Lecture 26: Linear Models and Non-parametric Models
Class Test 2 Reminder

• Class test 2 will take place **next week**
 – 15th December, 15:00
 – Again, based on first letter of last name:
 A-G → CHAD-ROTB
 H-Z → CTH-LTA

• Procedure will be the same as last time
• The format is a mix of MCQ and written answers
• The test covers **all** context except Prolog
• Some sample questions will be discussed on Monday
Overview

• **Last time**
 – Types of learning; supervised learning; decision trees

• **Today**
 – More supervised learning methods
 • Regression and classification with linear models
 • Non-parametric models
 – K-nearest neighbours
 – A brief look at unsupervised learning

• Learning outcomes covered today:

 Identify or describe the major approaches to learning in AI and apply these to simple examples.
Linear Models

• Linear functions of continuous valued inputs have been used for hundreds of years

• Fitting a line to a function
Univariate Linear Regression

• The task of “fitting a straight line”

• A univariate linear function with input x and output y has the form

$$ y = w_1 x + w_0 $$

where w_0 and w_1 are real valued coefficients (weights) to be learned
Linear Regression

• We define \mathbf{w} to be the vector $[w_0, w_1]$ and define

$$h_{\mathbf{w}}(x) = w_1 x + w_0$$

• The task of finding the $h_{\mathbf{w}}$ that best fits the data is called linear regression
Fitting a Straight Line

• To fit a line to the data we have to find the values of the weights \([w_0, w_1]\) that **minimise** the empirical loss

• Typically: squared loss function summed over all the training examples

\[
Loss(h_w) = \sum_{j=1}^{N} (y_j - (w_1 x_j + w_0))^2
\]

which finds a value for the distance of each training example from the line drawn using \([w_0, w_1]\)
Example: Houses for Sale

- Data points plot price vs floor space of houses for sale in Berkeley in July 2009
- Linear function hypothesis that minimises squared error loss:
 \[y = 0.232x + 246 \]
Linear Classification

• Linear functions can be used for classification as well as regression
• A decision boundary is a line that separates two classes
• A linear decision boundary is called a linear separator and data that admit such a separator are called linearly separable
We have a training data set with information about 2 classes:
- earthquakes (interesting to seismologists)
- underground explosions (interesting for arms control)

Each data point has 2 inputs \((x_1, x_2)\) which describe body \((x_1)\) and surface \((x_2)\) wave magnitudes computed from a seismic signal.

The task of classification is to learn a hypothesis \(h\) that will take new data points \((x_1, x_2)\) and return either 0 for earthquakes or 1 for explosions.
Seismic Example continued

- Plot of two seismic data parameters for earthquakes (white circles) and explosions (black circles) and a decision boundary (linear separator)
- Explosions (class 1) are to the right of the line (higher x_1 and lower x_2) - the line can be thought of as a threshold function
Seismic Example continued

- Including more/different training data can affect the decision boundary
- In (b) above, including more data points into the same domain has meant that the earthquakes and explosions are no longer linearly separable
Parametric Models

• Linear regression uses the training data to estimate a fixed set of parameters \mathbf{w} that defines our hypothesis $h_{\mathbf{w}}(x)$ and at that point we no longer need the training data.

• A learning model that summarises data with a set of parameters of fixed size is called a parametric model.

• No matter how much data you give a parametric model, it always needs the same number of parameters.

• However, if there are a large number of examples available and the correct function is wiggly not linear, the model shouldn’t be restricted to linear functions...
Non-parametric Models

• **Non-parametric models** cannot be characterised by a bounded set of parameters
 – e.g.: allow to vary, then use more complex model if we have more data

• e.g. Suppose our hypothesis retains all of the training examples and uses them to predict the next example; this is non-parametric as the number of parameters is unbounded
 – This approach is called instance-based learning
 – Simplest method is table lookup – but this method does not generalise well (if x not in table, return a default value)
Nearest Neighbour Models

Improve on table lookup with a small variation:

• **k-nearest neighbours** lookup: given x_q find the k examples that are nearest to x_q

• First **find** $\text{NN}(k, x_q)$ then...

• ...to **classify**, take the **plurality vote** of the neighbours
 – In binary classification, majority vote
 – To avoid ties, k is always odd

• ...for **regression**, take the **mean** or **median** of k neighbours
Seismic Example Revisited

- (a) k-nearest-neighbour model showing the explosion class decision boundary with $k=1$ (note the overfitting, i.e. when a model describes noise instead of the underlying relationship)
- (b) with $k=5$ the overfitting problem is removed for this dataset
Exercise

• Suppose a 7-nearest-neighbours regression search returns \(\{4, 2, 8, 4, 9, 11, 100\} \) as the 7 nearest \(y \) values for a given \(x \) value.

• What is the value of \(y \) ?
Exercise

• Suppose a 7-nearest-neighbours regression search returns \{4,2,8,4,9,11,100\} as the 7 nearest \(y \) values for a given \(x \) value.

• What is the value of \(y \)?

• Using median: \(y=8 \)

• Using mean: \(y=138/7 \) i.e. 19.7
Measuring Distance

- To find the nearest neighbours, we need to measure the distance between examples.
- For Boolean attribute values, we measure the Hamming distance, i.e. number of attributes on which the two points differ.
- NB: if we use the raw numbers for each attribute then the total distance is affected by a difference in scale in any dimension — e.g. if we change measurements from cm to miles in dimension \(i \) but keep all others the same, we will get different nearest neighbours.
- Therefore we need to apply normalisation to the measurements in each dimension, i.e. rescale them — e.g. to numbers between 0 and 1.
Example: Normalisation

• To normalise height data of a group one method is to rescale the data to values between 0 and 1 using

\[x' = \frac{x - \text{min}}{\text{max} - \text{min}} \]

where \(x \) is the original value and \(x' \) is the normalised value

• Example:

\[[155, 158, 160, 162, 164, 166, 169, 171, 172, 175] \]

\[\text{min} = 155; \text{max}=175 \text{ so } x' = \frac{x - 155}{20} \]

Normalised data:

\[[0, 0.15, 0.25, 0.35, 0.45, 0.55, 0.7, 0.8, 0.85, 1] \]
Exercise

• Calculate the Hamming distance between the following two input points:
Exercise

• Calculate the Hamming distance between the following two input points:

• Solution: 5
Supervised Learning - Summary

• We have looked at:
 – Decision trees
 – Linear regression
 – Linear classification
 – Non-parametric models
 • k-nearest neighbours
Unsupervised Learning

• It is not always possible to acquire example data to use to train a learning algorithm
• In unsupervised learning the agent learns patterns in the input even though no explicit feedback is supplied
• There are two complementary perspectives:
 – *Self-organisation*, which tries to understand the principles of organisation of natural systems and use them to create efficient algorithms (e.g. Kohonen self-organising maps)
 – *Statistical approach*, which tries to extract the most relevant information from the distribution of unlabelled data (*clustering*)
Self-Organisation

• Self-organisation is observed in a wide range of natural processes
 – *Physics*: formation of crystals, star formation, chemical reactions,...
 – *Biology*: folding of proteins, social insects, flocking behaviour, brain functioning,...
 – *Social science*: critical mass, group thinking, herd behaviour,...
 – *Computer science*: cellular automata, multi-agent systems, random graphs,...
Clustering and its applications

• **Clustering** is the problem of detecting potentially useful and *distinct* clusters/categories in a collection of unlabelled objects

 – e.g. suppose we record the spectra of 100,000 stars. Astronomers have to perform unsupervised clustering to identify categories of stars (e.g. “red giant”, “white dwarf”)

• Example applications:

 – *Marketing*: group customers on properties and buying records
 – *Finance*: fraud detection
 – *Counter-terrorism*: identifying groups from Internet usage
 – *Insurance*: identifying high cost and fraudulent policy holders
 – *City planning*: group houses according to their type, value and location
 – *Earthquake studies*: identify dangerous zones
 – *WWW*: document classification, weblog data of access patterns
Clustering

• Shows 500 data points each with 2 continuous attributes (e.g. stars with spectral intensities at 2 different frequencies)
• Model shows 3 clusters
Summary

• More on supervised learning
 – Regression and classification with linear models
 – Non-parametric models
 • k-nearest neighbours
• Unsupervised learning
 – Clustering

• Next time
 – Reinforcement models