Overview

• **Last time**
 – Satisfiability as a search problem; Conjunctive Normal Form; DPLL algorithm

• **Today**
 – Propositional resolution
 • Characterisation
 • Algorithm
 • Automated reasoning
 – Recap of first-order logic

• **Learning outcomes covered today:**

Distinguish the characteristics, and advantages and disadvantages, of the major knowledge representation paradigms that have been used in AI, such as production rules, semantic networks, propositional logic and first-order logic;

Solve simple knowledge-based problems using the AI representations studied;
Resolution

• Computer methods are needed to deal with huge knowledge bases
• Enumeration of models is not feasible in propositional logic
• Natural deduction contains too many rules; hard to implement search

• Resolution is a proof method for classical propositional and first-order logic; requires formulae to be in CNF
• Given a formula φ resolution will decide whether the formula is unsatisfiable or not
• Resolution was suggested by John Robinson in the 1960s and he claimed it to be machine oriented as it had only one rule of inference
Validity, Satisfiability and Entailment

• Implications for Knowledge Representation

• Deduction Theorem:
 \[\text{KB} \models \alpha \text{ if and only if } (\text{KB} \Rightarrow \alpha) \text{ is valid} \]

• Or, . . .
 \[\text{KB} \models \alpha \text{ if and only if } (\text{KB} \land \neg \alpha) \text{ is unsatisfiable} \]
 \textit{reductio ad absurdum}

• For propositional, predicate and many other logics
Resolution

The method involves:

• Translation to a normal form (CNF)
• At each step, a new clause is derived from two clauses you already have
• Proof steps all use the same rule
 – resolution rule
• Repeat until false is derived (i.e. the formula contains a literal and its negation) or no new formulae can be derived
• We first introduce the method for propositional logic and then (next lecture) extend it to first-order predicate logic
Resolution Rule

• Each A_i is known as a clause and we consider the set of clauses
 \{A_1, A_2 \ldots A_k\}

• The (propositional) resolution rule is as follows
 \[
 \begin{array}{c}
 A \lor p \\
 B \lor \neg p \\
 \hline \\
 A \lor B
 \end{array}
 \]

• $A \lor B$ is called the resolvent
• $A \lor p$ and $B \lor \neg p$ are called parents of the resolvent
• p and $\neg p$ are called complementary literals
• Note in the above A or B can be empty
Resolution applied to sets of clauses

• Show by resolution that the following set of clauses is unsatisfiable

\{ p \lor q, p \lor \neg q, \neg p \lor q, \neg p \lor \neg q \}

1. p \lor q
2. p \lor \neg q
3. \neg p \lor q
4. \neg p \lor \neg q
5. p \ \ [1, 2]
Resolution applied to sets of clauses

• Show by resolution that the following set of clauses is unsatisfiable

\{ \neg p \lor q, \ p \lor \neg q, \ \neg p \lor q, \ \neg p \lor \neg q \}

1. \ p \lor q
2. \ p \lor \neg q
3. \ \neg p \lor q
4. \ \neg p \lor \neg q
5. \ p \quad [1, 2]
6. \ \neg p \quad [3, 4]
Resolution applied to sets of clauses

• Show by resolution that the following set of clauses is unsatisfiable

\{p \lor q, p \lor \neg q, \neg p \lor q, \neg p \lor \neg q\}

1. p \lor q
2. p \lor \neg q
3. \neg p \lor q
4. \neg p \lor \neg q
5. p \ [1, 2]
6. \neg p \ [3, 4]
7. false \ [5, 6]
Exercise

• use resolution: is the following set of clauses satisfiable?
 \{\neg p \lor q \lor r, p, \neg q, \neg r\}
Resolution Algorithm

- Proof if \(KB \models \alpha \) by contradiction (i.e. show that \(KB \land \neg \alpha \) is unsatisfiable)

```
function PL-Resolution(KB, \alpha) returns true or false

  inputs: KB, the knowledge base, a sentence in propositional logic
           \alpha, the query, a sentence in propositional logic

  clauses ← the set of clauses in the CNF representation of \( KB \land \neg \alpha \)

  new ← \{ \}

  loop do
    for each pair of clauses \( C_i, C_j \) in clauses do
      resolvents ← PL-Resolve(C_i, C_j)
      if resolvents contains the empty clause then return true \( \langle \neg \land \alpha \rangle \)
      new ← new \( \cup \) resolvents
      if new \( \subseteq \) clauses then return false \( \langle \neg \land \alpha \rangle \)
      clauses ← clauses \( \cup \) new
  ```
Full Circle Example

• Using resolution show

\[(q \land p) \Rightarrow r \vdash (\neg p \lor \neg q \lor r)\]

• show that

\[(q \land p) \Rightarrow r \land \neg (\neg p \lor \neg q \lor r)\]

• is unsatisfiable

• Translate to CNF

• Apply the resolution algorithm
1) Transformation to CNF

\[((q \land p) \Rightarrow r) \land \neg (\neg p \lor \neg q \lor r) \]
1) Transformation to CNF

\[((q \land p) \Rightarrow r) \land \neg (\neg p \lor \neg q \lor r) \]
\[\equiv (\neg (q \land p) \lor r) \land \neg (\neg p \lor \neg q \lor r)\]
1) Transformation to CNF

\[((q \land p) \Rightarrow r) \land \neg (\neg p \lor \neg q \lor r) \equiv (\neg (q \land p) \lor r) \land \neg (\neg p \lor \neg q \lor r) \equiv (\neg q \lor \neg p) \lor r \land \neg (\neg p \lor \neg q \lor r) \]
1) Transformation to CNF

\[((q \land p) \Rightarrow r) \land \neg(\neg p \lor \neg q \lor r) \equiv (\neg(q \land p) \lor r) \land \neg(\neg p \lor \neg q \lor r) \equiv ((\neg q \lor \neg p) \lor r) \land \neg(\neg p \lor \neg q \lor r) \equiv (\neg q \lor \neg p \lor r) \land (\neg \neg p \land \neg \neg q \land \neg r) \]
1) Transformation to CNF

\[((q \land p) \Rightarrow r) \land \neg(\neg p \lor \neg q \lor r) \equiv \neg((q \land p) \lor r) \land \neg(\neg p \lor \neg q \lor r) \]
\[\equiv ((\neg q \lor \neg p) \lor r) \land \neg(\neg p \lor \neg q \lor r) \]
\[\equiv (\neg q \lor \neg p \lor r) \land (\neg \neg p \land \neg \neg q \land \neg r) \]
\[\equiv (\neg q \lor \neg p \lor r) \land (p \land q \land \neg r) \]
1) Transformation to CNF

\[
\begin{align*}
((q \land p) \Rightarrow r) & \land \neg (\neg p \lor \neg q \lor r) \\
\equiv & \neg (q \land p) \lor r) \land \neg (\neg p \lor \neg q \lor r) \\
\equiv & (\neg q \lor \neg p) \lor r) \land (\neg \neg p \land \neg \neg q \land \neg r) \\
\equiv & (\neg q \lor \neg p \lor r) \land (p \land q \land \neg r) \\
\equiv & (\neg q \lor \neg p \lor r) \land p \land q \land \neg r
\end{align*}
\]
2) Resolution

1. \(\neg q \lor \neg p \lor r \)
2. \(p \)
3. \(q \)
4. \(\neg r \)

• Finally, apply the resolution rule.
2) Resolution

1. $\neg q \lor \neg p \lor r$
2. p
3. q
4. $\neg r$

- Finally, apply the resolution rule.

5. $\neg q \lor r \quad [1, 2]$
2) Resolution

1. $\neg q \lor \neg p \lor r$
2. p
3. q
4. $\neg r$

• Finally, apply the resolution rule.

5. $\neg q \lor r \ [1, 2]$
6. $r \ [5, 3]$
2) Resolution

1. \(\neg q \lor \neg p \lor r \)
2. \(p \)
3. \(q \)
4. \(\neg r \)

• Finally, apply the resolution rule.

5. \(\neg q \lor r \) \[1, 2\]
6. \(r \) \[5, 3\]
7. \text{false} \[4, 6\]
Theoretical Issues

• Resolution is *refutation complete*. That is, if given an unsatisfiable set of clauses the procedure is guaranteed to produce *false*

• Resolution is *sound*. That is, if we derive *false* from a set of clauses then the set of clauses is unsatisfiable

• The resolution method *terminates*. That is, we apply the resolution rule until we derive false or no new clauses can be derived, and it will always stop
Reducing the Search Space (I)

• Although the basic resolution method is complete, it is not very efficient. This is due to the search space that has to be explored

• A lot of effort has been applied in trying to reduce the search space
 – The elimination of tautologies
 (e.g. clauses such as $p \lor q \lor \neg q$)
 – Subsumption (if a clause set contains the clauses p and $p \lor q$, $p \lor q$ may be discarded); removes useless or redundant rules.
Reducing the Search Space (II)

- Some forms of resolution restrict which clauses may be resolved together e.g. *unit resolution* (always resolve using at least one unit clause) or *set of support* (after the first step, use at most one original clause)
- Heuristics may be applied to guide the proof search e.g. *weighting strategies*
- Applying strategies such as set of support or heuristics may affect completeness
Automated Reasoning

• The resolution proof method may be automated, i.e. carried out by a computer program

• Theorem provers based on resolution have been developed

• Prolog also uses resolution, but only for a subset of FOL: Horn Clauses
 – **At most one positive literal** in any clause.

 – \(p : q, r \) is equivalent to...

 \[(q \land r) \Rightarrow p \]
 \[p \lor \neg(q \land r) \]
 \[p \lor \neg q \lor \neg r \]

 – This greatly improves efficiency, making Prolog usable as a programming language.
Resolution in Prolog

\[(1) \text{p}:- q, r. \text{ i.e. } p \lor \neg q \lor \neg r \]
\[(2) q:- t. \text{ i.e. } q \lor \neg t \]
\[(3) r:- u. \text{ i.e. } r \lor \neg u \]
\[(4) t. \]
\[(5) u. \]

We want to show that (1—5) entails \(p \)
First add:
\[(6) \neg p. \]

Now prove (1-6) is unsatisfiable...
Resolve (6) and (1) to get (7) \(\neg q \lor \neg r \)
Resolve (7) and (2) to get (8) \(\neg t \lor \neg r \)
Resolve (4) and (8) to get (9) \(\neg r \)
Resolve (9) and (3) to get (10) \(\neg u \)
Resolve (10) and (5) to get empty clause.

\(\neg p \) is unsatisfiable and hence \(p \) is true.
Pros and Cons of Propositional Logic

Benefits over most programming languages, data structures and databases:

• Propositional logic is *declarative*
 - separates knowledge and inference
• Propositional logic allows partial/disjunctive/negated information
 - allows to specify uncertainty about complex cases
• Propositional logic is *compositional*
 - Meaning of $q \land r$ depends (only!) on meaning of q and r
 - i.e., it is *context-independent* (unlike natural language, where meaning depends on context)

But...

• Propositional logic has very limited expressive power
 (unlike natural language)
Example

• Consider

\[
\begin{align*}
\text{Kitty is a cat} \\
\text{cats are mammals} \\
\hline
\text{Kitty is a mammal}
\end{align*}
\]

• In propositional logic this would be represented as

\[
\frac{c \land m}{k}
\]

 – This derivation is not valid in propositional logic. If it were then from any \(c \) and \(m \) could derive any \(k \).
 – We need to capture the connection between \(c \) and \(m \).

• To do this, we will use first-order (or predicate) logic.
Recap of First-Order Logic

- Whereas propositional logic assumes the world contains facts, first-order logic (like natural language) assumes the world contains
 - Objects (people, houses, numbers, colours...);
 - Relations (part of, after, prime, brother of, ...);
 - Functions (best friend, one more than, end of ...)

- Examples:

 course_lecturer(Frans,CMP219)
male(Frans)
< (3, 4)
< (4, plustwo(1))
mammal(Kitty)

- Frans, Kitty, CMP219, 3, 4 and 1 are constants.
- course_lecturer, male, mammal, and < are predicates.

 • male, mammal have arity one and the other predicates have arity two.

 - Plustwo is a function (that refers to other objects),

 • e.g. plustwo(1) refers to the constant 3
Quantifiers

• Quantifiers allow us to express properties about collections of objects
• The quantifiers are
 \(\forall \) universal quantifier ‘For all . . . ’
 \(\exists \) existential quantifier ‘There exists . . . ’

• If \(P(x) \) is a predicate then we can write
 \(\forall x \cdot P(x) \); and
 \(\exists x \cdot P(x) \);
 where \(x \) is a variable which can stand for any object in the domain
Interpretations

• We need a domain to which we are referring.
 `course_lecturer(Frans,COMP219)`
• The name Frans is mapped to the object in the domain we are referring to (me)
• The name COMP219 is mapped to the object in the domain we are referring to (the course COMP219)
• The predicate name `course_lecturer` will be mapped to a set of pairs of objects where the first in the pair is the (real) person who teaches the second in the pair
• Hence the above evaluates to true
Syntax of Predicate Logic

• The formulas of predicate logic are constructed from the following symbols
 – a set PRED of predicate symbols with arity;
 – a set FUNC of function symbols with arity;
 – a set CONS of constant symbols;
 – a set VAR of variable symbols;
 – the quantifiers \forall and \exists;
 – true, false and the connectives \land, \lor, \Rightarrow, \neg, \Leftrightarrow, \neq.

• Note propositions can be viewed as predicates with arity 0
Terms

• The set of terms, TERM, is constructed by the following rules
 – any constant is in TERM;
 – any variable is in TERM;
 – if \(t_1, \ldots, t_n \) are in TERM and \(f \) is a function symbol of arity \(n \) then \(f(t_1, \ldots, t_n) \) is a term.

• \(f(x, y) \)
• \(\text{add}(2, 4) \)
• \(\text{mother}_\text{of}(\text{Katie}) \)

'terms' refer to objects
Well-Formed Formulae

• The set of sentences or *well-formed formulae* of predicate logic are:
 – **true, false** and propositional formulae are in WFF.
 – if \(t_1, \ldots, t_n \) are in TERM and \(p \) is a predicate symbol of arity \(n \) then \(p(t_1, \ldots, t_n) \) is in WFF.
 – If \(A \) and \(B \) are in WFF then so is \(\neg A \), \(A \lor B \), \(A \land B \), \(A \Rightarrow B \) and \(A \Leftrightarrow B \).
 – If \(A \) is in WFF and \(x \) is a variable then \(\forall x \cdot A \) and \(\exists x \cdot A \) are in WFF.
 – If \(A \) is in WFF then so is \((A)\).
Exercise (Nell)

• Which of the following are well-formed formulae of first-order logic?

1) $\forall \exists \cdot p(x)$
2) $\exists x \cdot p(\neg x)$
3) $\forall x \cdot p(x) \land \exists y \cdot r(y)$
Domains and Interpretation

• Suppose we have a formula $\forall x \cdot P(x)$. What does x range over? Physical objects, numbers, people, times, . . . ?

• Depends on the domain that we intend...

• In each domain we have an interpretation that specifies which objects correspond to which constants, etc.

• Often, we “name” a domain to make our intended interpretation clear. E.g.,
 – Suppose our intended interpretation is the “positive integers” and that $>,+,\times,\ldots$ have “the usual mathematical interpretation”.
 – Is this formula satisfiable under the above interpretation?

$$\exists n \cdot n = (n \times n)$$
Summary

• We have described how to apply the proof method resolution in propositional logic
 – First, formulae need to be in conjunctive normal form
 – There is only one rule of inference
• We have had a brief recap of first-order logic
 – We have looked at its syntax but we haven’t seen its formal semantics
 (see good AI and logic books)
 – Informally we’ve seen we need a domain of interest; constants, predicates, functions have mappings into this domain ('the interpretation')
 – To evaluate quantifiers we must check whether all objects in the domain satisfy the formula (∀) or some object does (∃)

• Next time
 – We will look at extending resolution to FOL