserounds
is also bounded by:

@ bmin (') _ r]opuac (')

s(i) © s(i) Nspuac (i)

58



6.2 Bisimilarit y for poker Chapter 6 Poker & aggregation

| round, i || noc(i) | Mac(i) | nuac (i) | Nspuac (1) | nopuac (i) | F=t
1 2 4 70 6 6 1
2 1 5 56 30 5 0.167
3 1 6 28 180 6 n/a

Table 6.4: Lower bounds for the maximal reduction obtainable with model
minimization for POMDPs per round. The quartities relevant for determining
this are also shavn. For round 3, sinceit's the last round, the bound does not

apply.

Pro of We have a couple of things to prove. First we needto prove that all
blocks lie within the bet-rounds, sothat k(i) is well-de ned. This follows from
lemma 6.2.1 together with the obsenation that ead bet-sequencedetermines
the round.

Next, we needto shaw that b(i) is bounded by by, (i) for i - 2. From
lemma 6.2.2 it follows that ead block B; must assignthe same cards to all
states it clusters. Therefore there must be at least ny,c (i) blocks. From the
samelemma it follows that the obsenations for all statesin a block must be
equal. Therefore, byin (i) = Nyac (i) ¢Nopuac (i) Must be a lower bound for b(i):

Finally, we needto obsene that:

Brin (i) _ Nuac (i) ¢n0puac (i) _ Nopuac (')

s(i) Nuac (i) ¢nspuac (1) - Nspuac (i) ,

immediately giving the bound on obtainable reduction. o

Table 6.4 shows the maximal reduction obtainable per round for 1l-action
poker and the involved quartities. A striking obsenation is that for the rst
round no reduction is obtained at all. This canbe explained by noticing that for
all statesin a set of statesthat assignthe samecards, the obsenation received
is di®erent. This is alsoillustrated in gure 6.1.

6.2.3 Bound implications

In the previous sectiona lower bound on the maximally obtainable compression
using model minimization for POMDPs aspresered in section5.2.5wasderived
for 1-action poker. For this derivation, only the requiremert on the obsenation
model as speci ed by theorem 5.2.4 was considered. The actual reduction will
be lower as also the requiremert on the reward model must be satis ed.3

Now we will argue that this bound indicates that the preseried method of
model minimization for POMDPs is not suitable for real-life poker variants. We
will consider Texas' Hold-em as an example here. Starting with an analysis
of the similarities and di®erencesbetween 1-action poker with respect to the
derivation.

Lemma 6.2.2 is does not depend on the action dynamics of the game in
concern, therefore it is directly applicable to Texas'Hold-em.

3The requirement on the transition model is trivially satis ed.

59



Chapter 6 Poker & aggregation 6.2 Bisimilarit y for poker

| i H noc(i) ‘ nac(i) | Nuac (') ’ Nspuac (') | Nopuac (') |
1] 2 4 oo = 2:65¢10° sor = 6 oor = 6
2| 3 7 o = 1:33¢10° oo = 210 s = 35
3 1 8 s = 7052¢10° | o0 =1680 | - =8
4] 1 9 | 2% = 3679¢10° | s = 15120 | 2= 9

Table 6.5: The relevant quartities for deriving a lower bound on obtained com-
pressionapplied to Texas'Hold-em under assumptionsas explainedin the text.
i denotesthe round.

In cortrast lemma6.2.1is not directly applicable, it is very well possiblethat
two states with a di®eren bet-sequenceare stochastic bisimilar. For example,
considera two statesin the last bet-round that are equalin all respects(assigned
cards, moneyin the pot, etc.) exceptfor the bet-sequencen the rst round. In
this particular caseit is possible,evenlikely, that our opponert will act the same
in these two states, inducing the same state dynamics. Therefore these states
can be stochastic bisimilar, even though the (full) bet-sequencesre di®erer.

Also, the number of states per unique assignedcard combination for round
I, Nspuac (1), is larger. This is becausethere are 19 bet-sequencesstarting in
the “rst round, giving multiple* states in the “rst round for the same card
assignmem. Nine out of these 19 bet-sequencedransfer to the next round.
This meanthat in round two there are a total of 9¢19= 171bet-sequencesetc.

It is clear that an analysis similar to that of 1-action poker would become
very complexfor Texas'Hold-em. Therefore we make the following assumption:
we treat the gameas if there is only one state per unique card assignmen per
round.® This meansthat within ead round we collapseall the statesthat di®er
only on their bet-sequencento onestate. It should be clearthat, in general,not
all these states can be collapsedin such a way while still producing a reduced
model inducing an optimal policy. E.g. this would suggestthat, for a state
in which the opponert has raised at all occasionsand another state in which
he only called, the optimal action is the same. In fact this suggeststhat the
opponert behavior speci es no information whatsoever and therefore would only
be correct for an opponert playing a uniform random policy.

Now we arguethat evenwith this assumption,that is clearly over-estimating
the possiblereduction, direct application of model minimization for POMDPs
still preserts a bound on the obtainable reduction.

This is supported by table 6.5, which displays the relevant quartities based
on the assumption of one state per unique card assignmen per round. As an
example, the maximum obtainable reduction for round 3 is % Y, 0:005. Al-
though this seemdike a big reduction, the minimum number of blocks becomes
7:52¢108 ¢8 ¥4 6:02¢10%, which is still is impractical for computation.

4The exact number is 15 states for both players: 10 outcome nodes and 5 decision nodes.
SNote that this di®ers from nspuac (i) as this latter notion does not di®erentiate between
states that assign a particular card to a di®erent player (or to one of the sets of table cards).

60



6.3 Bisimilarit y revised Chapter 6 Poker & aggregation

6.3 Bisimilarit y revised

As shawn in section 5.2.3 aggregation of arbitrary states generally does not
presene the Markov property, becausethe within block distribution can be de-
pendert onthe full history. After that, conditions were posedon the transitions,
obsenations and rewards for stateswithin blocks such that this within block dis-
tribution becomesirrelevant. As a result, the blocks and thus aggregatestates
possesghe Markov property. This gave the intuition behind why a stochastic
bisimulation inducesa reduced model that can be usedto calculate an optimal
policy for the original POMDP. Unfortunately, asshown in this chapter, the re-
guirement on the obsenation model puts a bound on the obtainable reduction,
that makesapplication for real-life poker gamesimpractical.

6.3.1 Uniform distributions

Another approac would be not to pose conditions on the transitions, obser-
vations and rewards directly, but on the within block distributions itself. In
other words, the condition now is that the within block distribution, p(9, is not
dependert on the full history.

An obvious way to accomplishthis is to require that for all blocks p(9 is
always uniform.®

Theorem 6.3.1 When a block B;, for which the within state distribution p(¢

is uniform, is usal as aggegate state, this state possesseshe Markov property.

Pro of We cansimply replacep(s) by = in equations5.2,5.3and 5.4, giving:

iBij
) 1 X X
P(B;jjBi;p(9:a) = =7 P(sYs;a)
J 'JSZBiSOZBi
1
R(Bi;p(9;a) = —— R(s;a)
1Bil g,
. 1 X 4
P(0Bi;p(%;8) = —— P (0js® a):
1Bil o5,
All of these are history independert, concluding the proof. a

As a consequencea partition for which all blocks satisfy the requiremert of
uniform within block distribution, yields areducedMarkovian model. Of course,
guararteeing this uniformity canin generalbe hard, but in very structured and
speci cally tree-like MDPs as described in this thesis this can be easier.

Figure 6.2 depicts the problem. We want to guarartee that pg, (9 for block
Bj is uniform, i.e., ps; (s1) = pg;(S2) = i = % A condition that jumps to
mind is that for all statess; 2 B;j it should hold that  _,5 P(sjjs;a) is equal
under all actions. This condition, however, is insu+cient: it doesnot take into
accourt that the probabilities for reaching the predecessorstatess 2 S can be
di®eren. Moreover, in generalthese probabilities can change over time.’

6 Actually , the requiring that p(®, the within block distribution for the blocks B; is only
“xed (not uniform), is enough. However, for clearnessand easeof explanation we will assume
uniform within block distributions.

7"As an example, consider the case that state s; in gure 6.2 links back to one of its
predecessors.

61



Chapter 6 Poker & aggregation 6.3 Bisimilarit y revised

Block |
e Sl

S2

@ S3

Figure 6.2: The problem of guaranteeing a uniform within block distribution.
Left shows arbitrary predecessorsRight shows predecessordo be in the same
block, allowing to guarantee a uniform distribution for block j.

In order to guarartee that pg, (9 is uniform, we posethe requiremert that
all statess 25 that can transition to B; are in the same block B; with pg, (9
uniform and = 4,5, P(sjjs;a) = ¢, for all s; 2 B; and someconstart c.

In general,the requiremert that a block hasoneunique predecessoblock can
limit the applicability. For the special casewherean MDP hasa tree structure,
howevwer, this requiremert is lessof a burden, becausenodesin a tree have at
most one predecessor.

6.3.2 Future research

It is not trivially clear that, when changing the requiremerts as posedsection
5.2.4to the requiremert speci ed in the previous section, the resulting reduced
MDP will still induce an optimal policy for the original MDP.

In fact it might be very well possiblethat the original constraints on the tran-
sition and reward model will needto be maintained. It is intuitiv ely plausible,
however, that the constraint on the obsenation model from theorem 5.2.4 may
be dropped when, at the sametime, the constraint specifying xed within block
distributions is satis ed. This is becausethe actual dynamics of the POMDP
are not in°uenced by the obsenation model; obsenations only provide informa-
tion regarding what the true state is. Trying to prove this intuition would be a
“rst step for future work.

Of course,evenif it is proventhat it is possibleto abandonthe limiting obser-
vation constraint, there might be other boundsthat limit model minimization's
applicability for real-life problems. This would be a secondstep for researd.

62



Part 111

Unifying winnings and
securit y

63



Chapter 7

Coevolution and security

We have focusedon best-respnseagainsta xed opponert given that we know
how he plays. l.e., we assumedwe had a perfect opponert model. Of coursethis
is, in general, not the case,which could make our calculated policy vulnerable.

In this chapter we will discusscoewolution. This technique canbeusedto nd
policies that are more secureagainst multiple opponernt policies. The general
idea is to nd a policy that is secureagainst a certain group or population of
opponert policies, then to ewolve that population and 'nd a new policy that is
secureagainst the new population. By repeating this procedure,the nal policy
will be secureagainst all opponert policies; corverging to a Nash equilibrium.

The objective of this investigation is twofold. On one hand it describes
an alternative way of calculating a Nash-equilibrium. Although the two-player
zero-sumcasecan be solved in polynomial time using linear programming as
described in chapter 2, for large problems this remains expensive.

On the other hand, it tries to provide a way to compromisebetween secu-
rity and best-resppnse payo®, thus unifying the game- and decision theoretic
perspectives.

7.1 Coevolution

The idea behind ewolutionary algorithms is that there is population of individ-
uals that represen candidate solutions. By evaluating these candidatesagainst
one or more tests their tness is determined and the ttest produce the next
generation. Coewlutionary methods di®er from ewlutionary methods in the
way they treat the tests. Instead of having one ewlving population of candi-
date solutions and a "xed set of tests, two ewolving populations are maintained:
one for the candidate solution and one for the tests.

In the poker gamesdiscussedin this thesis, the population of candidate
solutions could consist of a number of policies for the gambler, in which case
the corresponding tests would be a set of policies for the dealer. How well one
of the gambler policies performs is measuredby the outcome achieved against
all the tests.

64



7.2 Nash equilibrium solution concept Chapter 7 Coewolution and security

7.1.1 Solution concepts

For coewlution to have any meaningit must specify a goal or solution concept.
This can be expressedas a set of candidate solutions satisfying somerequire-
ments.

Formally, let Cand T be the sets of respectively all possible candidate so-
lutions and tests. The the outcome of a particular candidate C 2 C against a
test T 2 T is given by the interaction function orgame G:CE£ T! R. In the
presenceof chancemovesin this gameG(C; T) is de ned to be the expectation
of the outcome, E(C; T).

An example of a solution concept expressedusing thesevariables is:

fC 2 Q8coxc 87271 : G(C;T), G(C%T)a:

This solution concept is known as “simultaneous maximization of all out-
comes'. As it requiresthat there is a single solution that maximizes the out-
comesagainst all possibletests, this is a very strong strong solution concept,
but has limited application scope. In [15 an brief overview of various other
solution conceptsis given, among which the Nash-equilibrium, which we will
treat in the next section.

7.1.2 Memory

An often encourtered problem in coewolutionary approachesis that of forgetting
[21], i.e., certain componerts of behavior, or traits, are lost in a next generation
only to be neededagain at a later stage. This is especially the casefor games
with intransitiv e cycles, such as the Rock-Scissors-Rper game, discussedin
section4.2.2.

In order to counter this forgetting of trades, memory mechanisms are em-
ployed. The idea is that in the coewlutionary path to the solution concepts
various traits will have to be discovered. Traits that constitute the solution will
have to be rementbered by the memory.

7.2 Nash equilibrium solution concept

In this sectionwe give an outline of a memory medanism for reaching the Nash-
equilibrium solution conceptfor symmetric zero-sumgamesas preseried in [21]
(\Nash-memory").

7.2.1 Symmetric games and Nash equilibria

In a symmetric gamethe form of the policy for both playersis identical: they
can take the same actions in the same information sets !, as is the casein
Rock-Scissors-Riper. Put di®ererily: both players selecttheir (possibly mixed)
policy from the sameset of pure policies available for the game.

Symmetric zero-sumgame always have a value 0, becausethis is the expec-
tation of a policy played againstitself: 8:,,E (% %) = 0 or, expressedn terms of

1This implies players take actions simultaneous.

65



Chapter 7 Coewlution and security 7.2 Nash equilibrium solution concept

M N T H
\ J (test evaluation)

J4%

N
MUNUW

/ (linear programming)

M/

~

Figure 7.1: One iteration of Nash-memory coewvolution.

candidate solutions and tests: 8,,G(¥ %3 = 0. This meansthat a Nash equi-
librium policy provides a security-level payo® of 0 and that therefore we are
searding for a, usually mixed, policy ¥asud that 8, G(¥4%4) , O.

Let S(¥) denote the security set of policy ¥4 i.e., S(¥) = f¥jG(¥4Y9) . 0g.
Now, the Nash-equilibrium solution conceptcan be expressedas:

f138y0 1 22 S(Y)g:

7.2.2 Comp onents of the Nash-memory

Let N and M be two mutually exclusive sets of pure policies. N is de ned
to be the support of mixed policy ¥ which will be the approximation of the
Nash-policy during the coewlution process. Therefore this is the candidate
solution.?

The policiesthat are not in N are not neededby ¥ to be secureagainst
all encourtered policies. These unused policies are stored in the set M . The
fact that ¥y is secureagainst all policies meansthat N [ M u S(¥ ). Put
in coewolutionary terms, M holds those policies, that are currently not needed
to be secureagainst all encourtered policies (N [ M), in order not to forget
particular traits they might embody.

Apart from the candidate solution ¥ and an additional memory M , the
Nash-memory mechanism speci es a seard heuristic H. This is an arbitrary
heuristic that delivers new tests against which the candidate solution is evalu-
ated.

7.2.3 The operation

We now turn to the actual working of the Nash-memory To start, M is ini-
tialized asthe empty setand N is initialized as a set corntaining an arbitrary
pure policy and ¥y asthe "mixed' policy that assignsprobability 1 to this pure
policy.2 Then the Trst iteration begins.

2An alternativ e view is that the Nash-memory maintains a ‘population' of candidate solu-
tions consisting of one individual, which in turn consists of multiple of pure policies.

3In [21] the initialization is taken somewhat di®erent, but this doesn't a®ect the working
of the memory mechanism.

66



7.2 Nash equilibrium solution concept Chapter 7 Coewolution and security

Algorithm 3 Nash-memory mecanism
Ya = initializePolicy
N = support( Ya )
M=
For iteration = 1:nr _iterations
W= ;
T = H() /lset of tests from search heuristic
Forall t in T
If G, Ya) >0
W= W[ ftg
End
End
all _polices =N[ M[ W
/I Calculate a new policy secure against all _policies  with
/I linear programming:
Ya = LP(all _policies)
N = support( ¥a )
M = all _policies n N // unused policies stored in M
End

Figure 7.1 shows one iteration of the Nash-memory First, a set of test-
policies, T, is delivered by the seart heuristic. The policies in this set are
ewvaluated against % , to de ne the set of "winners":

W = %2 TiG(¥% % ) > 0g:

When this setis non-empty, clearly ¥ is not a Nash-equilibrium policy, as
it is not secureagainst all policies, and therefore should be updated.

First a payo®matrix of all policiesin M [ N [ W played against ead other
is constructed*In this matrix the rows correspond to policies played by the “rst
player, the columns to those of the secondplayer. The entry (i;j) givesthe
(expected) outcome of policy i againstj, G(Y4; %).

This matrix canthan be usedto de ne alinear program. Relating to section
2.2.3and 2.3.4. the payo® matrix corresponds with A. Therefore this can be
solved as outlined in section 2.3.4. The result will be the new policy ¥4, , the
policiesto which it assignspositive weight is the new set N  the other policies
are stored in M ©.

The full algorithm is shovn on the current page. BecauseS(Yy ), the set
of pure policies against which ¥ is secure, grows monotonically with ead
iteration, repeated application will corverge to a Nash-equilibrium, provided
that the seart heuristic is able to 'nd policies that beat our current estimate
(that is, a non-empty W is found).

When resourcesare limited, it might not be feasible to store all policies
encourtered. Therefore it is possible to limit the size of M, by discarding
policies that have not beenrecertly usedby Y4 using some heuristic. This,
however, might re-intro duce the problem of forgetting and will therefore not be
consideredany further in this thesis.

40f course the outcomes of pure policies in M [ N against each other can be cached,
so only the outcomes of policies from W against other policies will have to be calculated to
construct this matrix.

67



Chapter 7 Coewlution and security 7.3 Coewolution for 8-card poker

7.3 Coevolution for 8-card poker

In this sectionwe apply the Nash-memorymedanism on 8-card poker. In doing
so, we extend the Nash-memory for usagewith asymmetric games® Secondly
we use the method to calculate a best-respnse policy as described in chapter
3 to generate new tests. l.e., the seart heuristic H we use is a procedure
bestResponsgyj that constructsand solvesa POMDP model of the gameplayed
against an opponert that usespolicy Y

7.3.1 Asymmetric games

In order to apply the Nash-memory medanism to 8-card poker, we need an
extensionto allow tackling asymmetric games.

A simple solution is to create a new compound gameconsisting of two games
of 8-card poker; oneplayed asgambler and oneplayed asdeajgr. This compourps
gameis symmetric and a particular policy i is givenby ¥4 = %amm or Yhiealer
We refer to this as naive symmetrization.

Using this new represertation the Nash-memorymedanism can directly be
applied without further changes. Howeer, it is clear that the °exibilit y with
which the new mixed policy is constructed is constrained: it is not possibleto
put more weight on a particular gambler policy 1/{;amb| o Without putting the
sameweight on the corresponding dealer policy 1/4'163, or -

In order to overcomethis limitation we proposean extension of naive sym-
metrization. Obsere that in algorithm 3 there are only two reasonswhy the
game must be symmetric: to determine whether a test policy beats the cur-
rent mixed policy, G(t; ¥y ) > 0, and becausethe next Nash-appraimation is
constructed from all encourtered policies(M [ N [ W).

To overcomethis, the proposed symmetrization applies the Nash-memory
medhanism per player. l.e,. we maintain onesetsN,;M ; W,; T, and a Nash-
approximation, %\ , for eac player p = 1,2 (gambler, dealer). If, without loss
of generality, we assumethat the seard heuristic deliversa single test policy for
both players, T; and T», we cantest whether the compound policy T = hT,; T1i®
beats the compound policy ¥4 = Wa.n ;YN i, as:

G(T;l/N ) = G(TQ;J/Q;N ) + G(Tl;l/g,_;N ):

If G(T;% ) > 0, then the current Nash-approaximation, %, is not secure
against compound policy T. In this casethe componerts of T are takento be
‘winners": W; = T, and W, = T,.7

This resultsin two setsM ;[ N[ Wy and M 5[ N[ W5 with pure policies
for respectively gambler and dealer. By constructing the payo®matrix for these
pure policiesand applying linear programming we calculate 1/2‘_’;N and 1/§;N , from
which M ;N %M 9 and N} are constructed. The compound policy:

- ®
]/1% = ]/‘i);N;l/g;N ;

51t is already indicated in [21] that such an extension is possible.

SNote that a test policy T; for player 1, is a policy for his opponent, player 2, and vice
versa.

“The remark from note 6 applies here too.

68



7.3 Coewolution for 8-card poker Chapter 7 Coewolution and security

Algorithm 4 Asymmetric Nash-memory using bestResponseheuristic.
For p =12 /ffor  both players

Yp;n = initializePolicy(p)
N(p) = support( ¥;n )
M(p) = ;

End

While !converged
For p =1,2

N.stoch(p) = mixed2StochasticPolicy( Y ))
T(p) = bestResponse(N_stoch(p))
End
G(T, %) = G(T(1), Yan) + G(T(2), Yan))
If G(T,%a) >0
For p =12
W(modulo(p,2)+1) = T(p)
NMW(p)= N(p) [ M(p) [ W(p)

End
Yan, Yan = LP(NMW(1),NMW(2))
For p =12

N(p) = support( “;n)
M(p) = NMW(p)n N(p)
End
Else
converged = true;
End
End

is secureagainstall combinations of gambler and dealerpoliciesfrom M $; N2 M 9
and N2 in the compound game.

7.3.2 Best-resp onse heuristic

The seart heuristic is an important aspect for coewolutionary approadies. It
should be powerful enoughto discover improvemerts to the current candidate
solution. Within the Nash-memory mecanism this meansthat it hasto nd
policiesthat beat the current Nash-apprakimation.

The approad as outlined in chapter 3 provides a suitable candidate: cal-
culating the best-respnse policies against the current Nash approximations,
Ya.n ;Ye:n - The best-resmpnse policies obtain the highest payo® possible. A
desirableside e®ectis that this providesa corvergencecriterion: when the best-
responsepoliciesare not able to attain a positive payo®in the compound game,
i.e. G(T; % ) = 0, then ¥ is a Nash-policy.

Howewer, using the approacd from chapter 3 we can calculate a bestresponse
against a stochastic policy. In cortrast, the Nash-approakimations, are mixed
policies. This meansit is necessaryto corvert a mixed policy to a stochastic
policy. For now we assumethis is doneby a proceduremixed 2StochasticP olicy.
How this procedureworks will be coveredin detail in section7.4.

69



Chapter 7 Coewlution and security 7.4 From mixed to stochastic policies

policy information sets
number | probability || J | Q [ K [ Jb [ Qb | Kb
1 2 111111 1 1
2 3 1/]0(1|0 1 1
3 5 o,0|1,0]| O 1

Table 7.1: A mixed policy for the gambler in 3-card poker. Shawn is the prob-
ability of betting (1.

7.3.3 The resulting algorithm

The resulting algorithm is showvn on the precedingpage. Note that M ; Np; Tp; W
are denoted M (p); N (p); T(p); W(p) with p= 1;2 represerting the player num-
ber.

The expressionmodulo(p;2) + 1 assuresthat the assignmens W3 = T, and
W, = T, are performed as explained in section 7.3.1.

The procedureLP () constructs the payo®matrix for the two setsof policies
and solves the linear program de ned. The ertries in the payo® matrix can
be caded to prevent re-calculating outcomes between pairs of pure policies.
In particular, becauseonly one pair of new policies is provided per iteration,
only the outcomesof these have to be evaluated against the policies already in
memory, i.e. W1 against M ,; N,; W, and vice versa.

7.4 From mixed to stochastic policies

In this sectionwe explain how we can transform a mixed policy to a equivalent
stochastic policy. First wewill re-intro ducesomerelevant conceptsand illustrate
the problem. Next, in section 7.4.2we show that the realization weights are an
adequatetool to tackle this problem and after that we discusscomputing them.

7.4.1 Problem and concepts

Recall a policy is a mapping from information setsto actions. A deterministic
or pure policy speci es exactly oneaction for eac information set. A stochastic
policy, on the other hand, is a single policy that speci es a probability distribu-
tion over actions for ead information set.

A mixed policy is a set of, usually pure, policiestogether with a probability
distribution over this set® Intuitiv ely it is possible,at least for tree-like games,
to corvert a mixed policy to a stochastic policy. Exactly how to do this is not
trivial, though.

We will make use of an example 3-card poker game. It is exactly like 8-card
poker only with three cards: J, Q and K. Table 7.1 shawns a mixed policy for
the ganmbler for this game. Shown are the information setsthe gambler hasin
this gameand the probability of betting in those information setsaccordingto
3 policies. Also shown are the probabilities of playing ead of the three policies.

A naive approadc to corvert the mixed policy shovn would be to multiply
to the rows, i.e the probabilities of betting accordingto the policies, with the

81n general, the policies in the set can also be stochastic, but not mixed, policies themselves.

70



7.4 From mixed to stochastic policies Chapter 7 Coewolution and security

probability of the respective policy and add the results. This problem with this
approad, howewer, is that doesnot respect the fact that the chanceof reacing
an information set alsodependson the policy. Expresseddi®ererily, it doesnot
take into concernthe probability that a policy realizes a certain move.

Example 7.4.1 Asanexampleconsiderinformation set Jb'in table 7.1. When
applying the naive approach the probability of betting in the resulting stochastic
policy would become0:2 ¢1+ 0:3¢0+ 0:5¢0 = 0:2. In the original mixed
policy, however, policy number 1 would specify “bet' ("1") after observing the
jack (information set"J"). Thereforeinformation set Jb' would never berealized
using policy 1. As the other policies specify never to bet at “Jb', the probability
of betting at “Jb' in the stochastic policy is therefore 0. a

In the above the word “realizes'is stressedwith good reason. The problem
in concernis very much related to the sequencdorm and its realization weights.

Recall from section 2.3.2that a sequencecorresponds with a path from the
root of the game-treeto a node n. The sequence¥ (n) for player k is the string
consisting of the concatenation of all labels of edgescorresponding with player
k's moves and obsenations. Equivalertly, a sequence¥(n) corresponds with
an information set of player k concatenatedwith an action that can be taken
at that information set. As ead node from the tree corresponds to exactly
one sequencethe number of sequencesm; is bounded. We also write %4 ; with
1-1- m.

Also recall that the realization weight % (34 )° of a sequence¥} under policy
Y4 for player k, is de ned asa conditional probability: % (%4) is the probability
that player k takesall the actions speci ed by % given that all correspnding
information setsare reachel.

In the next subsection, we will show that the realization weights are an
appropriate tool for our problem of converting a mixed policy * ¢ for player k
to a stochastic one.

7.4.2 Using realization weights

Here we shaw that using realization weights, we can transform a mixed policy
to a stochastic policy that describesthe samedynamics, i.e, inducesthe same
outcomes.

Formally, we want to nd the probability of an action a at an information
set Iy, P(ajlk;1k) corresponding to 1 for player k. The crucial step in this
problem is that we have to weight the cortribution to P(ajlk;*k) of a policy
Y4 2 1 by the probability that information set I is actually realized by % .

Theorem 7.4.1 To transform a mixed policy * ¢ for player k to a stochastic
policy, realization weightsfor all policies %} 2 * are sutcient. For a particular
action a and information set |y, the stochastic policy is given by:
P . i
) 1 14 (3 0
P(ajliity) = PAo ) TROAL). 1)

i P(4) €% (% (1))
where ¥ (1) is the seguene that leads to information set | and %(1)) is the
seguene that result from appending action a to ¥ (I).

9We denote the realization weight with Y%here.

71



Chapter 7 Coewlution and security 7.4 From mixed to stochastic policies

Pro of When N players play policies (Ya;:::; ¥ ), the probability of reacing
a node n in the game-treeis given by:

W
P(nj¥a, %)= (n) ¢ Y (%(n));
k=1
where " (n) is the product of all chance moves on the path from the root to
n. In order to discriminate betweenthe probabilities of moves of the player in
concernand its opponerts, this can be rewritten to:

W
P(nj%a; 5 Ya) = (%) ¢ (n) ¢ Y (%(n));
k=2
in which k = 1is an arbitrarily chosenplayer we focuson. Similarly, the actual
chance of readhing a particular information setl; can be given as:
A !
_ X B W
P(l1j¥a; %) = a(%a(n) ¢ ()¢ % (%(n))
n2|1 k=2
As player 1 can not discriminate between the nodes of |, clearly his se-
guencesfor thesenodesare the sameand we write ¥ (11); giving:
A !
. X W
P(l%; ) = ¥a(%a(l)) ¢ (n)¢ % (%(n))

. n2i, k=2

P _
Now let Popp = 5 (n) ¢Q E:z % (% (n)) denote the opponert (and

nature) componert of the realizing | 1. When there are multiple policies¥4 2 1 4,
ead played with a probability of P(¥}); the probability of realizing |, becomes:

X ) i
P(l1j* 1; I:)opp) = Popp ¢ ' P(l/ii) ¢1/§.(3V‘1(| 1))

Next we turn our attention to realizing both I, and the desired action a.
For a single policy %4 2 * 1, this probability is:

P(11;8j4; Popp) = Popp ¢%4(%4(11)) ¢P (8%4;11):
For the mixed policy * ; this becomes:

X , 4 .
P(l1;8" 1;Popp) = Popp ¢ P (%4) ¢%4(%a(11)) ¢P(aj%4;11):
[
Finally we can give the probability of action a given |, for mixed policy * ;:

P(l1;a* 1, Popp)
P(I l.l l; Popp)
Popp ¢ P(4) ¢%4(%a(11)) ¢P(aj¥4;11)
Popp ¢ | P (¥4) 6% (%4(11))
( P(4) ¢ (%(11)) ¢P(aj%h;11)
L P(A) ¢4 (3a(10)
= P(ajly;tq):

P(ajll;ll;Popp) =

(7.2)

72



7.4 From mixed to stochastic policies Chapter 7 Coewolution and security

Now note that the sequence¥s(l,) followed by action a de nes a new se-
quence, let's call this sequence¥a(19): The realization weight of this new se-
quence under policy i is 4(19) = %(34(11)) ¢P(aj%;11). Therefore we can
rewrite equation 7.2 totally in terms of priors and realization weights:

D POA) PACAND).

i P() ¢4 (%a(ln))
Now observing that the focus on player k = 1 was an arbitrary choice and
that this procedure can be extendedfor any information set and action proves
the theorem. e

P(ajlsty) =

7.4.3 Calculating realization weights

Having establishedthat realization weights for the policies%} 2 * will givethe
solution to the problem, the next goal is to determine them. In cortrast to the
Gala system, we do not want to nd realization weights that de ne an optimal
policy, but simply want to extract the realization weights from a policy % .

Let % be the sequencdor reaching somenode n where player k is to move.
Then the cortinuation ¥ *a is also a sequencdor player k and the realization
weights are given by the following recurrencerelation:

% (% ) = % (%) OP(aj%;n): (7.3)

BecauseP (aj¥%;n) is a probability distribution that sumsto 1 19, the total
realization weight of cortinuations of a sequence ¥, sum to the realization of
that sequencdtself. l.e ¥% (%) = Y5 (% ta1) + =1+ % (% ta,), exactly aswas
required in section 2.3.3.

As % (root) = 1 for any policy i, starting at the root and iterativ ely applying
equation 7.3 while walking through the game-tree extracts all the realization
weights.

We can also formulate this slightly di®eren. Recall that in the proof of
theorem 7.4.1, we wrote % () for the sequencefor player k for reacing any
node in 1y, an information set for that player. When using this notation for
equation 7.3, we get:

% (1) £8) = % (% (1)) P (aj¥%:; 1):

Now, obsene that the corntinuation % (1) £a will correspond with the se-
quencefor all successoinformation sets, 12, that can be reached from I, when
action a is chosen. By formalizing this it is possibleto expresseverything in
terms of information sets.

De nition  7.4.1 The realization weight of an information set I of player k
under a policy ¥} will be denoted% (1) and is de ned asthe realization weight
of the sequenceof any noden 2 I:

%) 7 % (%(():
Note, that the realization weight of an information set of another player, i.e.,
%(1)); k 6 | is unde ned.

101 this setting where we considered pure policies 1/4(, P(ajl/{ ;n) is 1 for exactly one action.
In general, however, a mixed policy might also have stochastic policies in its support.

73



Chapter 7 Coewlution and security 7.4 From mixed to stochastic policies

Algorithm 5 Calculate information set realization weights(¥)
Forall IS in initial _ISs(k)
rw(lS)=1
append(1Sq,IS) //ISq is a queue
End
While lempty(1Sq)
IS=pop(ISq)
Forall a in ACTIONS
Forall suclS in successor _ISs(IS,a,k)
rw(suclS)=rw(IS) (a|lS, Y)
append(1Sq,suclS)
End
End
End

As above, let I|9 be any information set for player k, that can be reached
from I when playing a: The recurrencerelation now becomes:

R (19 = % (Ik) 6P (ai%; 1k): (7.4)

This formulation expresseshe closerelation betweeninformation sets,action
probabilities and realization weights more naturally. Also it gives a further
formalization of the step taken to obtain equation 7.1 from equation 7.2. Using
de nition 7.4.1,the latter can be rewritten as:

P . . .
P () @ (1) 0P (% 1), 5

P(ajti;ly) = P(H) % (1) ’

consecutiely applying 7.4 gives:

P R .
. ) P (%) ¢A(19)
Plaitcll = P i’

Backwards substitution using de nition de nition 7.4.1, then immediately
givesequation 7.1.

The new recurrencerelation (eq. 7.4) also de nes an algorithm to "nd the
realization weights for information setsvery naturally. This algorithm is shavn
on the current page and consistsof two phases:the rst phase nds all initial
information setsfor player k, that are the information setsin which the player
makes his rst move of the game. The realization weights of these information
sets are initialized to 1.1 The secondphase consists of a pass through the
game-tree nding successorinformation sets and calculating their realization
weights.

11The sequenceof an initial information set, is the root sequence,; .

74



7.4 From mixed to stochastic policies Chapter 7 Coewolution and security

N

PC1/PC2 QA . VN QIK

Qb

Figure 7.2: Partial game-treefor 3-card poker. The information setsQ and Qb
for the “rst player are clearly indicated.

7.4.4 Calculating the stochastic policy

At this point, calculating a stochastic policy from a mixed policy has become
almost trivial. Once the realization weights for the information setsare calcu-
lates, all one hasto do is apply equation 7.5. We will give an example for the
mixed policy from table 7.1.

Example 7.4.2 Figure 7.2 shows a part of the game-treefor 3-card poker. It
shows 2 information sets: Q and Qb. In this example we will calculate the
stochastic policy for theseinformation sets.

The “rst thing we needto do is calculating the realization weights of the
information sets under the di®erent policies that make up the mixed policy
from table 7.1.

As the gambler makesits ‘rst move whenin Q, this is an initial information
set and therefore its realization weight is 1 under all policies. In cortrast Qb is
not an initial information set and its realization weight is given by:

14(Qb) = ¥A(Q) ¢P (0'j%; Q);

where "0' indicates the action pass!?> This leadsto the following table of
realization weights:

|_policy [ %A(Q) [ %(Qb) |

1 1 0
2 1 1
3 1 1

Table 7.2: Realization weight for the policiesin the support of the mixed policy.

Now we can apply Tl out equation 7.5 for Q, yielding:

12Note we omit the subscripts indicating the player (which is “gambler' throughout this
whole example).

75



Chapter 7 Coewlution and security 7.5 Experiments

Worst case payoff of mixed policy

— total

player 1 policy|
0.8 "
— player 2 policy|
---0 nash

0 5 10 15 20
Iteration

Figure 7.3: Resultsfor the Nash-memoryapproac to 8-card poker. The dashed
lines indicate the Nash-\alue.

P ) ) o
 P(4) 64(Q) ¢P(1j%4:Q)

i P (%) ¢2(Q)
0:2¢1¢1+ 0:3¢1¢0+ 0:5¢1¢0
0:2¢1+ 0:3¢1+ 0:5¢1

0:2
= — =02
1

P(1'j%5 Q)

For Qb this gives:

P | P(Y4) ¢%4(Qb) ¢P ('1'j%4; Qb)

N -
PLIS QO TP () ¢%(Qb)
_ 0:2¢0¢1+ 0:3¢1¢1+ 0:5¢1¢0
- 0:2¢0+ 0:3¢1+ 0:5¢1
= %8 _ 5375
0:8
Concluding the example. o

7.5 Experiments

In this section we will describe some experiments performed using the Nash-
memory mechanism as outlined in this chapter.

7.5.1 8-card poker

Algorithm 4 wasimplemented and applied to 8-card poker. Figure 7.3 shavsthe
obtained results. It shows that it only takesa few iterations to obtain a policy
that is fairly secure. This is a nice property, asit indicates that this technique
might be applied for larger gamesto obtain an approximate Nash policy.

76



7.5 Experimernts Chapter 7 Coewolution and security

Worst case payoff of mixed policy Worst case payoff of mixed policy

Payoff

1.5 3

—total — total
2 player 1 policy 4 player 1 policy

— player 2 policy — player 2 policy
---0 nash ---0 nash

25 5

0 20 40 60 80 100 0 50 100 150
Iteration Iteration

Figure 7.4: Two larger poker-games.Left: 4-bet 8-card poker. Right: 2-round,
3-bet-per-round 6-card poker.

It alsoindicates that only a relatively small number of policiesis neededto
be secure. Further investigation made this even more plausible, asit turned out
that the number of pure policies used by the mixed policy is even lower than
the "gure suggests:when reaching the Nash level (iteration 12) only 6 out of 12
pure policies are assignedweight for the both gambler and dealer policy.

Another obsenation that can be drawn from the “gure is that, although
convergenceto Nash equilibrium is monotonic, becausewith ead iteration the
approximate Nash becomessecureagainst more policies™, the worst casepayo®
doesnot increasemonotonically. Apparently, a particular policy against which
it is not secureyet might becomea best-resppnseand do more damage.

7.5.2 Some larger poker games

After the encouragingresults for 8-card poker someexperimerts were performed
on larger poker games. We show resulting curves for two of them here. The
“rst is an 8-card poker variant that allows up betting u to 4 coins bets, with
a maximum raise of 2 coins. The game-treefor this game contains nearly 4000
nodesand has 274 sequencedor eadt player.

The secondgameis a 2 round poker gamewith a ded of 6 cards, both players
receive onecard and play a bet-round, after which 1 public card appearsface-up
on the table. Then a nal bet-round is played. In both bet-rounds a maximum
of 3 coins coins can be betted per player. This game-treefor this gameconsists
of over 18,000nodesand has 2162 sequencedor both players.

For these games,the obtained results are showvn in gure 7.4. As was the
casefor 8-card poker, the Nash-memoryis able to obtain a reasonablesecurity
level in a relatively low number of iterations.

Also the small number of policies neededfor the support of the mixed policy
was con rmed for these larger games. For 4-bet 8-card poker N cortained 18
policies out of 100 on convergence.At iteration 150 for the 6-card poker game,
the number of policies with positive weight was 29.14

13 More formal, the set S(¥a ) grows monotonically .
14The algorithm was not fully converged at this point, asthe compound policy still received

77



Chapter 7 Coewlution and security 7.5 Experiments

Worst case (w.c.) and est. opp. model (e.0.m.) payoff P1 Worst case (w.c.) and est. opp. model (e.0.m.) payoff P2
0.5 0.5
04 0.4

0.3
0.3

0.2
0.2

0.1

Payoff
Payoff

0.1
ob Y

******** 0
— W.C.

e.o.m.
0.2 ——0.15*w.c. + 0.85*¢.0.m
- --Nash

03 0 5 10 15 20 02 0 5 10 15 20

Iteration Iteration

01 ——W.C.

e.om.
——0.15*w.c. + 0.85*¢.0.m
- - - Nash

0.1

Figure 7.5: The tradeo® between security and higher payo® for 8-card poker.
The estimated opponert model is uniform random.

For the larger gamesthere seemto be more oscillations in worst-casepayo®.
This can probably be explainedin the following way: becausethe game-treefor
thesegamesis larger and the horizon is deeper, more actions a®ectlater stages
of the game. Therefore the relatively small adjustment of the mixed policy can
in°uence the realization weights of a lot of information sets. When a particular
set of information setsis given more weight, but the policy speci ed for this set
is not optimal, this can be exploited by the opponert.

7.5.3 Security vs. best-resp onse payo®

As argued before, playing a Nash-equilibrium is too consenative, when the
opponert is not expectedto play optimal. On the other hand playing a best-
responsepolicy may preser risks, asthe opponert model may be inaccurate. In
this experiment away to nd atradeo®betweenpotential winnings and security
is examined.

The ideais asfollows. The opponert model deliverstwo estimated opponert
policies, one gambler and one dealer policy.'® First, the best-resmpnsepolicies
against these estimated opponert policies are calculated. These best-respnse
policies are usedto initialize the Nash-memory mechanism, which then is run
until corvergence.The result is a seriesof mixed policies (for both gambler and
dealer), starting with the best-respnseagainst the estimated opponert policy
and ending with a Nash-equilibrium.

Each of theseresulting mixed policies, however, can alsobe evaluated against
the estimated opponert policy. When we do this for all of them, we know the
worst-casepayo® and the outcome against the estimated opponert model.

Figure 7.5 shows this evaluation for 8-card poker. It also shows a line that
is a weighted averagebetweenthe worst-casepayo® and that obtained against
the estimated opponert model. One should interpret the weights for this line
(0:85 : 0:15in this case)asthe amourt of trust in the opponert model versus

a worst case payo® of -0.027 instead of 0.
15Expressed di®erently, it delivers an estimated opponent policy for the compound game.

78



7.6 Discussion Chapter 7 Coewlution and security

Worst case (w.c.) and est. opp. model (e.0.m.) payoff P1 Worst case (w.c.) and est. opp. model (e.0.m.) payoff P2
0.5 0.3

0.2

0.1

0

0.1

Payoff
o
Payoff

0.2

—w.c. 0.3 —w.c.
e.om. e.o.m.
——0.15*w.c. + 0.85*¢.0.m| 0.4 ——0.15*w.c. + 0.85*¢.0.m|
---Nash ---Nash
05 0 5 10 15 20 05 0 5 10 15 20
Iteration Iteration

Figure 7.6: The security / potential winnings tradeo® for another estimated
opponert. Especially for player 2 there are no useful peak values betweenthe
best-respnseand Nash-policy.

the amount of trust that the opponent plays a best-resppnseagainst the mixed
policy.

Given sudh a trust ratio, any existing peeksin the weighted averageidentify
those mixed policies that have a bene cial estimated- and worst-caseoutcome
with respect to the amourt of trust. As a consequenceahese policies should be
considereda candidate. We have not consideredwhich of these mixed policies
should actually be used. One idea would be to randomly choosebetweenthem.

Unfortunately, whether these peek policies exist dependsvery much on the
estimated opponert model. An example in which these peeksare missing is
shawn in “gure 7.6. In particular the procedure seemsto fail to identify useful
mixed policies, when the best-respnse(or someother “good'-response) against
the estimated opponert model is not in the support of a Nash equilibrium.

Another issue obsened is that the payo® against the estimated opponert
is much larger for the “rst (best-respnse) policy than for any of the mixed
policies.

7.6 Discussion

When comparing the Nash-memory approach with solving the sequenceform
(as in Gala) with respect to performancethere are a couple of interesting dif-
ferences.At this point, calculating a Nash-equilibrium using the Nash-memory
approad consumesmore time. However, it spendsits time di®ererly: mostly
on constructing and solving the POMDP models, to calculate the bestresponse,
and determining outcomesbetweenthe encourtered pure policies. Far lesstime
is spent on linear programming, asthe sizeof the linear programsto be solvedis
generally smaller. E.g. for the 2-round 6-card poker experimert the maximum
size of the matrix was 150£ 150versus2162£ 2162for solving sequenceorm.
Also, the linear programs solved have a simpler constraint matrix (a row matrix,
forcing the weights of the pure policiesto sumto 1).

We expect that considerablespeed-upcanbe obtained by streamlining the of

79



Chapter 7 Coewlution and security 7.6 Discussion

implemenrtation of POMDP model construction and solving. Moreover, approx-

imate methods could be usedfor both solving the POMDP and evaluating the

rewards. This might lead to this approach becoming competitiv e the sequence
form solving in terms of performance. The anytime nature of the Nash-memory
approac makesit even more appropriate for a lot of domains.

We will make a few remarks regarding the tradeo® as explained in section
7.5.3. Perhapsthe best-respnse heuristic is not the most appropriate to use
during the operation of the Nash-memorywith as goal to seard for a suitable
candidate policy that trades o®potential gain for security. There is a large gap
betweena failing opponert model and the opponent predicting our policy acting
to minimize our prot. Put di®ererly, perhapsthe worst-casepayo®is a too
negative measureand we needto seart for a weaker form of security.

A direction for this could be to analyze the type and magnitude of errors
made by an opponert model. When this knowledge is available it could be
possibleto generateother opponert policiesthat fall within the expectedbounds
of error for the opponert model. The Nash-memory mecanism can than be
employed to construct policiesthat are secureagainst all of them.

A di®erer questionregarding the Nash-memorymedanismthat needsmore
researt is the following. Currently the Nashmemory is basedon mixed policies.
Would it be possibleto directly use stochastic policies, or policies expressedn
terms of realization weights? In this casewe would not needto corvert between
mixed and stochastic policies as explained in section 7.4.

Another direction of future researt would beto try to avoid solving a linear
programming from the start in ead iteration. There might be an approad
to adjust the weights of the mixed policy without solving a complete linear
program.

A "nal pointer is to focuson extending this approac to gameswith multiple
players or gamesthat are not zero-sum. A form of symmetrization might also
be possiblein this case.Calculating a best-respnseagainst two (or more) xed
opponerts can be done by transforming the gameto a POMDP, "nding a secure
mixture of policies could be done using any of the methods described in [45].
Perhaps an incremertal weight-adjusting algorithm, as mentioned above, will
also provide opportunities for thesedirections.

80



Chapter 8

Conclusions

In this thesis we have addressedpartially obsenable card games, speci cally
poker games. In our covering of these games,we have shavn two perspectives:
the gametheoretic approad, that speci es a Nash-equilibrium that guaranees
a security level payo® and an agen certric (POMDP) approad, yielding a
best-respnse policy that exploits weaknesse®f a given opponert policy. We
have experimentally shown that the POMDP approac was able to obtain the
maximum payo®, even against a Nash-policy.

Next, we preseried an investigation of methods that allow for tackling large
POMDPs and thus larger poker games.In particular we discussedmodel mini-
mization for POMDPs and madeplausible that direct application of this method
will not give enough reduction for real-life poker variants as Texas' Hold-em.
We alsoidenti ed the bottleneck and gave a pointer to a potential solution.

Finally, we consideredan alternative way of calculating Nash-equilibria us-
ing a coewlutionary approac. This processalsogivesa natural way to identify
policiesthat make a bene cial tradeo®betweensecurity and potential gain. Al-
though it dependson the opponert policy and the usedseard heuristic whether
a policy giving a favorable tradeo®is found. This can be seenasa rst stepin
unifying the gametheoretic and agen certric approad.

8.1 Future work

Most directions for future work were identied in the last two parts of this
thesis. As mentioned above, in the secondpart a modi cation for model min-
imization for POMDPSs is suggested. Future researd should focus on whether
this modi cation still allows for a equivalencenotion that satis es the original
bisimulation theorem (5.2.1). If this is possible,it would be interesting to see
whether such a new aggregation concept will alow for tackling real-life poker
games.

Apart from state aggregation such as model minimization, we also brie°y
discussedother approades for dealing with large (PO)MDPs. The most rel-
evant leadsthat were identi ed are the approximate methods. Especially the
trajectory sampling approaces seempromising, as they provide performance
boundsindependert of the number of states.

Roughly speaking, we identi ed three typesof future work in the last part.

81



Chapter 8 Conclusions 8.1 Future work

The rst type would be to try and generalizethe coewolutionary computation
of Nash equilibria to gameswith more than two players or gamesthat are not
zero-sum. A secondtype would be to try to prevent solving a linear program
from start, by using someweight adjusting scheme. The last type would be to
focuson the tradeo®betweenworst-case(security) and best-casgbest-respnse)
payo®. This direction would involve investigating di®erert seard heuristics that
presert opponert policiesthat are closerto the estimated opponert model.

A more general question that would be interesting for future researt is
whether the conceptof realization weights canbe generalizedto arbitrary MDPs.
Asillustrated in this thesis, sequencdorm and their realization weights allow for
more excient operations in extensive form games. Therefore an extensionof re-
alization weights to arbitrary MDPs or POSGsmight alsopresen opportunities
within these frameworks.

82



App endix A

Gala system modi cations

As mertioned in chapter 4, there were somechangesnecessaryto get Gala up
and running. Here we will brie’y documert these changes. Gala is written
in SWI-prolog. Two of the changeswere necessaryto work with the current
version (v. 5.4.3).

The Gala function compare_ranks (in poker.gl) needsto return "<',™>' or
=", becausethis is what the build in function predsort now requires as return
argumerts.

In the new versionsof SWI-Prolog, operators are local to modules, therefore
it is necessaryto de ne the operators with the user scoge.

Another necessarychange involved the solving of the linear program. The
Gala systemincluded a Matlab Te which usedthe deprecatedlp function. This
hasbeenchangedto usethe “linprog' function available in current releases.This
new proceduretakesits argumerts in a di®erent format. Also it was not clear
whether the algorithm the new function implemented changed.

Except for the modi cation, also somepractical additions have beenmade.
Theseinclude a simulation module and various functions to extract policiesand
translate to understandable languageand modify these policies.

83



Bibliograph y

[1] D. Billings. Computer poker. Master's thesis, University of Alb erta, 1995.

[2] DarseBillings, Neil Burch, Aaron Davidson, Robert Holte, Jonathan Scha-
e®er, Terence Schauerberg, and Duane Szafron. Approximating game-
theoretic optimal strategies for full-scale poker. In Proc. Int. Joint Conf.
on Arti cial Intelligence, Acapulco, Mexico, August 2003.

[3] Darse Billings, Aaron Davidson, Jonathan Schae®er,and Duane Szafron.
The challenge of poker. Artif. Intell., 134(1-2):201{240,2002.

[4] DarseBillings, Denis Papp, Jonathan Sthae®er,and Duane Szafron. Oppo-
nent modeling in poker. In AAAI '98/IAAl '98: Proceedings of the fte enth
national/tenth conference on Arti cial intelligence/Innovative applications
of arti cial intelligence, pages493{499. American Asscciation for Arti cial
Intelligence, 1998.

[5] DarseBillings, Denis Papp, Jonathan Schae®er,and Duane Szafron. Poker
asan experimental testbedfor arti cial intelligencereseart. In Proceedings
of AI'98, (Canadian Sciety for Computational Studies in Intelligence),
1998.

[6] K. Binmore. Fun and Games D.C. Heath and Compary, Lexington, MA,
1992.

[7] Craig Boutilier. Correlated action e®ectsin decision theoretic regression.
In Geigerand Sheng [23], pages30{37.

[8] Craig Boutilier, Thomas Dean, and Steve Hanks. Decision-theoretic plan-
ning: Structural assumptionsand computational leverage. Journal of Ar-
ticial Intelligence Resarch, 11:1{94, 1999.

[9] Craig Boutilier, Richard Dearden,and Mois&#233;s Goldszmidt. Stochas-
tic dynamic programming with factored represenations. Artif. Intell.,
121(1-2):49{107,2000.

[10] Craig Boutilier and David Poole. Computing optimal policies for par-
tially obsenable decision processesusing compact represetations. In
AAAI/IAAIL,  Vol. 2, pages1168{1175,1996.

[11] Anthony Cassandra,Littman Michael,and ZhangNevin. Incremertal prun-
ing: A simple, fast, exact method for partially obsenable markov decision
processes.In Proceedings of the 13th Annual Conference on Uncertainty

84



BIBLIOGRAPHY BIBLIOGRAPHY

in Arti cial Intelligence (UAI-97) , pages54{61, San Francisco, CA, 1997.
Morgan Kaufmann Publishers.

[12] Anthony Rocco Cassandra.Exact and approximate algorithms for partial ly
observablemarkov decision processes PhD thesis, Brown University, 1998.
Adviser-Leslie Padk Kaelbling.

[13] A. Davidson. Opponert modeling in poker: Learning and acting in a hostile
ervironment. Master's thesis, University of Alb erta, 2002.

[14] D. de Farias and B. Van Roy. The linear programming approac to ap-
proximate dynamic programming, 2001.

[15] E. D. de Jong. The maxsolwe algorithm for coewolution. In Proceedings of
the Genetic and Evolutionary Computation Conference, 2005.

[16] Thomas Dean and Robert Givan. Model minimization in markov decision
processesin AAAI/IAAI , pages106{111,1997.

[17] Thomas Dean, Robert Givan, and SoniaM. Leach. Model reduction tech-
niguesfor computing approximately optimal solutions for markov decision
processeslin Geigerand Sheny [23], pages124{131.

[18] RosemaryEmery-Montemerlo, Geo®Gordon, Je®Sdneider, and Sebastian
Thrun. Approximate solutions for partially obsenable stochastic games
with common payo®s. In AAMAS '04: Proceedings of the Third Interna-
tional Joint Conferenee on Autonomous Agents and Multiagent Systems
pages136{143, Washington, DC, USA, 2004.IEEE Computer Scciety.

[19] Z. Feng and E. Hansen. Approximate planning for factored pomdps. In
Sixth European Conferencee on Planning (ECP-01), 2001.

[20] Z. Feng and E. Hansen. An approac to state aggregation for pomdps.
In AAAI-04 Workshop on Learning and Planning in Markov Processes{
Advancees and Challenges pages7{12. AAAIl Press,2004.

[21] Sewan G. Ficici and Jordan B. Pollack. A game-theoreticmemory meda-
nism for coewolution. In GECCO, volume 2723 of Lecture Notes in Com-
puter Sciene, pages286{297. Springer, 2003.

[22] H. Fujita, Y. Matsuno, and S. Ishii. A reinforcemert learning scheme for
a multi-agent card game. In IEEE International Conferenee System, Man.
and Cybernetics (IEEE SMC '03), pages4071{4078,2003.

[23] Dan Geiger and Prakash P. Sheng, editors. UAI '97: Proceedings of the
Thirte enth Conference on Uncertainty in Arti cial Intelligence, August 1-
3, 1997, Brown University, Providene, Rhade Island, USA. Morgan Kauf-
mann, 1997.

[24] Robert Givan, Thomas Dean, and Matthew Greig. Equivalence notions

and model minimization in markov decisionprocessesArtif. Intell., 147(1-
2):163{223, 2003.

85



BIBLIOGRAPHY BIBLIOGRAPHY

[25] Carlos Guestrin. Planning Under Uncertainty in Complex Structured Envi-
ronments PhD thesis, Stanford University, August 2003. Adviser-Daphne
Koller.

[26] Carlos Guestrin, Daphne Koller, and Ronald Parr. Solving factored
POMDPs with linear value functions. In Sevententh International Joint
Conferenee on Arti cial Intelligence (IJCAI-01) workshopon Planning un-
der Uncertainty and Incomplete Information , pages67 { 75, Seattle, Wash-
ington, August 2001.

[27] Eric A. Hansen, Daniel S. Bernstein, and Shlomo Zilb erstein. Dynamic
programming for partially obsenable stochastic games. In Deborah L.
McGuinness and George Ferguson, editors, AAAI , pages709{715. AAAI
Press/ The MIT Press,2004.

[28] Eric A. Hansenand Zhengzhu Feng. Dynamic programming for pomdps
using a factored state represettation. In AIPS, pages130{139, 2000.

[29] JesseHoey, Robert St-Aubin, Alan J. Hu, and Craig Boutilier. Spudd:
Stochastic planning using decision diagrams. In Kathryn B. Laskey and
Henri Prade, editors, UAI, pages279{288. Morgan Kaufmann, 1999.

[30] Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra.
Planning and acting in partially obsenable stochastic domains. Artif. In-
tell., 101(1-2):99{134,1998.

[31] Michael Kearns, Yishay Mansour, and Andrew Y. Ng. Approximate plan-
ning in large pomdps via reusable trajectories. In Advanes in Neural
Information ProcessingSystems12. MIT Press,2000.

[32] Michael Kearns, Yishay Mansour, and Andrew Y. Ng. A sparsesampling
algorithm for near-optimal planning in large markov decision processes.
Mach. Learn., 49(2-3):193{208,2002.

[33] Kee-Eung Kim and Thomas Dean. Solving factored mdps using non-
homogeneougartitions. Artif. Intell., 147(1-2):225{251,2003.

[34] Daphne Koller, Nimrod Megiddo, and Bernhard von Stengel. Fast algo-
rithms for "nding randomized strategiesin gametrees. In Proc. of the 26th
ACM Sympmsium on Theory of Computing (STOC), pages750{759, 1994,

[35] Daphne Koller and Avi Pfe®er. Represettations and solutions for game-
theoretic problems. Arti cial Intelligence, 94(1-2):167{215,1997.

[36] Kevin B. Korb, Ann E. Nicholson, and Nathalie Jithah. Bayesianpoker. In
Proc. 15th Conference on Uncertainty in Articial Intelligence, pages343{
350, 1999.

[37] HW. Kuhn. A Simpli ed Two-Person Poker, volume 1 of Contributions
to the Theory of Games Princeton University Press,1950.

[38] H.W. Kuhn. Extensive gamesand the problem of information. Annals of
Mathematics Studies 28:193{216,1953.

86



BIBLIOGRAPHY BIBLIOGRAPHY

[39] Tom M. Mitchell. Machine Learning. McGraw-Hill  Sci-
ence/Engineering/Math, March 1997.

[40] J. F. Nash. Non-cooperative games. Annals of Mathematics, 54:286{295,
1951.

[41] Andrew Y. Ng and Michael I. Jordan. Pegasus:A policy seart&t method
for large mdps and pomdps. In Craig Boutilier and Mois#s Goldszmidt,
editors, UAI, pages406{415. Morgan Kaufmann, 2000.

[42] FransOliehoek, Matthijs T. J. Spaan,and NikosVlassis. Best-respnseplay
in partially obsenable card games. In Benelearn 2005: Proceedings of the
14th Annual Machine Learning Conference of Belgium and the Netherlands
pages45{50, February 2005.

[43] C.H. Papadimitriou and J.N. Tsitsiklis. The complexity of markov decision
processsesMathematics of Operations Reserch, 12(3):441{450,1987.

[44] Christos Papadimitriou. Algorithms, games,and the internet. In STOC
'01: Proceedings of the thirty-thir d annual ACM symmsium on Theory of
computing, pages749{753, New York, NY, USA, 2001.ACM Press.

[45] Ryan Porter, EugeneNudelman, and Yoav Shoham.Simple seard methods
for 'nding a nashequilibrium. Gamesand Economic Behavior, (to appear).

[46] Pascal Poupart and Craig Boutilier.  Value-directed compression of
POMDPs. In Advaneesin Neural Information ProcessingSystemsl5, pages
1547{1554,2002.

[47] PascalPoupart and Craig Boutilier. VDCBPI: an approximate scalableal-
gorithm for large POMDPs. In Advanaesin Neural Information Processing
Systems17, pages1081{1088,2004.

[48] Rob Powers and Yoav Shoham. New criteria and a new algorithm for
learning in multi-agent systems. In Lawrence K. Saul, Yair Weiss, and
L®on Bottou, editors, Advanesin Neural Information ProcessingSystems
17. MIT Press,Cambridge, MA, 2005.

[49] M. L. Puterman. Markov Decision Processes|Discr ete Stachastic Dynamic
Programming. John Wiley & Sons,Inc., New York, NY, 1994,

[50] Stuart Russell and Peter Norvig. Arti cial Intelligence: A Modern Ap-
proach. Prentice-Hall, Englewood Cli®s, NJ, 1995.

[51] Jiefu Shi and Michael L. Littman. Abstraction methods for gametheoretic
poker. In CG '00: Revisal Papers from the Second International Conference
on Computers and Games pages333{345. Springer-Verlag, 2002.

[52] Yoav Shoham,Rob Powers, and Teg Grenager. Multi-agent reinforcemert
learning: a critical survey. Tednical report, Computer ScienceDepart-
ment, Stanford University, 2003.

[53] E. J. Sondik. The optimal control of partial ly observableMarkov decision
processes PhD thesis, Stanford University, 1971.

87



BIBLIOGRAPHY BIBLIOGRAPHY

[54] Matthijs T. J. Spaanand Nikos Vlassis. Perseus:randomized point-based
value iteration for POMDPs. Journal of Arti cial Intelligence Reserch,
2005,In press.

[55] Robert St-Aubin, JesseHoey, and Craig Boutilier. Apricodd: Approximate
policy construction using decisiondiagrams. In Todd K. Leen, Thomas G.
Dietterich, and Volker Tresp, editors, NIPS, pages1089{1095.MIT Press,
2000.

[56] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An
Intr oduction (Adaptive Computation and Machine Learning). The MIT
Press,March 1998.

[57] Gerald Tesauro.Practical issuesin temporal di®erencdearning. In John E.
Moody, Steve J. Hanson, and Richard P. Lippmann, editors, Advancs in
Neural Information ProcessingSystems volume 4, pages259{266. Morgan
Kaufmann Publishers, Inc., 1992.

[58] J. von Neumannand O. Morgenstern. The Theory of Gamesand Economic
Behavior. Princeton University Press,1947. 2nd edition.

[59] E. Zermelo. Uber eine anwendung der mengenlehreauf die theorie des
schachspiels. In E. W. Hobson and A. E. H. Love, editors, Proceedings
of the Fifth International Congressof Mathematicians I, pages501{504.
Cambridge University Press,1913.

88



