Lecture 23: Classical Planning
Overview

- Last time
 - Resolution in first-order logic; relating Prolog, FO logic and resolution

- Today
 - Overview of classical planning
 - Representing planning problems
 - Planning Domain Definition Language (PDDL)
 - State space linear planning

- Learning outcomes covered today:

 Identify or describe approaches used to solve planning problems in AI and apply these to simple examples
What is planning?

• “Devising a plan of action to achieve one’s goals”

Planning = How do I get from here to there?

• Planning systems are problem-solving algorithms that operate on explicit propositional or relational representations of states and actions

• Planning problem: find a plan that is guaranteed (from any of the initial states) to generate a sequence of actions that leads to one of the goal states

• Planning problems often have large state spaces
Automated Planning

• We will look at two popular and effective current approaches to automated classical planning:
 – Forward state-space search with heuristics
 – Translating to a Boolean satisfiability problem

• There are also other approaches
 – e.g. planning graphs: data structures to give better heuristic estimates than other methods, and also used to search for a solution over the space formed by the planning graph
Representing Planning Problems

• Recall search based problem-solving agents
 – Find sequences of actions that result in a goal state
 BUT deal with \textit{atomic} states so need good domain-specific heuristics to perform well

• Planning represented by \textbf{factored representation}
 – Represent a state by a collection of variables

• \textbf{Planning Domain Definition Language (PDDL)}
 – Allows expression of all actions with one schema
 – Inspired by earlier STRIPS planning language
Defining a Search Problem

- Define a search problem through:
 1. Initial state
 2. Actions available in a state
 3. Result of action
 4. Goal test
PDDL – Representing States (I)

• A state is represented by a conjunction of fluents
• These are ground, functionless atoms
 – Example: $\text{At(Truck1,Manchester)} \land \text{At(Truck2,Warrington)}$
• Closed world assumption (no facts = false)
• Unique names assumption (Truck1 distinct from Truck2)
PDDL – Representing States (II)

• Not allowed:
 \(\text{At}(x, y) \) non-ground (i.e. variables alone)
 \(~\text{Poor} \) negation
 \(\text{At}(ext{Father}(\text{Fred}), \text{Liverpool}) \) uses function

• A state is treated as either
 – \textit{conjunction} of fluents, manipulated by logical inference
 – \textit{set} of fluents, manipulated with set operations
PDDL – Representing Actions

• Actions described by a set of action schemas that implicitly define $\text{Actions}(s)$ and $\text{Result}(s,a)$ functions

• Classical planning: most actions leave most states unchanged
 – Relates to the Frame Problem: issue of what changes and what stays the same as a result of actions

• PDDL specifies the result of an action in terms of what changes – don’t need to mention everything that stays the same
Action Schema (I)

• Represents a set of ground actions
• Contains action name, list of variables used, precondition and effect
• Example: action schema for flying a plane from one location to another

Action(Fly(p, from, to),
 PRECOND: At(p, from) ∧ Plane(p) ∧
 Airport(from) ∧ Airport(to)
 EFFECT: ¬At(p, from) ∧ At(p, to))
Action Schema (II)

• Free to choose whatever values we want to instantiate variables

• Precondition and effect of an action are each conjunctions of literals (positive or negated atomic sentences)
 – Precondition defines states in which action can be executed
 – Effect defines result of action

• Sometimes we want to *propositionalise* a PDDL problem (replace each action schema with a set of ground actions) and use a propositional solver (e.g. SATPLAN) to find a solution
 – More on this later...
Action Schema (III)

• Action a can be executed in state s if s entails the precondition of a
 $\left(a \in \text{Actions}(s) \right) \iff s \models \text{Precond}(a)$

where any variables in a are universally quantified

• Example:
 $\forall p, \text{from}, \text{to} \ (\text{Fly}(p, \text{from}, \text{to}) \in \text{Actions}(s)) \iff s \models (\text{At}(p, \text{from}) \land \text{Plane}(p) \land \text{Airport} (\text{from})$
 $\land \text{Airport} (\text{to}))$

• We say that a is applicable in s if the preconditions are satisfied by s
Action Schema (IV)

• Result of executing action a in state s (s')
 $\text{Result}(s, a) = (s - \text{Del}(a)) \cup \text{Add}(a)$

• **Delete list** ($\text{Del}(a)$): fluents that appear as negative literals in action’s effect

• **Add list** ($\text{Add}(a)$): fluents that appear as positive literals in action’s effect

• Note that time is implicit: preconditions have time t, effects have $t + 1$
Planning Domain

• A set of action schemas defines a planning domain
• A specific problem within a domain is defined by adding initial state and goal
 – Initial state: conjunction of ground atoms
 – Goal: conjunction of literals (positive or negative) that may contain variables
 • e.g. $\text{At}(p, \text{LPL}) \land \text{Plane}(p)$
• Problem solved when we find sequence of actions that end in a state that entails the goal
 – e.g. $\text{Plane}(\text{Plane}_1) \land \text{At}(\text{Plane}_1, \text{LPL})$ entails the goal $\text{At}(p, \text{LPL}) \land \text{Plane}(p)$
Example: Air Cargo Transport

Init(At(C₁, SFO) \land At(C₂, JFK) \land At(P₁, SFO) \land At(P₂, JFK) \land Cargo(C₁) \land Cargo(C₂) \land Plane(P₁) \land Plane(P₂) \land Airport(JFK) \land Airport(SFO))

Goal(At(C₁, JFK) \land At(C₂, SFO))
Example: Air Cargo Transport

Init(At(C₁,SFO) \land At(C₂,JFK) \land At(P₁,SFO) \land At(P₂,JFK) \land Cargo(C₁) \land Cargo(C₂) \land Plane(P₁) \land Plane(P₂) \land Airport(JFK) \land Airport(SFO))

Goal(At(C₁,JFK) \land At(C₂,SFO))

Action(Load(c,p,a),
 PRECOND: At(c,a) \land At(p,a) \land Cargo(c) \land Plane(p) \land Airport(a)
 EFFECT: \neg At(c,a) \land In(c,p))

Example from Chapter 10 of AIAMA
Example: Air Cargo Transport

\[
\text{Init}(At(C_1, SFO) \land At(C_2, JFK) \land At(P_1, SFO) \land At(P_2, JFK) \land Cargo(C_1) \land Cargo(C_2) \land Plane(P_1) \land Plane(P_2) \land Airport(JFK) \land Airport(SFO))
\]

\[
\text{Goal}(At(C_1, JFK) \land At(C_2, SFO))
\]

\[
\text{Action}(Load(c, p, a),
\quad \text{PRECOND: } At(c, a) \land At(p, a) \land Cargo(c) \land Plane(p) \land Airport(a)
\quad \text{EFFECT: } \neg At(c, a) \land In(c, p))
\]

\[
\text{Action}(Unload(c, p, a),
\quad \text{PRECOND: } In(c, p) \land At(p, a) \land Cargo(c) \land Plane(p) \land Airport(a)
\quad \text{EFFECT: } At(c, a) \land \neg In(c, p))
\]

Example from Chapter 10 of AIAMA
Example: Air Cargo Transport

$\text{Init}(\text{At}(C_1, SFO) \land \text{At}(C_2, JFK) \land \text{At}(P_1, SFO) \land \text{At}(P_2, JFK) \land \\ \text{Cargo}(C_1) \land \text{Cargo}(C_2) \land \text{Plane}(P_1) \land \text{Plane}(P_2) \land \\ \text{Airport}(JFK) \land \text{Airport}(SFO))$

$\text{Goal}(\text{At}(C_1, JFK) \land \text{At}(C_2, SFO))$

$\text{Action(}Load(c,p,a), \\\\ \text{PRECOND: } \text{At}(c,a) \land \text{At}(p,a) \land \text{Cargo}(c) \land \text{Plane}(p) \land \\ \text{Airport}(a) \\\\ \text{EFFECT: } \neg\text{At}(c,a) \land \text{In}(c,p))$

$\text{Action(}Unload(c,p,a), \\\\ \text{PRECOND: } \text{In}(c,p) \land \text{At}(p,a) \land \text{Cargo}(c) \land \text{Plane}(p) \land \\ \text{Airport}(a) \\\\ \text{EFFECT: } \text{At}(c,a) \land \neg\text{In}(c,p))$

$\text{Action(}Fly(p,from,to), \\\\ \text{PRECOND: } \text{At}(p,from) \land \text{Plane}(p) \land \text{Airport}(from) \land \\ \text{Airport}(to) \\\\ \text{EFFECT: } \neg\text{At}(p,from) \land \text{At}(p,to))$

Example from Chapter 10 of AIAMA
Example: Air Cargo Transport

- Problem defined with 3 actions
- Actions affect 2 predicates
- When a plane flies from one airport to another, all cargo inside goes too – in PDDL we have no universal quantifier so we say cargo only becomes at the new airport when it is unloaded

A solution plan:

\[\text{[Load}(C_1, P_1, SFO), \text{Fly}(P_1, SFO, JFK), \text{Unload}(C_1, P_1, JFK), \text{Load}(C_2, P_2, JFK), \text{Fly}(P_2, JFK, SFO), \text{Unload}(C_2, P_2, SFO)].\]

- Problem – spurious actions like \(\text{Fly}(P_1, JFK, JFK)\) have contradictory effects
 - Add inequality preconditions \(\land (\text{from} \neq \text{to})\)
Planning as State-Space Search

• Forward (progression) state-space search
 – Prone to exploring irrelevant actions
 – Uninformed forward-search in large state spaces is too inefficient to be practical
 – Need heuristics to make forward search feasible
Consider this air cargo problem:
- 10 airports: each has 5 planes and 20 pieces of cargo
- Goal: Move all cargo at airport A to airport B
- Simple solution: Load 20 cargo onto plane\(_1\) at airport A, fly to airport B, unload cargo
- Average branching factor is huge:
 - Each of 50 planes can fly to 9 airports
 - 200 cargo can be unloaded/loaded onto any plane at its airport
 - In any state min. 450 actions, max. 10,450 actions
- If we take average 2000 possible actions per state, search graph up to obvious solution has \(2000^{41}\) nodes
Backward (Regression) Relevant-States Search (I)

• Start at the goal, apply actions backwards until reach initial state

• Only consider actions that are relevant to the goal (or current state), i.e.
 – Action must contribute to the goal
 – Must not have any effect which negates an element of the goal

• Consider a set of relevant states at each step, not just a single state (cf. belief state search)
Backward (Regression) Relevant-States Search (II)

• We must know how to regress from a state description to a predecessor state
 – PDDL description makes it easy to regress actions:
 • Effects added by action need not have been true before
 • Preconditions must have been true before
 • Do not consider Del(a) as we don’t know whether or not fluents were true before

• Need to deal with partially uninstantiated actions and states, not just ground ones

• Backward search keeps branching factor lower than forward search BUT using state sets means it’s harder to define good heuristics – so most current systems favour forward search
Exercise

• Consider the following air cargo problem

• **Goal**: deliver a specific piece of cargo to SFO
 \[At(C_2, SFO)\]

• Which action does this suggest that will lead to this goal?
Exercise

• Consider the following air cargo problem

• **Goal:** deliver a specific piece of cargo to SFO $At(C_2, SFO)$

• Suggests the action

 $Action(Unload(C_2, p', SFO),$
 PRECOND: $In(C_2, p') \land At(p', SFO) \land Cargo(C_2) \land Plane(p') \land Airport(SFO)$
 EFFECT: $At(C_2, SFO) \land \neg In(C_2, p')$)

unloading from an unspecified plane p' at SFO

• **What is the regressed state description?**
Exercise

• **Goal:** $\text{At}(C_2, \text{SFO})$

 $\text{Action}(\text{Unload}(C_2, p', \text{SFO}),$

 \text{PRECOND: } \text{In}(C_2, p') \land \text{At}(p', \text{SFO}) \land$

 $\text{Cargo}(C_2) \land \text{Plane}(p') \land$

 $\text{Airport}(\text{SFO})$

 \text{EFFECT: } \text{At}(C_2, \text{SFO}) \land \neg \text{In}(C_2, p')$

• Regressed state description is

 $g' = \text{In}(C_2, p') \land \text{At}(p', \text{SFO}) \land \text{Cargo}(C_2)$

 $\land \text{Plane}(p') \land \text{Airport}(\text{SFO})$
Heuristics for Planning

• As planning uses factored representation of states (rather than atomic states), it is possible to define good domain-independent heuristics

• An admissible heuristic (i.e. does not overestimate distance to goal) can be derived by defining a relaxed problem that is easier to solve
 – Can then make use of A* search to find optimal solutions

• The exact cost of a solution to this easier problem becomes a heuristic for the original problem

• Examples of heuristics: ignore preconditions, state abstraction, problem decomposition...
Planning as Boolean Satisfiability

• Reduces planning problem to classical propositional SAT problem
• **SAT problem**: is this propositional formula satisfiable? (- is there an assignment that makes it true?)
• Making plans by logical inference
• To use SATPlan, PDDL planning problem description needs first to be translated to propositional logic
SATPlan

• SATPLAN is the question of whether there exists any plan that solves a given planning problem
 – SATPLAN is about satisficing (want any solution, not necessarily the cheapest or the shortest)

• Bounded SATPLAN is the question of whether there exists a plan of length k or less
 – Bounded SATPLAN can be used to ask for the optimal solution

• If in the PDDL language we do not allow functional symbols, both problems are decidable
SATPlan Algorithm

1. Construct a propositional sentence that includes
 (a) description of the initial state
 (b) description of the planning domain (precondition axioms,
 successor state axioms, mutual exclusion of actions) up to some
 maximum time t_n
 (c) the assertion that the goal is achieved at time t_n

2. Call SAT solver to return a model for the sentence from 1.

3. If a model exists, extract the variables that represent
 actions at each time from t_0 to t_n and are assigned
 true, and present them in order of times as a plan
Summary

- Planning systems are problem-solving algorithms that operate on explicit propositional or relational representations of states and actions
 - PDDL describes
 - initial and goal states as conjunctions of literals
 - actions in terms of preconditions and effects
- State-space search in forward or backward direction
- Can get effective heuristics by relaxing the planning problem
- Can make plans by logical inference
 - Boolean satisfiability and SATPLAN

- Next time
 - Planning in complex environments