Lecture 10: Heuristic Search

Overview

• Last time
 – Depth-limited, iterative deepening and bi-directional search
 – Avoiding repeated states

• Today
 – Show how applying knowledge of the problem can help
 – Introduce uniform cost search: dependent on the cost of each node
 – Introduce heuristics: rules of thumb
 – Introduce heuristic search
 • Greedy search
 • A* search

• Learning outcome covered today:
 Identify, contrast and apply to simple examples the major search techniques that have been developed for problem-solving in AI

Real Life Problems

• Whatever search technique we use, we have exponential time complexity
• Tweaks to the algorithm will not reduce this to polynomial
• We need problem specific knowledge to guide the search
• Simplest form of problem specific knowledge is heuristics
• Usual implementation in search is via an evaluation function which indicates desirability of expanding a node

Class Tests

• Class Test 1 (Prolog):
 – Friday 17th November (Week 8), 15:00-17:00.

• Class Test 2 (Everything but Prolog)
 – Friday 15th December (Week 12), 15:00-17:00

• Location
 – depending on what letter your last name starts with you should report to one of these:
 • JHERD-LT: A-E
 • DUN-LT2: F-Q
 • CHAD-ROTB: R-Z
Path Cost Function

Recall: we have a path cost function \(g(n) \), which gives the cost of each path. This is comprised of the step costs of each action on the path.

Finding The Best Paths

- Why not expand the cheapest path first?
- Intuition: cheapest is likely to be best!
- Performance is like breadth-first search but we use the minimum cost path rather than the shallowest to expand
- Uniform cost search orders the agenda as a priority queue using the lowest path cost of a node

Cheapest First

Choose Zerind
General Algorithm for Uniform Cost Search

\[
\text{agenda} = [\text{initial state}];
\]
\[
\text{while agenda not empty do}
\]\n\[
\quad \text{take node from agenda such that}
\]
\[
g(\text{node}) = \min \{ g(n) \mid n \in \text{agenda} \}
\]
\[
\quad \text{if node is goal state then}
\]
\[
\quad \quad \text{return solution;}
\]
\[
\quad \text{new nodes} = \text{apply operations to node;}
\]
\[
\quad \text{add new nodes to the agenda;}
\]

Properties of Uniform Cost Search

- Uniform cost search **guaranteed** to find cheapest solution assuming path costs grow monotonically, i.e. the cost of a path never decreases as we move along it.
- In other words, adding another step to the solution makes it more costly, i.e.
 \[
g(\text{successor}(n)) > g(n).
\]
- If path costs don't grow monotonically, then exhaustive search is required.
- Still requires many nodes to be examined.
Informed Strategies

• Use problem-specific knowledge
• More efficient than blind search
• The most promising path first!
• Rather than trying all possible search paths, you try to focus on paths that seem to be getting you nearer your target/goal state

Greedy Search

• Heuristics estimate cost of cheapest path from node to solution
• We have a heuristic function, $h : \text{Nodes} \to \mathbb{R}$ which estimates the distance from the node to the goal
• h can be any function
 – but should have $h(n) = 0$ if n is a goal
• Example: In route finding, heuristic might be straight line distance from node to destination
• Greedy search: expand node that appears to be closest to goal

Romania Example

<table>
<thead>
<tr>
<th>City</th>
<th>Straight-line distance to Bucharest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arad</td>
<td>366</td>
</tr>
<tr>
<td>Bucharest</td>
<td>0</td>
</tr>
<tr>
<td>Craiova</td>
<td>160</td>
</tr>
<tr>
<td>Dobrogea</td>
<td>242</td>
</tr>
<tr>
<td>Eforie</td>
<td>161</td>
</tr>
<tr>
<td>Fagaras</td>
<td>176</td>
</tr>
<tr>
<td>Giurgiu</td>
<td>77</td>
</tr>
<tr>
<td>Hirsova</td>
<td>151</td>
</tr>
<tr>
<td>Iasi</td>
<td>226</td>
</tr>
<tr>
<td>Lugoj</td>
<td>244</td>
</tr>
<tr>
<td>Mehadia</td>
<td>241</td>
</tr>
<tr>
<td>Neamt</td>
<td>234</td>
</tr>
<tr>
<td>Oradea</td>
<td>380</td>
</tr>
<tr>
<td>Pitesti</td>
<td>98</td>
</tr>
<tr>
<td>Rimnicu Vilcea</td>
<td>193</td>
</tr>
<tr>
<td>Sibiu</td>
<td>253</td>
</tr>
<tr>
<td>Timisoara</td>
<td>329</td>
</tr>
<tr>
<td>Urziceni</td>
<td>80</td>
</tr>
<tr>
<td>Vaslui</td>
<td>199</td>
</tr>
<tr>
<td>Zerind</td>
<td>374</td>
</tr>
</tbody>
</table>

Greedy Search Example

![Greedy Search Example Diagram]
Greedy Search Example

Choose Sibiu Choose Fagaras

Search Tree

Exercise

• Suppose that in the Romania example the initial state is Iasi and the goal state is Fagaras. How do you think a greedy search, using the straight line distance as a heuristic, might proceed?
General Algorithm for Greedy Search

agenda = [initial state];
while agenda not empty do
 take node from agenda such that
 \[h(node) = \min \{ h(n) \mid n \in \text{agenda} \} \]
 if node is goal state then
 return solution;
 new nodes = apply operations to node;
 add new nodes to the agenda;

Properties of Greedy Search

- Greedy search finds solutions quickly
- Doesn’t always find the best
 - `'greedy' = short sighted`
- May not find a solution if there is one
 - (incomplete)
 - Only looking at current node. Ignores past!

A* Search

- A* is a very efficient search strategy
- Basic idea is to combine uniform cost search and greedy search
- We look at the cost so far and the estimated cost to goal
- Gives heuristic \(f \): \[f(n) = g(n) + h(n) \]
- where
 - \(g(n) \) is path cost of \(n \)
 - \(h(n) \) is expected cost of cheapest solution from \(n \)
- Aims to minimise overall cost
A* Search Example

Choose Sibiu
Choose Rimnicu Vilcea
Choose Fagaras
Choose Pitesti

75+374
291+380
140+253
239+176
220+193
0+366
118+329
418+0

Choose Sibiu
Choose Rimnicu Vilcea
Choose Fagaras
Choose Pitesti

317+100
455+160
450+0

Choose Rimnicu Vilcea
Choose Fagaras
Choose Pitesti

413 < 415
415 < 417

Choose Fagaras
Choose Pitesti

415 < 417
417 < 450

Cheapest route found – all open nodes > 418

Search Tree

General Algorithm for A* Search

agenda = [initial state];

while agenda not empty do

take node from agenda such that

\[f(n) = \min \{ f(n) \mid n \text{ in agenda} \} \]

where \(f(n) = g(n) + h(n) \)

if node is goal state then

return solution;

new nodes = apply operations to node;

add new nodes to the agenda;
Properties of A* Search

• Complete, provided
 – only finitely many nodes \(n \) with \(f(n) < C^* \)
 • \(C^* \) is the true minimal cost to reach the goal
 – an admissible heuristic is used
 • Never overestimates the true cost ('distance')
 • i.e., \(h(n) < true(n) \)
 where \(true(n) \) is the true cost from \(n \)
 • Also require \(h(n) \geq 0 \), so \(h(G) = 0 \) for any goal \(G \)
• Exponential time
• Keeps all nodes in memory
• Optimal

Admissible Heuristics

• Example - for the 8-puzzle:
 \(h_1(n) = \) number of misplaced tiles
 \(h_2(n) = \) sum of Manhattan distances
 • (i.e., no. of squares from desired location of each tile)

Exercise

• Calculate \(h_1 \) and \(h_2 \) for the 8 puzzle on the previous slide.
• Are these heuristics admissible?

Importance of the Heuristic Choice

• Typical search costs:
 – \(d = 14 \)
 • IDS = 3,473,941 nodes
 • \(A^*(h_1) = 539 \) nodes
 • \(A^*(h_2) = 113 \) nodes
 – \(d = 24 \)
 • IDS \approx 54,000,000,000 \) nodes
 • \(A^*(h_1) = 39,135 \) nodes
 • \(A^*(h_2) = 1,641 \) nodes
Summary

- Heuristic functions estimate costs of shortest paths
- Good heuristics can dramatically reduce search cost
- Greedy best-first search expands lowest h
 - incomplete and not always optimal
- A* search expands lowest $g + h$
 - complete and optimal
 - also optimally efficient

- Next time
 - Search in complex environments (partial observation) and in game playing