Decidability in Propositional Logic

- In propositional logic, we saw that some formulae were tautologies – true under all interpretations.
- We also saw that there was a procedure which could be used to tell whether any formula was a tautology - this procedure was the truth table method.
- A formula of FOL that is true under all interpretations is said to be valid.
- So we could try to check for validity by writing down all the possible interpretations and looking to see whether the formula is true or not.

First-Order Example

- Unfortunately in general we can’t use this method.
- Consider the formula:
 \[\forall n \cdot \text{Even}(n) \Rightarrow \neg \text{Odd}(n) \]
 and the domain Natural Numbers, i.e. \{1, 2, 3, 4, \ldots\}
- There are an infinite number of interpretations.
- Is there any other procedure that we can use, that will be guaranteed to tell us, in a finite amount of time, whether a FOL formula is, or is not, valid?
Proof in FOL Decidable?

• The answer is no
• For this reason FOL is said to be undecidable
• FOL is often called semi-decidable since although there are procedures that will terminate for valid formulas, given a formula that is not valid, the procedures may not terminate

Recap: Resolution Method

The method involves:
• Translation to a normal form (CNF);
• At each step, a new clause is derived from two clauses you already have;
• Proof steps all use the same resolution rule;
• Repeat until false is derived or no new formulas can be derived.

• We will now consider how propositional resolution can be extended to first-order logic
• Begin by translating to normal form...

Normal Form for Predicate Logic

• To write into normal form we must be able to deal with the removal of quantifiers (uses a technique known as Skolemisation)
• This is quite complex; we will just see some examples here

Dealing with Quantifiers

• Existential quantifiers
 $\exists x \cdot b(x)$ is rewritten as $b(a)$

• Informally somebody is the burglar - call this person a. a is a Skolem constant

• Note, any remaining variables are taken to be universally quantified
 $\exists y \forall x \cdot p(x) \Rightarrow q(x, y)$ is rewritten as
 $\neg p(x) \lor q(x, a)$
 where a is a Skolem constant
Variable Free Resolution

• If a set of clauses contain no variables, resolution can be applied similarly to the propositional case.

Example: show
\[\text{cat(Kitty)} \implies \text{mammal(Kitty)} \]

i.e. show
\[
\begin{align*}
\text{cat(Kitty)} \\
\text{mammal(Kitty)} \\
\end{align*}
\]

is unsatisfiable

To Normal Form

• In conjunctive normal form:

\[
\begin{align*}
\text{cat(Kitty)} \\
\text{¬cat(Kitty)} \lor \text{mammal(Kitty)} \\
\text{¬mammal(Kitty)} \\
\end{align*}
\]

Resolution

• Applying the resolution rule

1. \text{cat(Kitty)} \quad \text{[given]} \\
2. \text{¬cat(Kitty)} \lor \text{mammal(Kitty)} \quad \text{[given]} \\
3. \text{¬mammal(Kitty)} \quad \text{[given]} \\
4. \text{mammal(Kitty)} \quad \text{[1, 2]} \\
5. \text{false} \quad \text{[3, 4]}

• Thus \text{mammal(Kitty)} is a logical conclusion of \text{cat(Kitty)} and

\text{cat(Kitty)} \Rightarrow \text{mammal(Kitty)}

Resolution with Variables

• Show

\[
\begin{align*}
\text{cat(Kitty)} \\
\forall x \cdot \text{cat(x) ⇒ mammal(x)} \\
\text{¬mammal(Kitty)} \\
\end{align*}
\]

i.e. show the following is unsatisfiable

\[
\begin{align*}
\text{cat(Kitty)} \\
\forall x \cdot \text{cat(x) ⇒ mammal(x)} \\
\end{align*}
\]

\[\text{¬mammal(Kitty)}\]
To Normal Form

• In conjunctive normal form:

 cat(Kitty)
 ¬cat(x) ∨ mammal(x)
 ¬mammal(Kitty)

Resolution

• Now to resolve

 cat(Kitty) and ¬cat(x) ∨ mammal(x)

 we must look for a way to replace x in ¬cat(x) in clause 2 so that it matches with cat(Kitty) in clause 1

• We do this by applying the substitution {x ↦ Kitty}

• The process of generating these substitutions is known as unification. We substitute the Most General Unifier: i.e. make the fewest commitments needed to give a match

• Clause 2 becomes ¬cat(Kitty) ∨ mammal(Kitty)

 and now the proof continues as before

Exercise

Theoretical Considerations

• The transformation to normal form is satisfiability preserving. That is, if there is a model for A then there is a model for the transformation of A into CNF.

• Soundness. If false is derived from applying the resolution method to a set of clauses S, then S is unsatisfiable.

• Completeness. If S is an unsatisfiable set of clauses, then a contradiction can be derived by applying the resolution method.

• Decidability. As already mentioned, first-order logic is undecidable. Resolution is semi-decidable, i.e. given an unsatisfiable set of formulae it is guaranteed to derive false, however given a satisfiable set, it may never terminate.
Example of Non-Termination

- Assume we have the following pair of clauses derived from a formula that is satisfiable. We try to show them unsatisfiable (but they are in fact satisfiable).

 1. \(q(y) \lor \neg q(g(y)) \)
 2. \(\neg q(x) \lor \neg p(x) \)

The proof continues as follows.

 3. \(\neg q(g(x)) \lor \neg p(x) \quad [1, 2, \{y \rightarrow x\}] \)
 4. \(\neg q(g(g(x))) \lor \neg p(x) \quad [1, 3, \{y \rightarrow g(x)\}] \)
 5. \(\neg q(g(g(g(x)))) \lor \neg p(x) \quad [1, 4, \{y \rightarrow g(g(x))\}] \)
 ...
 etc

In FO Logic

- We can write the above rules in first-order logic as follows (there are other ways)

 L1. \(\forall x \cdot has_hair(x) \Rightarrow mammal(x) \)
 L5. \(\forall x \cdot eats(x, \text{meat}) \Rightarrow carnivore(x) \)
 L9. \(\forall x \cdot (\text{mammal}(x) \land \text{carnivore}(x) \land \text{colour}(x, \text{tawney}) \land \text{dark_spots}(x)) \Rightarrow \text{cheetah}(x) \)

 - Similarly for the other rules we have seen previously

Rule Base Example

R1: IF animal has hair
 THEN animal is a mammal

R5: IF animal eats meat
 THEN animal is carnivore

R9: IF animal is mammal
 AND animal is carnivore
 AND animal has tawney colour
 AND animal has dark spots
 THEN animal is cheetah

Working Memory

- Assume that we have the following information in working memory
 cyril has hair,
 cyril eats meat,
 cyril has tawney colour,
 cyril has dark spots

 - This can be written in first-order logic as follows
 F1. has_hair(cyril)
 F2. eats(cyril,\text{meat})
 F3. colour(cyril,\text{tawney})
 F4. dark_spots(cyril)
Goal
• Assume we want to show that cyril is a cheetah
• This can be written in first-order logic as cheetah(cyril)

Reasoning
• To show that cheetah(cyril) follows from the above first-order formula we must show L1, L5, L9, F1, F2, F3, F4 ⊨ cheetah(cyril)

We show
L1 ∧ L5 ∧ L9 ∧ F1 ∧ F2 ∧ F3 ∧ F4 ∧ ¬cheetah(cyril)
is unsatisfiable. We abbreviate cyril to c

Proof
1. ¬has_hair(x) v mammal(x)
2. ¬eats(y,meat) v carnivore(y)
3. ¬mammal(z) v ¬carnivore(z) v ¬colour(z,tawney) v ¬dark_spots(z) v cheetah(z)
4. has_hair(c)
5. eats(c,meat)
6. colour(c,tawney)
7. dark_spots(c)
8. ¬cheetah(c)
9. ¬mammal(c) v ¬carnivore(c) v ¬colour(c,tawney) v ¬dark_spots(c)

[3,8,(z ↦ c)]
10. ¬mammal(c) v ¬carnivore(c) v ¬colour(c,tawney)
 [7,9]
11. ¬mammal(c) v ¬carnivore(c) [6,10]
12. ¬mammal(c) v ¬eats(c,meat) [2,11,(y ↦ c)]
13. ¬mammal(c) [5,12]
14. ¬has_hair(c) [1,13,(x ↦ c)]
15. false [4,14]
Search

- Deciding which clauses to resolve together to obtain a proof is similar to the search problems we looked at earlier in the module.
- To show p follows from some database D, i.e.
 \[D \models p \]
- We apply resolution to
 \[D \land \neg p \]
- If we resolve first with clauses derived from $\neg p$, and then the newly derived clauses, we have a backward chaining system.
- Remember that resolution can be refined, e.g. to restrict which clauses can be resolved, but such restrictions may affect completeness.

In FO Logic

- Writing this in FOL we obtain the following:
 \[
 (\text{parent}(cathy, ian) \land \text{parent}(pete, ian) \land \text{female}(cathy) \land \text{male}(pete) \land \\
 \forall x \forall y \cdot (\text{parent}(x,y) \land \text{female}(x)) \Rightarrow \text{mother}(x,y))
 \]

Prolog and First-Order Logic

- Prolog programs are really first-order logic formulae where variables are assumed to be universally quantified.
- Consider the Prolog family tree program studied earlier in the module:
 \[
 \text{parent}(cathy, ian).
 \text{parent}(pete, ian).
 \text{female}(cathy).
 \text{male}(pete).
 \text{mother}(X,Y) :- \text{parent}(X,Y), \text{female}(X).
 \]

Facts, Rules and Queries

- Facts (e.g. $\text{male}(pete)$) in Prolog programs are atomic sentences in FOL.
- Rules in Prolog programs such as $p(X,Y,Z) :- q(X), r(Y,Z)$ are universally quantified FOL formulae.
 \[
 \forall x, \forall y, \forall z \cdot q(x) \land r(y,z) \Rightarrow p(x,y,z)
 \]
- Queries in Prolog such as $\text{mother}(cathy, ian)$ are dealt with by testing whether $\text{mother}(cathy, ian)$ follows from the FOL formula representing facts and rules of the Prolog program.
Horn Clauses

Here is our example written into clausal form
1. parent(cathy, ian)
2. parent(pete, ian)
3. female(cathy)
4. male(pete)
5. \(\neg \text{parent}(x, y) \lor \neg \text{female}(x) \lor \text{mother}(x, y) \)

- Here the clauses 1-4 contain only one positive predicate and clause 5 contains two negative predicates and one positive
- Horn Clauses
- Dealing with Horn Clauses can be very efficient

Inference

- Prolog answers queries by using a special form of resolution known as SLD resolution
- That is, asking the query \(\text{mother}(cathy, ian) \) of the Prolog program given earlier is similar to applying resolution to the FOL formula of the program conjoined with \(\neg \text{mother}(cathy, ian) \)
- Matching in Prolog corresponds to unification in resolution

Summary (I)

- We have looked at how first-order formulae can be transformed into a normal form to enable resolution to be applied
- We have seen how resolution can be applied in first-order logic and how Prolog uses resolution
- If a rule-based system is written in FOL we can use resolution to show whether a particular fact follows from the facts (in working memory) and the rule base
- Although resolution is sound and complete, it is semi-decidable, i.e. applying resolution to a satisfiable formula may lead to non-termination

Summary (II)

- Logic is useful for knowledge representation as it has clear syntax, well-defined semantics (we know what formulae mean), and proof methods e.g. resolution allowing us to show a formula is a logical consequence of others
- Prolog is known as a logic programming language. The language of Prolog is a restricted version of first-order logic (Horn Clauses) and inference is by a form of resolution
- This concludes our study of knowledge representation
- Next time
 - Planning in AI