Overview

• Last time
 – Satisfiability as a search problem; Conjunctive Normal Form; DPLL algorithm

• Today
 – Propositional resolution
 • Characterisation
 • Algorithm
 • Automated reasoning
 – Recap of first-order logic

• Learning outcomes covered today:

Distinguish the characteristics, and advantages and disadvantages, of the major knowledge representation paradigms that have been used in AI, such as production rules, semantic networks, propositional logic and first-order logic;

Solve simple knowledge-based problems using the AI representations studied;

Resolution

• Computer methods are needed to deal with huge knowledge bases
• Enumeration of models is not feasible in propositional logic
• Natural deduction contains too many rules; hard to implement search

• Resolution is a proof method for classical propositional and first-order logic; requires formulae to be in CNF
• Given a formula \(\varphi \) resolution will decide whether the formula is unsatisfiable or not
• Resolution was suggested by John Robinson in the 1960s and he claimed it to be machine oriented as it had only one rule of inference

Validity, Satisfiability and Entailment

• Implications for Knowledge Representation
• Deduction Theorem:
 \(\text{KB} \models \alpha \text{ if and only if } (\text{KB} \Rightarrow \alpha) \text{ is valid} \)
• Or, . . .
 \(\text{KB} \not\models \alpha \text{ if and only if } (\text{KB} \land \neg \alpha) \text{ is unsatisfiable reductio ad absurdum} \)

• For propositional, predicate and many other logics
Resolution

The method involves:

• Translation to a normal form (CNF)
• At each step, a new clause is derived from two clauses you already have
• Proof steps all use the same rule – resolution rule
• Repeat until false is derived (i.e. the formula contains a literal and its negation) or no new formulae can be derived
• We first introduce the method for propositional logic and then (next lecture) extend it to first-order predicate logic

Resolution Rule

• Each A_i is known as a clause and we consider the set of clauses $\{A_1, A_2, \ldots, A_k\}$
• The (propositional) resolution rule is as follows
 \[
 A \lor p \\
 B \lor \neg p \\
 \downarrow
 A \lor B
 \]
 \[
 A \lor B
 \]
 is called the resolvent
• $A \lor p$ and $B \lor \neg p$ are called parents of the resolvent
• p and $\neg p$ are called complementary literals
• Note in the above A or B can be empty

Resolution applied to sets of clauses

• Show by resolution that the following set of clauses is unsatisfiable
 \[
 \{p \lor q, p \lor \neg q, \neg p \lor q, \neg p \lor \neg q\}
 \]

 1. $p \lor q$
 2. $p \lor \neg q$
 3. $\neg p \lor q$
 4. $\neg p \lor \neg q$
 5. p \quad [1, 2]
 6. $\neg p$ \quad [3, 4]
 7. $false$ \quad [5, 6]

Exercise
Resolution Algorithm

• Proof by contradiction, i.e. show that KB ∧ ¬α is unsatisfiable

function PL-Resolution(KB, α) returns true or false
inputs: KB, the knowledge base, a sentence in propositional logic
α, the query, a sentence in propositional logic
clauses ← the set of clauses in the CNF representation of KB ∧ ¬α
new ← { }
loop do
for each pair of clauses Ci, Cj in clauses do
resolvents ← PL-Resolve(Ci, Cj)
if resolvents contains the empty clause then return true
new ← new ∪ resolvents
if new ⊆ clauses then return false
clauses ← clauses ∪ new

Full Circle Example

• Using resolution show
((q ∧ p) ⇒ r) ⊨ (¬p V ¬q V r)
• show that
((q ∧ p) ⇒ r) ∧ ¬(¬p V ¬q V r)
• is unsatisfiable
• Translate to CNF
• Apply the resolution algorithm

1) Transformation to CNF

((q ∧ p) ⇒ r) ∧ ¬(¬p V ¬q V r)
≡(¬(q ∧ p) V r) ∧ ¬(¬p V ¬q V r)
≡((¬q V ¬p) V r) ∧ ¬(¬p V ¬q V r)
≡(¬q V ¬p V r) ∧ (¬¬p ∧ ¬¬q ∧ ¬r)
≡(¬q V ¬p V r) ∧ (p ∧ q ∧ ¬r)
≡(¬q V ¬p V r) ∧ p ∧ q ∧ ¬r

2) Resolution

1. ¬q V ¬p V r
2. p
3. q
4. ¬r
• Finally, apply the resolution rule.
5. ¬q V r [1, 2]
6. r [5, 3]
7. false [4, 6]
Points to note

• As we have derived false, that means the formula was unsatisfiable
• This means that the hypothesis \(\alpha \) was a consequence of the KB
• Note, if we couldn’t obtain false, that means the formula was satisfiable

Resolution restricts the P so it is a proposition, i.e.

\[
\begin{align*}
A \Rightarrow p \\
p \Rightarrow B
\end{align*}
\]

\[
A \Rightarrow B
\]

• Given a set of clauses \(A_1 \land A_2 \land \ldots \land A_k \) to which we apply the resolution rule, if we derive false we have obtained \(A_1 \land \ldots \land \) false which is equivalent to false. Thus the set of clauses is unsatisfiable

Reducing the Search Space (I)

• Although the basic resolution method is complete, it is not very efficient. This is due to the search space that has to be explored
• A lot of effort has been applied in trying to reduce the search space
 – The elimination of tautologies (e.g. clauses such as \(p \lor q \lor \neg q \))
 – Subsumption (if a clause set contains the clauses \(p \) and \(p \lor q \lor \neg q \) may be discarded); removes useless or redundant rules.

Reducing the Search Space (II)

• Some forms of resolution restrict which clauses may be resolved together e.g. unit resolution (always resolve using at least one unit clause) or set of support (after the first step, use at most one original clause)
• Heuristics may be applied to guide the proof search e.g. weighting strategies
• Applying strategies such as set of support or heuristics may affect completeness

Theoretical Issues

• Resolution is refutation complete. That is, if given an unsatisfiable set of clauses the procedure is guaranteed to produce false
• Resolution is sound. That is, if we derive false from a set of clauses then the set of clauses is unsatisfiable
• The resolution method terminates. That is, we apply the resolution rule until we derive false or no new clauses can be derived, and it will always stop
Automated Reasoning

• The resolution proof method may be automated, i.e. carried out by a computer program
• Theorem provers based on resolution have been developed e.g. Otter, SPASS
• The topic of automated reasoning lies within the area of AI
• Prolog also uses resolution, but only for a subset of FOL: Horn Clauses
 – At most, one positive literal in any clause.
 – p :- q, r is equivalent to p V ¬q V ¬r
 – This greatly improves efficiency, making Prolog usable as a programming language.

Pros and Cons of Propositional Logic

• Propositional logic is declarative
• Propositional logic allows partial/disjunctive/negated information (unlike most data structures and databases)
• Propositional logic is compositional
• Meaning in propositional logic is context-independent (unlike natural language, where meaning depends on context)
• Propositional logic has very limited expressive power (unlike natural language)

Example

• Consider
 Kitty is a cat
 cats are mammals
 Kitty is a mammal
 • In propositional logic this would be represented as
 \[\frac{c, m}{k} \]
 – This derivation is not valid in propositional logic. If it were then from any \(c\) and \(m\) could derive any \(k\). We need to capture the connection between \(c\) and \(m\).
 • To do this, we will use first-order (or predicate) logic.

Resolution in Prolog

(1) p:- q, r. i.e. p V ¬q V ¬r
(2) q:- t. i.e. q V ¬t
(3) r:- u. i.e. r V ¬u
(4) t. (5) u.

To show (6) p first add ¬p. Use unit clause and set of support.

Resolve (6) and (1) to get (7) ¬q V ¬r
Resolve (7) and (2) to get (8) ¬t V ¬r
Resolve (4) and (8) to get (9) ¬r
Resolve (9) and (3) to get (10) ¬u
Resolve (10) and (5) to get empty clause.
¬p is unsatisfiable and hence p is true.
Recap of First-Order Logic

- Whereas propositional logic assumes the world contains facts, first-order logic (like natural language) assumes the world contains:
 - Objects (people, houses, numbers, colours...);
 - Relations (part of, after, prime, brother of...);
 - Functions (best friend, one more than, end of...)

- Examples:
 - course_lecturer(John, COMP219)
 - male(John)
 - < (3, 4)
 - < (4, plustwo(1))
 - mammal(Kitty)

 - John, Kitty, COMP219, 3, 4 and 1 are constants.
 - course_lecturer, male, mammal and < are predicates.
 - male, mammal have arity one and the other predicates have arity two.
 - Plustwo is a function (that refers to other objects), e.g. plustwo(1) refers to the constant 3

Interpretations

- We need a domain to which we are referring.
 - course_lecturer(John, COMP219)
- The name John is mapped to the object in the domain we are referring to (me)
- The name COMP219 is mapped to the object in the domain we are referring to (the course COMP219)
- The predicate name course_lecturer will be mapped to a set of pairs of objects where the first in the pair is the (real) person who teaches the second in the pair
- Hence the above evaluates to true

Quantifiers

- Quantifiers allow us to express properties about collections of objects
- The quantifiers are:
 - ∀ universal quantifier ‘For all . . .’
 - ∃ existential quantifier ‘There exists . . .’

 - If P(x) is a predicate then we can write ∀x · P(x); and ∃x · P(x);
 - where x is a variable which can stand for any object in the domain

Syntax of Predicate Logic

- The formulas of predicate logic are constructed from the following symbols
 - a set PRED of predicate symbols with arity;
 - a set FUNC of function symbols with arity;
 - a set CONS of constant symbols;
 - a set VAR of variable symbols;
 - the quantifiers ∀ and ∃;
 - true, false and the connectives ∧, ∨, ⇒, ¬, ⇔.

- Note propositions can be viewed as predicates with arity 0
Terms

• The set of terms, TERM, is constructed by the following rules
 – any constant is in TERM;
 – any variable is in TERM;
 – if t_1, \ldots, t_n are in TERM and f is a function symbol of arity n then $f(t_1, \ldots, t_n)$ is a term.
• $f(x, y)$
• $\text{add}(2, 4)$
• $\text{mother}_{\cdot}(\text{Katie})$

Well-Formed Formulae

• The set of sentences or well-formed formulae of predicate logic are:
 – true, false and propositional formulae are in WFF.
 – if t_1, \ldots, t_n are in TERM and p is a predicate symbol of arity n then $p(t_1, \ldots, t_n)$ is in WFF.
 – If A and B are in WFF then so is $\neg A$, $A \lor B$, $A \land B$, $A \Rightarrow B$ and $A \Leftrightarrow B$.
 – If A is in WFF and x is a variable then $x \cdot A \forall$ and $\exists x \cdot A$ are in WFF.
 – If A is in WFF then so is (A).

Exercise

• Suppose we have a formula $\forall x \cdot P(x)$. What does x range over? Physical objects, numbers, people, times, . . . ?
• Depends on the domain that we intend. Often, we name a domain to make our intended interpretation clear
 – Suppose our intended interpretation is the positive integers. Suppose $>, +, \times, \ldots$ have the usual mathematical interpretation.
 – Is this formula satisfiable under the above interpretation?
 $\exists n \cdot n = (n \times n)$
 – Now suppose that our domain is negative integers (where \times has the usual mathematical interpretation).
 – Is the formula satisfiable under this interpretation?
Summary

• We have described how to apply the proof method *resolution* in propositional logic
 – First, formulae need to be in conjunctive normal form
 – There is only one rule of inference

• We have had a brief recap of first-order logic
 – We have looked at its syntax but we haven't seen its formal semantics (see good AI and logic books)
 – Informally we've seen we need a domain of interest; constants, predicates, functions have mappings into this domain
 – To evaluate quantifiers we must check whether all objects in the domain satisfy the formula (∀) or some object does (∃)

• Next time
 – We will look at extending resolution to FOL