Lecture 8: Combining Search Strategies and Speeding Up
Overview

• **Last time**
 – Basic problem solving techniques:
 • **Breadth-first search**
 – complete but expensive
 • **Depth-first search**
 – cheap but incomplete

• **Today**
 – Variations and combinations
 • **Limited depth search**
 • **Iterative deepening search**
 – Speeding up techniques
 • Avoiding repetitive states
 • Bi-directional search

• Learning outcome covered today:
Identify, contrast and apply to simple examples the major search techniques that have been developed for problem-solving in AI
Depth Limited Search

• Depth first search has some desirable properties: space complexity
• But if wrong branch expanded (with no solution on it), then it may not terminate
• Idea: introduce a depth limit on branches to be expanded
• Don’t expand a branch below this depth
• Most useful if you know the maximum depth of the solution
Depth Limited Search

depth limit = max depth to search to;
agenda = [initial state];
 if initial state is goal state then
 return solution
else
 while agenda not empty do
 take node from front of agenda;
 if depth(node) < depth limit then
 {new nodes = apply operations to node;
 add new nodes to front of agenda;
 if goal state in new nodes then
 return solution;
 }

Example: Romania Problem

Only 20 cities on the map, so no path longer than 19.
In fact, any city can reach any other in at most 9 steps.

Max depth = 3
Example: Romania Problem

Only 20 cities on the map, so no path longer than 19.
In fact, any city can reach any other in at most 9 steps.

Max depth = 3
Example: Romania Problem

Only 20 cities on the map, so no path longer than 19. In fact, any city can reach any other in at most 9 steps.

Max depth = 3
Example: Romania Problem

Only 20 cities on the map, so no path longer than 19. In fact, any city can reach any other in at most 9 steps.

Max depth = 3
Example: Romania Problem

Only 20 cities on the map, so no path longer than 19. In fact, any city can reach any other in at most 9 steps.

Max depth = 3
Example: Romania Problem

Only 20 cities on the map, so no path longer than 19. In fact, any city can reach any other in at most 9 steps.

Max depth = 3
Example: Romania Problem

Only 20 cities on the map, so no path longer than 19. In fact, any city can reach any other in at most 9 steps.

Max depth = 3
Example: Romania Problem

Only 20 cities on the map, so no path longer than 19. In fact, any city can reach any other in at most 9 steps.
Example: Romania Problem

Only 20 cities on the map, so no path longer than 19. In fact, any city can reach any other in at most 9 steps.

Max depth = 3
Example: Romania Problem

Only 20 cities on the map, so no path longer than 19. In fact, any city can reach any other in at most 9 steps.

Max depth = 3
Example: Romania Problem

Only 20 cities on the map, so no path longer than 19.
In fact, any city can reach any other in at most 9 steps.

Can’t find Eforie with
Max depth = 3; Max depth = 9 would find all cities, but use some bad routes
Depth Limited Search

• Will always terminate.
• Will find solution if there is one in the depth bound.

• But, Goldilocks principle:
 − Too small a depth bound misses solutions ('incomplete')
 − Too large a depth bound may find poor solutions when there are better ones.
Iterative Deepening

• Iterative deepening
 – addresses problem of choosing depth bound
 – is complete and finds best solution.
• Basic idea is:
 – do d.l.s. for depth $n = 0$; if solution found, return it;
 – otherwise do d.l.s. for depth $n = n + 1$; if solution found, return it, etc;
 – So we repeat d.l.s. for all depths until solution found.
• Useful if the search space is large and the maximum depth of the solution is not known.
Example: Romania Problem

D = 1

D = 2
Example: Romania Problem

D = 1 D = 2
Example: Romania Problem

D = 1

D = 2
Example: Romania Problem

D = 1 D = 2
Example: Romania Problem

D = 1

D = 2
Example: Romania Problem

D = 1

D = 2
Example: Romania Problem

D = 1 D = 2
Example: Romania Problem

D = 1 D = 2
Example: Romania Problem

D = 1 D = 2 D = 3
Example: Romania Problem

D = 1

D = 2

D = 3
General Algorithm for Iterative Deepening

depth_limit = 0;
while(true) /* infinite loop */
{
 result = depth_limited_search(
 max_depth = depth_limit,
 agenda = initial node);
 if result contains goal then
 return result;
 depth_limit = depth_limit + 1;
}

• Calls d.l.s. as subroutine.
IDS Properties

• Note that in iterative deepening, we re-generate nodes on the fly.
• Each time we do a call on depth limited search for depth d, we need to regenerate the tree to depth $d - 1$.
• Trade off time for memory.

• In general we might take a little more time, but we save a lot of memory.
 – Example: Suppose $b = 10$ and $d = 5$.
 – Breadth first search would require examining 111,110 nodes, with memory requirement of 100,000 nodes.
 – Iterative deepening for same problem: 123,450 nodes to be searched, with memory requirement of only 50 nodes.
 – Takes 11% longer in this case, but savings on memory are immense.
Techniques for Speeding Up
Repeated States – The Search Tree

Blind search may *repeat* nodes; if the search path contains cycles we may get into an infinite loop when doing depth first search.
Avoiding Repeated States

• There are three ways to deal with this (in order of increasing effectiveness and computational overhead):
 – do not return to the state you have just come from
 – do not create paths with cycles in them
 – do not generate any state that was ever generated before

• Note there is a trade-off between the cost of extra search and the cost of checking for repeated states
The Impact of Branching

• In analyses branching is often assumed to be uniform
• But in practice this is often not so
• This can make a big difference to the search space
Goal vs Data driven search

• We can choose to search from
 – the initial state to the goal (data driven, forward)
 – the goal to the initial state (goal driven, backward)

• The branching may be very different...
• Goal driven search is very often very much more efficient (few paths reach the goal)
• Often used in expert systems (and Prolog)
Example – Blocks World

• Consider the blocks world:

Blocks are laid out on a table and a robot can move any clear block to another clear block. Suppose the initial state and goal state are as follows:

Initial

Goal
Forward Search Space: Initial → Goal

6 states at level 1

18 states at level 2
Backward Search Space: Goal → Initial
About Backward Search

• Backward (goal driven) search can be more effective...
 ...but may not always be applicable!

• need to be able to
 − generate predecessors
 (can be difficult, there could be many)
 − effectively describe the goal
 (“no queen attacks another queen”...?)
Bi-directional Search

• If we are unsure of the branching factor, then searching from both ends may be best
Bidirectional Search
Example: Romania

- On holiday in Romania; currently in Arad
- Flight leaves tomorrow from Bucharest
Example: Romania

- On holiday in Romania; currently in Arad
- Flight leaves tomorrow from Bucharest
Example: Romania

- On holiday in Romania; currently in Arad
- Flight leaves tomorrow from Bucharest
Bi-directional Search
Bi-directional Search: Good

• Much more efficient
• Rather than doing one search of b^d ...
 ...we do two $b^{d/2}$ searches

 – E.g., Suppose $b = 10$, $d = 6$
 • Breadth first search will examine $10^6 = 1,000,000$ nodes
 • Bidirectional search will examine $2 \times 10^3 = 2,000$ nodes

• Can combine different search strategies in different directions
Bi-directional Search: Bad

• Depends on applicability of backward search

• Needs an efficient way to check whether each new node appears in the other search:
 – need to store nodes in frontier, so large memory requirements
 – For example, for
 • two bi-directional breadth-first searches,
 • branching factor b,
 • depth of the solution d,
 \rightarrow memory requirement of $b^{d/2}$ for each search

 – For large d, is still impractical
Summary

• More advanced problem-solving techniques:
 – Depth-limited search
 – Iterative deepening
 – Bi-directional search
 – Avoiding repeated states

• These improve on basic techniques like breadth-first and depth-first search
• However, they still aren’t always powerful enough to give solutions for realistic problems
• Are there more improvements we can make...?

• Next time
 – Lists in Prolog