Overview

• Last time
 – Rules as a KR scheme; forward vs backward chaining

• Today
 – Another approach to knowledge representation
 • Structured objects: semantic nets
 – Notation
 – Extended example

• Learning outcomes covered today:

 Distinguish the characteristics, and advantages and disadvantages, of the major knowledge representation paradigms that have been used in AI, such as production rules, semantic networks, propositional logic and first-order logic;

 Solve simple knowledge-based problems using the AI representations studied;

Structured Objects

• Structured objects are
 – Knowledge representation formalisms whose components are essentially similar to the nodes and arcs found in graphs
 – In contrast to production rules and formal logic

Semantic Networks

• Charles S Peirce 1909 – existential graphs
• Quillian in 1968 – semantic memory
 – as a model for human memory; reasonable view of how semantic information is stored by humans
 – associative reasoning (via links)
• Semantic net is a labelled graph
 – nodes in graph represent objects, concepts, or situations/events
 – arcs in graph represent relationships between these things
Semantic Networks

Important Arc Types

- **Subset**
 - X is a kind of Y
 - Penguin subset Bird: Concept to Concept

- **Member**
 - X is a Y: X is an instance of Y
 - Opus member Penguin: Individual to Concept

- **R-relation**
 - X relation-name Y
 - Opus is a friend of Bill; Lou is a parent of Ian Individual to Individual

Inheritance

- Inheritance is one of the main kinds of reasoning done in semantic nets
- The subset relation is often used to link a class and its superclass
- Some links (e.g. legs) are inherited along subset paths
- Many variants of semantic nets
 - semantics can be relatively informal or very formal

Example
Bill has four legs
Bill has four legs

Opus is a Bird
Multiple Inheritance

- A node can have any number of superclasses that contain it, enabling a node to inherit properties from multiple parent nodes and their ancestors in the network. It can cause conflicting inheritance.

Problems with Semantic Nets

- **Binary** relations are easy to represent.
- Others are harder.
- Example: “Opus brings tequila to the party.”
Exercise

- Suppose we have the information “Bill brings whiskey to the party”.

- How could we extend the semantic network to include this information?

- Can you see any problems with the reasoning in the example once we introduce this information?

Binary Relations

- Any relation can be rewritten as a set of binary relations
- Bringing-1(Opus,tequilla,party)
- Bringing-2(Bill,whiskey,party)
- Make the event a thing and make one binary relation *per role*
 - who(bringing-1,Opus); who(bringing-2,Bill)
 - what(bringing-1,tequila); what(bringing-2,whiskey)
 - where(bringing-1,party); where(bringing-2,party)

Now we can see who brought what

Turn relation into a thing:
- *thingification* (McCarthy)
- more common:
 - *reification*
 - from Latin (res)
Other Problems are Harder

- **Negation**
 - Opus and Dirk are not friends
 - Can just assume an absence of a link
- **Cancellation/Exception**
 - Property inherited from a distant superclass cancelled at a lower level
 - Birds fly, penguins don’t
- **Disjunction**
 - Opus either drinks tea or coffee
- **Quantification**
 - “every dog has bitten a postman”
 - “every dog has bitten every postman”

Disadvantages of Semantic Nets

- Inheritance (particularly from multiple sources and when exceptions in inheritance are required) can cause problems
- No standards about node and arc types, and semantics might not be quite clear (what does “IS-A” mean?)
- Limited expressiveness: may require a number of specially coded procedures (‘procedural attachment’)
- The above problems make it difficult to
 - verify and validate the systems
 - share knowledge
 - reuse knowledge
 - acquire knowledge methodically

Advantages of Semantic Nets

- Easy to visualise
- Flexible: relationships can be arbitrarily defined by the knowledge engineer
- Formal definitions of semantic networks have been developed
- Related knowledge is easily clustered
- Efficient in space requirements
- Objects represented only once
- Inference reduced to search

The Story of Othello

- Othello was a general who was married to Desdemona
- Iago was a captain who was married to Emilia; he hated Othello
- Iago told Othello lies about Desdemona
- Othello killed Desdemona with a pillow. He felt remorse and killed himself with a dagger
Othello was a general who was married to Desdemona

Iago was a captain who was married to Emilia; he hated Othello

Iago told Othello lies about Desdemona

Othello killed Desdemona with a pillow. He felt remorse and killed himself with a dagger
marriedTo(Husband, Wife).
mixedTo(X, Y) :- mixedTo(Y, X).
rank(Soldier, Rank).
male(Person).
alive(Person).
killing(Killer, Killed, Weapon, Motive).
motiveForKilling(Person, Motive) :- killing(Person, _, _, Motive).

And so on...

Manipulating the Knowledge

- So far we have represented the knowledge in a variety of ways
- We also need to manipulate the knowledge
- This can be done in a variety of ways

What do the pillow and the dagger have in common?
What do the pillow and the dagger have in common?
Frames

- Development of semantic nets
- Desire to exploit the powerful mechanism of inheritance
- Observation: things of a given type participate in the same set of relationships
- A lot of information is available by default – it is the exceptions that are interesting

Frames

- Frames - semantic net with properties and methods
 - Devised by Marvin Minsky, 1974.
- Incorporates certain valuable human thinking characteristics:
 - Expectations, assumptions, stereotypes, exceptions.
- The essence of this form of knowledge is that we represent the typical case and exceptions, rather than give definitions.
- Hierarchical structure, similar to class hierarchies.

Using Rules

\[
\text{IF} \ (?X \text{ is-a killing}) \ \text{AND} \ (?X \text{ killed } ?Y) \ \text{THEN} \\
\text{REMOVE} \ (?Y \text{ alive } T) \ \text{AND} \\
\text{ADD} \ (?Y \text{ alive } F).
\]

\[
\text{IF create(killing, } ?X, \ ?Y) \ \text{THEN} \\
\text{execute(?X.weapon}) \ \text{AND} \\
\text{execute(?X.motive}) \ \text{AND} \\
\text{put(?Y.alive,F}).
\]

- Or we can use clauses for Prolog

\[
\text{alive}(X,\text{false}):-\text{killing}(_{X},_,_,_).
\]
Problems with Frames & Semantic Nets

- Useful for representing certain sorts of knowledge
 - e.g., inheritance
- But node and edge types can be ad hoc.
 - no clear meaning, or semantics.
- Inheritance reasoning is very easy, but more general reasoning is difficult to define
 - often special purpose.

Developments

- Many of the ideas of frames are now expressed in ontologies (see next lecture)
- Frame system + procedures for retrieving and manipulating knowledge = Object System
- AI research influenced the development of Object Oriented Programming, which has become a standard paradigm
 - good example of how AI contributes to mainstream computing

Agents

- Agents can be seen as a development from OO programming:
 - Agents don’t wait for messages: they proactively poll the environment to find new information.
 - Agents decide whether to respond to messages.
 - The elements of proactivity and autonomy make them part of AI.

Summary

- Semantic networks were a popular method of structuring information
- In recent years people have attempted to be more principled and formal
 - Simply working on special cases and limited domains is no longer enough
 - Next we will consider these developments in the context of ontologies and logic-based approaches
- Structured objects developed into OO programming, now a conventional technique

- Next time
 - Expert systems and ontologies