Overview

- Last time
 - Logic for KR in general; Propositional Logic; Natural Deduction

- Today
 - Entailment, satisfiability and validity
 - Normal forms
 - Negation normal form
 - Conjunctive normal form
 - Satisfiability as a search problem
 - DPLL algorithm

- Learning outcomes covered today:
 Distinguish the characteristics, and advantages and disadvantages, of the major knowledge representation paradigms that have been used in AI, such as production rules, semantic networks, propositional logic and first-order logic;
 Solve simple knowledge-based problems using the AI representations studied;

Propositional Logic for KR

- Given a knowledge base KB and a property α, check if $KB \models \alpha$
 - Model checking (e.g., use truth tables)
 - Theorem proving / inference: Prove α from KB
 - Natural deduction (last week)
 - Reduce to problems of validity or unsatisfiability
 - Davis-Putnam algorithm

Validity and Satisfiability

- A formula is said to be valid (or a tautology)
 - iff it is true under every interpretation.

- A formula is said to be satisfiable (or consistent)
 - iff it is true under at least one interpretation.

- A formula is said to be unsatisfiable (or inconsistent or contradictory)
 - iff it is not made true under any interpretation.

- φ is a valid $\iff \neg\varphi$ is unsatisfiable.
Validity, Satisfiability and Entailment

Implications for Knowledge Representation...

• **Deduction Theorem:**
 \[\text{KB} \models \alpha \text{ if and only if } (\text{KB} \Rightarrow \alpha) \text{ is valid} \]

Or...

• **Reductio ad absurdum:**
 \[\text{KB} \models \alpha \text{ if and only if } (\text{KB} \land \neg \alpha) \text{ is unsatisfiable} \]

Satisfiability Checking

• Given a knowledge base \(\text{KB} \) and a property \(\alpha \), check if \((\text{KB} \land \neg \alpha) \) is satisfiable
 - If not satisfiable, \(\alpha \) is implied by \(\text{KB} \)
 - Otherwise, an interpretation of propositions would give us a countermodel – shows how \((\text{KB} \land \neg \alpha) \) can be made true

• Compare Prolog... “?- goal(x).” ↔ “\(\text{KB} \models \text{goal(X)} \)”
 - Prolog attempts to satisfy
 \[\text{KB} \land \text{goal(X)} = \text{KB} \land \neg (\neg \text{goal(X)}) \]
 - not satisfiable: \(\text{KB} \models \neg \text{goal(X)} \)
 - satisfiable: countermodels to \(\neg \text{goal(X)} \), which are models of the goal.

Countermodel (I)

To check if
\[
(\text{hot} \land \text{smoky} \Rightarrow \text{fire})
\land (\text{alarm_beeps} \Rightarrow \text{smoky})
\land (\text{fire} \Rightarrow \text{switch_on_sprinklers})
\] is true under the interpretation \(I \):
\[
I(\text{hot}) = F
\]
\[
I(\text{smoky}) = T
\]
\[
I(\text{fire}) = F
\]
\[
I(\text{alarm_beeps}) = T
\]
\[
I(\text{switch_on_sprinklers}) = F
\]

Countermodel (II)

But
\[
(\text{hot} \land \text{smoky} \Rightarrow \text{fire})
\land (\text{alarm_beeps} \Rightarrow \text{smoky})
\land (\text{fire} \Rightarrow \text{switch_on_sprinklers})
\land \neg (\text{alarm_beeps} \Rightarrow \text{switch_on_sprinklers})
\] is true under the interpretation \(I \):
\[
I(\text{hot}) = F
\]
\[
I(\text{smoky}) = T
\]
\[
I(\text{fire}) = F
\]
\[
I(\text{alarm_beeps}) = T
\]
\[
I(\text{switch_on_sprinklers}) = F
\]
Example: Truth Tables and Satisfiability

Using a truth table show whether

\[(p \Rightarrow q) \lor (q \Rightarrow p)\]

is a tautology, consistent or inconsistent.

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>(p \Rightarrow q)</th>
<th>(q \Rightarrow p)</th>
<th>((p \Rightarrow q) \lor (q \Rightarrow p))</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

Equivalent Sentences

- Two sentences A and B are equivalent, written \(A \equiv B\) iff A and B have the same truth values for every interpretation.
- Show

\[(p \Rightarrow q) \equiv (\neg p \lor q)\]

- Draw up a truth table for \((p \Rightarrow q)\) and \((\neg p \lor q)\) and check their truth values are the same.

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>(p \Rightarrow q)</th>
<th>(\neg p)</th>
<th>(\neg p \lor q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

Efficiency

- So we are back to model checking...
 - A truth table contains \(2^n\) rows, construction requires \(2^n\) steps. . .
 - Can we do better than that?
 - Not in general: theory says that this is a very hard problem (Satisfiability checking is NP-complete)
 - In practice, not so bad, if we can use heuristics to identify lines we don’t need to check
 - But we have to transform \((KB \land \neg \alpha)\) into a normal form

Equivalent Sentences

- Two sentences A and B are equivalent, written \(A \equiv B\) iff A and B have the same truth values for every interpretation.
- Show

\[(p \Rightarrow q) \equiv (\neg p \lor q)\]

\(\equiv\) is not a 'logical operator' (as \(\equiv\)) but similar to entailment...

In fact: two sentences are equivalent \(\alpha \equiv \beta\) if and only if \(\alpha \models \beta\) and \(\beta \models \alpha\)
Equivalent Transformations (I)

• Where A, B and C are propositions or propositional formulae and T and F are true and false respectively

• Idempotent laws

 $A \land A \equiv A$
 $A \lor A \equiv A$

• Associative laws

 $(A \land B) \land C \equiv A \land (B \land C)$
 $(A \lor B) \lor C \equiv A \lor (B \lor C)$

• Commutative laws

 $A \land B \equiv B \land A$
 $A \lor B \equiv B \lor A$

• Distributive laws

 $A \land (B \lor C) \equiv (A \land B) \lor (A \land C)$
 $A \lor (B \land C) \equiv (A \lor B) \land (A \lor C)$

Examples

• Simplify the following expression: $\neg (\neg P \land \neg Q)$

 $\neg (\neg P \land \neg Q)$ given
 $\equiv (\neg \neg P \lor \neg \neg Q)$ de Morgan's laws
 $\equiv (P \lor Q)$ Complement laws

• Prove the following equivalence: $\neg (\neg (P \land Q) \lor P) = F$

 $\neg (\neg (P \land Q) \lor P)$ given
 $\equiv \neg (\neg P \lor \neg Q) \lor P$ de Morgan's laws
 $\equiv (P \land Q) \lor P$ Complement laws
 $\equiv (\neg Q \lor (\neg P \land P))$ Associative laws
 $\equiv (\neg Q \lor \neg P) \lor P$ Commutative laws
 $\equiv \neg (\neg P \lor \neg Q) \lor P$ de Morgan's laws
 $\equiv (P \land Q) \lor P$ Complement laws
 $\equiv \neg P \lor \neg Q \lor P$ Complement laws
 $\equiv \neg P \lor T$ Complement laws
 $\equiv F$ Complement laws

Equivalent Transformations (II)

• Identity laws

 $A \land T \equiv A$
 $A \lor F \equiv A$
 $A \land F \equiv F$
 $A \lor T \equiv T$

• Complement laws

 $A \land \neg A \equiv F$
 $A \lor \neg A \equiv T$
 $\neg (\neg A) \equiv A$
 $\neg T \equiv F$
 $\neg F \equiv T$

• de Morgan's laws

 $\neg (A \land B) \lor \neg (A \lor B) \equiv (\neg A \land \neg B) \lor \neg (\neg A \lor \neg B)$

• laws for \Rightarrow and \Leftrightarrow

 $A \Rightarrow B \equiv \neg A \lor B$
 $A \Leftrightarrow B \equiv (A \Rightarrow B) \land (B \Rightarrow A)$

• We can use these laws to simplify expressions and to prove equivalences.

Negation Normal Form

• It is often useful to transform formulae into normal forms. These are logically equivalent formulae but have syntactically different forms that may be more suitable for reasoning with.

• There are several normal forms: Negation Normal Form, Clausal Form, Disjunctive Normal Form and Conjunctive Normal Form. We are most interested in Conjunctive Normal Form (CNF).

• but first: a formula is in negation normal form if negations appear only in front of propositions and the only operators are \land, \lor and \neg.

 - First remove the \Rightarrow and \Leftrightarrow operators. Then apply de Morgan’s laws and remove double negations (complement laws), until in the correct form.

 - \land, \lor can still be nested
Conjunctive Normal Form

- A formula is in *Conjunctive Normal Form* if it is of the form $A_1 \land A_2 \land \ldots A_k$ where each A_i is a disjunction of propositions or their negations.

- Example

 \[(p \lor q) \land r \land (\neg p \lor \neg r \lor s)\] is in CNF.

 \[\neg(p \lor q) \land r \land (\neg p \lor \neg r \lor s)\] is not in CNF.

 \[(p \lor q) \land r \land (p \Rightarrow (\neg r \lor s))\] is not in CNF.

Example

- Translate $\neg(p \lor q) \lor r \lor p \Rightarrow (q \lor r)$ into CNF.

- We first translate into NNF and obtain

 \[\neg(\neg(p \lor q) \lor r) \lor p \lor (q \lor r) \lor p\]

- Then transform into CNF

 \[(p \lor q) \land \neg r \land p \Rightarrow (\neg r \lor p)\]

Exercise

- Convert the following into *Conjunctive Normal Form*, using the appropriate equivalence laws:

 \[p \leftrightarrow (q \lor r)\]
Exercise

• Convert the following into Conjunctive Normal Form, using the appropriate equivalence laws:

\[p \iff (q \lor r) \]

\[
(p \implies (q \lor r)) \land ((q \lor r) \implies p) \quad \text{law for } \iff
\]

\[
(\neg p \lor q \lor r) \land (\neg(q \lor r) \lor p) \quad \text{law for } \implies
\]

\[
(\neg p \lor q \lor r) \land ((\neg q \land \neg r) \lor p) \quad \text{de Morgan's law}
\]

\[
(\neg p \lor q \lor r) \land (\neg q \lor p) \land (\neg r \lor p) \quad \text{distributive law}
\]

Satisfiability as a Search Problem

• Given a formula in CNF, can we find an assignment of truth values to propositions that satisfies it?

• States are partial assignments - some propositions get values, some are possibly unassigned.

• Actions are deciding whether a (yet unassigned) proposition is true or false.

• Initial state: empty partial assignment.

• Goal state: an assignment making the formula true.

Algorithm as Satisfiability for CNF

• A complete backtracking algorithm – Davis-Putnam paper (1960)

• The version presented (DPLL) is described in a paper by Davis, Logemann, and Loveland (1962).

• Naive Approach: every proposition is either true or false in any interpretation.

Search Space

• Consider \((\neg p \lor \neg r) \land (p \lor q) \land (r \lor \neg q)\)

Every path in the tree represents a (partial) assignment.
Partial Assignment

- Another idea: Simplify formula with a (previously guessed) partial assignment
 \((\neg p \lor \neg r) \land (p \lor q) \land (r \lor \neg q)\)

 { if we tried \(p = True\) we can now simplify:}
 \((\neg True \lor \neg r) \land (True \lor q) \land (r \lor \neg q)\)

 \((\neg False \lor \neg r) \land True \land (r \lor \neg q)\)

 {can only be true if \(r = False\)}
 \(\neg False \lor (False \lor \neg q)\)

 \(\neg q\)

 {can only be true if \(\neg q = True\) (so \(q = False\))}

 True

- Given a good order for partial assignments this can be very helpful. DPLL provides heuristics for choosing partial assignments. Only in the worst case we will need to try everything.

Likewise

- (-p \lor -r) \land (p \lor q) \land (r \lor -q)

 { let us now consider \(p = False\)}

 (-False \lor -r) \land (False \lor q) \land (r \lor -q)

 (True \lor -r) \land q \land (r \lor -q)

 True \land q \land (r \lor -q)

 q \land (r \lor -q)

 { can only be true if \(q = True\)}

 True \land (r \lor -True)

 (r \lor False)

 {r can only be true if \(r = True\)}

 True

Reduced Search Space

- Consider \((\neg p \lor \neg r) \land (p \lor q) \land (r \lor \neg q)\)

Algorithms Structure

- Search through possible assignments of propositions
- Simplify formulae with partial assignments
 - Unit clause propagation
 - Pure literal elimination
Unit Clause

- A clause with just one literal is called a **unit clause**
 - e.g. \([q] \land (\neg r \lor \neg q) \land (r \lor s)\)
- Literal's value can be **uniquely** assigned
 - \(q\) must be set to True

Unit clause propagation:
- Check if a formula in CNF has a unit clause, \(C\).
- Set the value of the literal in \(C\) such that \(C\) is True
 - Notice that some other clauses may become unit
 - e.g. \((p \lor q) \land (\neg q \lor \neg r) \land (\neg q \lor r)\) reduces to \((\neg q \lor \neg r) \land (\neg q \lor r)\)
- \(r\) must be set to False
 - \(\neg r \land (r \lor s)\) reduces to \(s\)

Pure Literal

- A **pure literal** is a literal that always appears with the same “sign” in all clauses.
 - e.g. \((p \lor q) \land (\neg q \lor \neg r) \land (\neg q \lor r)\)
- Making a pure literal True makes **some** clauses True, but no clause False
 - e.g. \((p \lor q) \land (\neg q \lor \neg r) \land (\neg q \lor r)\) reduces to \((\neg q \lor \neg r) \land (\neg q \lor r)\)
 - \((\neg q \lor \neg r) \land (\neg q \lor r)\) reduces to True
- Pure literal elimination:
 - Check if a formula in CNF has a pure literal, \(l\)
 - Set the value of \(l\) to True

DPPL(\(\varphi\))

- Given a propositional formula \(\varphi\), DPLL(\(\varphi\)) does the following:
 - If \(\varphi\) is True then return True;
 - If \(\varphi\) is False then return False;
 - Pick a symbol \(p\) in \(\varphi\)
 - If DPLL(Simplify(\(\varphi\), \(p\))) is True then return True;
 - If DPLL(Simplify(\(\varphi\), \(\neg p\))) is True then return True;
 - Return False;

Simplify(\(\varphi\), \(L\))

- Given a propositional formula \(\varphi\) and a literal \(l\), Simplify(\(\varphi\), \(L\)) does the following:
 - Delete every clause that contains \(l\) from \(\varphi\);
 - Delete \(\neg l\) from all clauses in \(\varphi\)
 - Apply exhaustively unit clause propagation and pure literal elimination;
 - Fail (return False) if positive and negative unit clauses for the **same** literal.
Applications

• There are now several efficient SAT solvers based on DPLL available on the web. They are used in a number of applications.
 – Hardware and software verification
 • IBM, Intel, . . .
 – Planning
 – Scheduling
 – . . .

Summary

• We have considered issues concerning efficiency in propositional reasoning
• This has covered equivalent transformations and normal forms
 – Negation normal form
 – Conjunctive normal form
• We have considered how satisfiability can be viewed as a search problem
 – Looked at an algorithm for satisfiability in CNF

• Next time
 – Proof method resolution for propositional logic