Lecture 4: Intelligent Agents
Overview

• Last time
 – An introduction to Prolog

• Today:
 – A brief history of AI
 – Introduce ‘agents’
 – Consider agent task environments
 – Consider agent program designs

• Learning outcome covered today:
 Identify or describe the characteristics of intelligent agents and the environments that they can inhabit.
Brief History of AI
1943–56

- McCulloch & Pitts (1943)
 - artificial neural net - proved equivalent to Turing machine
- Shannon, Turing (1950)
 - Information theory
 - Turing Test
 - chess playing programs
- Marvin Minsky (1951)
 - first neural net computer - SNARC
- Dartmouth College (1956)
 - term “AI” coined by John McCarthy
 - Newell & Simon presented LOGIC THEORIST program

“Every aspect of learning or any other feature of intelligence can in principle be so precisely described that a machine can be made to simulate it”

Dartmouth manifesto
1956-70

- Programs written that could
 - plan, learn, play games, prove theorems, solve problems
- Major centres established
 - Minsky - MIT
 - McCarthy - Stanford
 - Newell & Simon - CMU
- Major feature of the period was *microworlds* - toy problem domains
 - Example: blocks world
 - “It’ll scale, honest. . . ”

1969: First International Joint Conference on Artificial Intelligence held
1970: First Issue of Artificial Intelligence journal
1970s

• 1970s period of recession for AI (especially in UK)
 – (Lighthill report in UK) “formed the basis for the decision by the British government to end support for AI research in all but two universities [from AIAMA]”
• Techniques developed on microworlds would not scale
• Implications of complexity theory developed in late 1960s, early 1970s began to be appreciated
• Brute force techniques will not work
• Works in principle does not mean works in practice
• In US – foundational work on expert and knowledge based systems
1980s

- General purpose, brute force techniques don’t work, so use knowledge rich solutions
- Early 1980s saw emergence of expert systems as systems capable of exploiting knowledge about tightly focused domains to solve problems normally considered the domain of experts
- Ed Feigenbaum’s knowledge principle
- In UK Alvey programme (1984-89) revived funding and interest
1990s

- Many companies set up to commercialise expert systems technology went bust (US AI winter)
- 1990s: emphasis on understanding the interaction between agents and environments
- AI as component, rather than as end in itself
2000s onwards

• Agents developed as a key technology for symbolic AI
 – www as a delivery mechanism
• Revival of sub symbolic AI and probability networks
• Advances in robotics, vision, etc.
• Fielded applications emerging...
Intelligent Agents

• The intelligent entities that we engineer in AI are known as agents.

• A popular characterisation by Wooldridge and Jennings (1995) is:

 “An agent is a computer system that is situated in some environment, and that is capable of autonomous action in this environment in order to meet its design objectives.”

• A collection of such agents situated together in an environment and capable of interacting in with one another is known as a ‘multi-agent system’.

• Autonomy is central to the notion of agency.
Intelligent Agents

- Capabilities that we would expect such intelligent agents to possess (again from Wooldridge and Jennings (1995)):

 - **Reactivity**: Intelligent agents are able to perceive their environment, and respond in a timely fashion to changes that occur in it in order to satisfy their design objectives.

 - **Proactiveness**: Intelligent agents are able to exhibit goal-directed behaviour by taking the initiative in order to satisfy their design objectives.

 - **Social ability**: Intelligent agents are capable of interacting with other agents (and possibly humans) in order to satisfy their design objectives.
Intelligent Agents

Environment

Agent

Action output

Sensor input (percepts)
Task Environments

• Agents are situated within task environments, which differ in accordance with the particular problem area that the agent is designed to address.

• When we design agents to solve particular problems, we must specify the task environment as fully as possible. Four elements to take into account:

• **PEAS (from AIAMA):**
 – Performance measure: the criteria by which we can measure the success of an agent’s behaviour.
 – Environment: the external environment that the agent inhabits.
 – Actuators: the means by which the agent acts within its environment.
 – Sensors: the means by which the agent senses its environment.
Example

- Consider an agent used for medical diagnosis; Its PEAS description might be as follows:

 - **Performance measure**: health of patient, costs of treatment.
 - **Environment**: patient, hospital, staff.
 - **Actuators**: display questions, tests, diagnoses and treatments.
 - **Sensors**: keyboard entry of patient’s symptoms, responses to questions and findings.
Exercise

Develop a PEAS description of the task environment for a mobile agent designed to roam the moon and gather rock samples.
Task Environments

• The properties of the task environment that the agent inhabits may differ greatly, depending upon the particular application area.

• Russell and Norvig have given a classification of the different types of properties of agent environments:
 • Fully observable vs partially observable
 • Deterministic vs stochastic
 • Episodic vs sequential
 • Static vs dynamic
 • Discrete vs continuous
Fully Observable vs Partially Observable

- **Fully observable** environment: one in which the agent can fully obtain complete, up-to-date info about the environment’s state.

- Most moderately complex environments are **partially observable**.

- Fully observable environments are more convenient
 - agent does not need to maintain any internal state to keep track of the environment.
 - simpler to build agents for such environments.

- Fully observable env. examples: a crossword puzzle, the game of backgammon.

- Partially observable env. examples: the everyday physical world, the Internet, the card game poker.
Deterministic vs Stochastic

- **Deterministic** environment: one in which any action has a single guaranteed effect - there is no uncertainty about the state that will result from performing an action.

- This definition applies *from the point of view of the agent*.

- If the environment is deterministic except for the actions of other agents, the environment is said to be **strategic**.

- **Stochastic** environments present greater problems for the agent designer.

- Deterministic env. examples: a crossword puzzle, image analysis.

- Stochastic env. examples: medical diagnosis, the card game poker, the physical world.
Episodic vs Sequential

- **Episodic** environment: one where the performance of an agent is dependent on a number of discrete episodes, with no link between its performance in different scenarios.

- Episodic environments are simpler for agent developers
 - the agent can decide what action to perform based only on the current episode without having to reason about the interactions between this and future episodes.

- In **sequential** environments the current decision could affect all future decisions.

- Episodic env. examples: a mail sorting system, defect detection on an assembly line.

- Sequential env. examples: a crossword puzzle, the card game poker.
Static vs Dynamic

• **Static** environment: one that can be assumed to remain unchanged whilst the agent is deliberating.

• **Dynamic** environment: one that has other processes operating on it, and hence changes whilst the agent is deliberating.

• Static environments are easier to deal with
 – the agent does not need to keep observing the environment whilst deciding how act, nor need it worry about time elapsing.

• Static env. examples: a crossword puzzle, the card game poker, the game of backgammon.

• Dynamic env. examples: medical diagnosis, the physical world.
Discrete vs Continuous

- **Discrete** environment: one that contains a fixed, finite number of distinct states.

- The distinction applies to the state of the environment, the way in which time is handled, the percepts and actions of the agent.

- **Continuous** environments provide greater challenges for agent designers.

- Discrete env. examples: a crossword puzzle, the game of chess.

- Continuous env. examples: image analysis, medical diagnosis.
Exercise

Considering each of the previous characteristics, which apply to an automated agent designed to drive a taxi?
Environments and Design

- The type of task environment that an agent inhabits affects its design and behaviour.

- Additionally, different tasks require different architectures.

- Architecture: some computing device equipped with sensors and actuators
 - e.g., a mobile robot with sensors, a PC, etc.

- The task of the agent program designer is to specify how the agents’ percepts map to its actions.

- Agent = architecture + program
Agent Program Designs

• Four basic kinds of agent program are identified that embody the notions that underpin most intelligent systems (AIAMA):
 1) Simple reflex agents
 2) Model-based reflex agents
 3) Goal-based agents
 4) Utility-based agents

• The ability to learn improves the performance of all these agents.
 – Enables agents to operate in environments of ignorance.
 – Increases performance beyond the limitations of agents’ current knowledge.
Simple Reflex Agents

• Simple reflex agents: select actions to execute based upon the current percept.
 – Do not take the percept history into account.
 – Implemented using condition-action rules.
 – Such agents are simple to implement, but of very limited intelligence.
 – Success of decision making seriously deteriorates with unobservability.
Model-Based Reflex Agents

• Model-based reflex agents: maintain an internal state that depends upon the percept history.
 – Current percept combined with previous internal state to update description of current state.
 – Helps to deal with partial observability.
 – Requires two forms of knowledge to be encoded in the agent program in order to create a ‘model’ of the world.
 • How the world changes independent of the agent’s actions.
 • How the world changes due to the agent’s actions.
Goal-Based Agents

• Goal-based agents: select appropriate actions to achieve particular desirable states of the environment: ‘goals’.
 – Knowledge of the current state does not automatically mean that the agent knows what to do.
 – Decision making may become complicated when dealing with long sequences of actions to achieve a goal.
 • Search and planning may be required.
 – Goal-based agents more flexible to modification than reflex-based agents.
Utility-Based Agents

• Utility-based agents: make use of a utility function to compare the ‘desirability’ of different states that result from actions.
 – Many actions may satisfy a goal, but which is the most desirable?
 – Utility function maps a state, or sequence of states, onto a real number to give the degree of ‘usefulness’ of the state to the agent.
 • Agent tries to maximise the value of its utility function.
 – Tradeoffs may need to be made between conflicting goals.
 – Where outcome of goals is uncertain, utility enables agent to evaluate goal importance against likelihood of success.
 – Utility-based agents are generally capable of higher quality behaviour than goal-based agents.
Summary

• **Today**

 – Intelligent agents

 – Task environments

 • PEAS description

 • Properties of environments

 – Agent program designs

• **Next time**

 – Search in AI