Overview

- Last time
 - Game playing
 - Minimax decisions
 - Alpha-beta pruning

- Today
 - Introduce the need for explicit knowledge representation
 - Describe means of knowledge representation
 - Consider rules as one particular means of knowledge representation

- Learning outcome covered today:
 Distinguish the characteristics, and advantages and disadvantages, of the major knowledge representation paradigms that have been used in AI, such as production rules, semantic networks, propositional logic and first-order logic;

Knowledge in AI

- Search is a “universal method” for problem solving
- But real problems require methods with more power, which comes from tailoring to the specific problem
 - Heuristic searches
 - Evaluation functions for game playing
 - Solution templates
- In order to solve the complex problems encountered in AI, one generally needs a large amount of knowledge, and suitable mechanisms for representing and manipulating all that knowledge

The Knowledge Principle

Ed Feigenbaum:

- “... power exhibited ... is primarily a consequence of the specialist knowledge employed by the agent and only very secondarily related to ... the power of the [computer]”
- “Our agents must be knowledge rich, even if they are methods poor”
The Role of Knowledge

- Knowledge about a domain allows problem solving to be focused - it is not necessary to search exhaustively: useless branches need not be explored

- Explicit representations of knowledge allow a domain expert to understand the knowledge a system has, add to it, edit it, and so on
 - Knowledge engineering

- Comparatively simple algorithms can be used to reason with the knowledge and derive new knowledge

What is Knowledge?

- Knowledge is information about some domain or subject area, or about how to do something

- Knowledge can take many forms. Some simple examples are:
 - Eve is a female, Adam is a male
 - Females with children are mothers
 - Mothers are females, fathers are males
 - cf. Prolog facts and rules

How to Represent Knowledge?

- Why don’t we use natural languages (e.g. English) to represent knowledge?
 - Natural language is certainly expressive enough!
 - But it is also too ambiguous for automated reasoning
 - No clear semantics
- Syntactic ambiguities
 - “Time flies like an arrow; Fruit flies like a banana”
- Semantic ambiguities
 - “bank” can be “river bank” or “financial bank”
- What about ‘computer’ languages?

Computer Language

- Representation of facts in World
- Inference
- New conclusions
- Map back to real world
- Map to KR language
- Real World
Databases

• Simple databases are commonly used to good effect in computer science
• They can be used to store and manipulate virtually any kind of information

But storage and display are not enough - we also need to manipulate the knowledge

Databases as a KR

• **Advantages**
 – Databases are well suited to efficiently representing and processing large amounts of data (and derivation from a database is virtually independent of its size)
 – We can build on traditional database systems to process more complex and more powerful representational devices (e.g. frames)

Knowledge Representation

• **Disadvantages**
 – Only simple aspects of the problem domain can be accommodated
 – We can represent entities, and relationships between entities, but not much more
 • Prolog facts
 – Reasoning is very simple. Basically, the only reasoning possible is simple lookup, and we usually need more sophisticated processing than that

• So, how can we represent knowledge in a form amenable to computer manipulation?

• Desirable features of a KR scheme
 – representational adequacy
 – inferential adequacy
 – inferential efficiency
 – well-defined syntax and semantics
 – naturalness
Representational Adequacy

• A KR scheme must be able to represent the knowledge appropriate to our problem
 – e.g. Chess: must represent type of piece, colour of piece, position
 – Cannot permit two pieces on same square
• Some KR schemes are better for particular sorts of knowledge than others
• *There is no one ideal KR scheme*

Inferential Adequacy

• A KR scheme must allow us to make new inferences from old knowledge
• It must make inferences that are
 – *sound* - the new knowledge really does follow from the old knowledge
 – *complete* - it should make all the right inferences
• Soundness is usually easy, completeness is often very hard

Exercise

Inferential Efficiency

• A KR scheme should be *tractable* - make inferences in reasonable (polynomial) time
• Unfortunately, any KR scheme with significant *expressive power* is not going to be efficient
• Often, the more general a KR scheme is, the *less efficient* it is
• Use KR schemes tailored to problem domain - less general, but more efficient
 – KR scheme with expressive power: first-order logic, is undecidable
 – Prolog uses Horn Clauses – a tractable subset of first order logic
Syntax and Semantics

- It should be possible to tell
 - whether any construction is “grammatically correct”
 - how to read any particular construction - no ambiguity
- Thus a KR scheme should have a well-defined syntax

- It should be possible to precisely determine, for any given construction, exactly what its meaning is (the circumstances under which it is true)
- Thus a KR scheme should have well-defined semantics

- Syntax is easy, semantics is hard!

Example

- **Arithmetics**
 - Syntax
 - The expression $A + B > 3$ is correct while $A + B >$ is not
 - Semantics
 - $A + B > 3$ evaluates to either “true” or “false” depending on the values of A and B
 - Java
    ```java
    if(bePolite)
       System.out.println("Good morning");
    else
       System.out.println("I am busy");
    ```

Naturalness

- Ideally, KR scheme should closely correspond to our way of thinking, reading, and writing
- Allow knowledge engineer to read and check knowledge base
- Again, the more general a KR scheme is, the less likely it is to be readable and understandable
 - People may have preferences: logic is natural to some; some people like diagrams or graphs while others do not

Basic Approaches

- Neither natural languages nor traditional computer formalisms are good enough for KR
- Some alternative basic approaches are
 - Rule-based systems (a.k.a. production systems)
 - Expert systems
 - Semantic networks
 - Graphical representation convenient for knowledge engineers
 - Later developed into 'ontologies'
 - Logic
 - Formal semantics
 - ...
Rule-Based Systems

- Knowledge is specified as a collection of rules
- Each rule has the form
 \[\text{condition} \rightarrow \text{action} \]
 which may be read \textit{if condition then action}
- The condition (antecedent) is a \textit{pattern}
- The action (consequent) is an \textit{operation} to be performed if the rule \textit{fires}
- Rules are applied to \textit{facts} - unconditional statements that are assumed to be correct (at the time they are used)
 - A rule can fire if the condition matches the facts

Example Rule Base

- Rules:
 - R1: IF animal has feathers
 THEN animal is a bird
 - R2: IF animal is a bird
 THEN animal can fly
 - R3: IF animal can fly
 THEN animal is not scared of heights

Suppose F1: kiwi has feathers
R1 fires so add F2: kiwi is a bird
R2 fires so add F3: kiwi can fly
R3 fires so add F4: kiwi is not scared of heights

Rule-Based System Architecture

- A collection of rules
- A collection of facts
- A rule \textit{fires} if a fact \textit{matches} the \textit{condition} of the rule
 - Mechanism that fires rules is \textit{inference engine}

What can we do with rules?

- See what new facts can be \textit{derived}, e.g.
 - F3: kiwi is not scared of heights
- Ask whether a fact is \textit{implied} by the knowledge base and already known facts, e.g.
 - Can a giraffe fly?
Rule-Based Systems as KR

• Advantages
 – These systems are very expressive
 – The rules lead to a degree of modularity

• Disadvantages
 – There is a lack of precise semantics for the rules
 – The systems are not always efficient
 – What if several rules match the facts?

Relation to Search

• Using rules can be thought of as just another form of search
• The sets of facts are states
• Rules are the actions performed in states
• This suggests that there are schemes for applying rules that are similar to search techniques
• We will look at these in the next lecture

Summary

• Discussed the need for explicit knowledge representation
• Considered properties of KR schemes
• Looked at rules as one such scheme

• Next time
 – Algorithms for reasoning with rules