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Abstract
We present a review that unifies decision-support
methods for exploring the solutions produced by
multi-objective optimization (MOO) algorithms.
As MOO is applied to solve diverse problems, ap-
proaches for analyzing the trade-offs offered by
MOO algorithms are scattered across fields. We
provide an overview of the advances on this topic,
including methods for visualization, mining the so-
lution set, and uncertainty exploration as well as
emerging research directions, including interactiv-
ity, explainability, and ethics. We synthesize these
methods drawing from different fields of research
to build a unified approach, independent of the ap-
plication. Our goals are to reduce the entry barrier
for researchers and practitioners on using MOO al-
gorithms and to provide novel research directions.

1 Introduction
Most real-world applications include multiple stakeholders
with diverse interests. Such problems are naturally formu-
lated as multi-objective optimization (MOO) problems by
representing the stakeholders’ interests via objectives. The
objectives correspond to the stakeholders’ aims in an appli-
cation, e.g., minimizing pollution, and should be operational-
ized using meaningful metrics, e.g., the density of fine par-
ticles in the air or the air quality index. Since the objectives
may be conflicting, there may not be a single solution that is
optimal for all objectives. Which solution should ultimately
be selected depends on the people responsible for deciding
which solution to execute. This could be a single person man-
dated to make this decision, a committee of stakeholders, or
a political entity such as a city council. We will refer to these
people as the decision-makers (DMs).

The more complex the problem, the more unlikely that the
DMs can express their preferences with respect to the objec-
tives (even approximately) a priori. As such, the DMs need
to be informed about the available, possibly optimal, trade-
offs. In MOO algorithms, it is common to produce a set of
non-dominated solutions referred to as a Pareto-optimal set.
A solution x is (Pareto) non-dominated if there exists no other
solution y that is better than x on at least one objective with-

out being worse on any other objective. The set of all so-
lutions non-dominated with respect to each other form the
Pareto-optimal set. The projection of the Pareto(-optimal) set
in the objective space is called the Pareto(-optimal) front.

While the Pareto set is a general solution set, it might be
excessive when more information about the DMs is available.
Further, it can even be wrong when stochastic solutions are
allowed but are not taken into account [Vamplew et al., 2009],
or incomplete when the outcomes are stochastic and the DMs
care about the expected utility for individual outcomes rather
than having a utility for the expected outcome [Hayes et al.,
2022b]. Thus, we refer to the output of MOO as a solution
set, which can be but is not required to be a Pareto set.

Single-objective optimization (SOO) is often seen as an al-
ternative to MOO. To employ SOO, important characteris-
tics of the problem would need to be combined into a sin-
gle, scalar, function. However, using SOO for a problem
with many objectives has disadvantages [Hayes et al., 2022a].
First, finding a suitable combined-objective function (often, a
manual process) is quite challenging and it may require sim-
plifying assumptions, e.g., that the objectives are linear addi-
tive. Second, SOO is less adaptive to evolving objectives—
adding or removing an objective requires re-engineering the
objective function. Finally, combining multiple objectives
into one function loses information, particularly, when it is
not possible to collapse the underlying goals (e.g., the envi-
ronmental and economic objectives, which have different unit
values and levels of risk) into a single measure. As a result, an
SOO solution is less informative to a DM than an appropriate
solution set produced by MOO. For example, with an SOO
solution, a DM can typically only know the solution’s scalar
objective value, but with a solution set, the DM can compare
solutions in terms of the problem characteristics.

As the number of objectives increases, the number of so-
lutions in the solution set produced by an MOO algorithm
is also likely to increase. For example, for a problem with
five objectives, the size of the solution set can be in the order
of hundreds. However, for most problems, only a few final
solutions (often, only one) are desired. For example, if the
problem is to find an optimal design for a car engine, the car
manufacturer may only want one design to send to produc-
tion. Thus, a DM must analyze the solution set outputted by
MOO to identify the final solution as shown in Figure 1.
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Figure 1: Multi-objective decision-making involves computational
optimization as well as a DM’s analysis of the solution set produced
by the optimization algorithm. This survey focuses on the methods
for supporting the DM in reaching the final solution(s).

Even with as few as three or four objectives, analyzing the
trade-offs among the solutions can be overwhelming. Further,
considering multiple decision variables, dependencies among
these variables, and external factors (e.g., uncertainties) influ-
encing the optimization makes the analysis even more com-
plex. Then, how can a DM systematically explore the alter-
native solutions to produce the final solution(s)?

Unfortunately, there is no easy answer to this question.
There is no standard procedure or standard set of methods
a DM can adopt to explore the output of MOO. Further, as
MOO is applied in diverse fields, methods have been devel-
oped in different silos. Thus, there is a need to bring together
these decision-support methods in a systematic manner.

We perform a comprehensive review of decision-support
methods for MOO. Our review includes methods for (1) vi-
sualizing solution sets such as the Pareto front, (2) extracting
the knowledge from the solution sets with data mining tech-
niques, and (3) exploring uncertainty. Whereas these are es-
tablished lines of work, there are several emerging directions,
including interactive methods, explainability, and providing
support on ethical aspects such as distributive justice. We also
discuss these directions. The two (non-conflicting) objectives
of our work are to provide novel directions for researchers
and reduce the entry barrier on using MOO for practitioners.

Existing Surveys on MOO MOO is gaining increasing
attention as the advances in computational capabilities en-
able the application of MOO to problems having increasingly
large search spaces and number of objectives. Accordingly,
there have been several surveys on MOO. For example:

• Li et al. [2015] survey techniques for many objective op-
timization (a term used for MOO with at least four ob-
jectives) and identify seven categories of techniques.

• Tian et al. [2021] survey evolutionary MOO techniques.
Antonio and Coello Coello [2018] survey coevolution-
ary algorithms, which are an extension of traditional
evolutionary algorithms, for large-scale MOO.

• Hayes et al. [2022a] survey multi-objective reinforce-
ment learning and planning techniques, and argue for
a utility-based approach where the appropriate solution
set is derived from what is known about the problem and
the DM’s utility.

Surveys such as the ones above focus on the optimization

methods. In contrast, we seek to review decision-support
methods, a step following optimization (Figure 1), though
these steps may be used iteratively during decision-making.

There have been a few surveys on specific aspects of deci-
sion support for MOO. For example:

• Bandaru et al. [2017] survey exploratory data mining
methods for extracting knowledge from MOO output.

• Moallemi et al. [2018] survey exploratory modeling
methods for analyzing the robustness of MOO solutions
under deep uncertainty.

• Wang et al. [2017] survey preference modeling methods
to direct a decision-maker to a region of the Pareto front.

To the best of our knowledge, none of the existing surveys
provide a comprehensive review of decision-support meth-
ods, including all the dimensions we cover in this survey.

Organization Section 2 formulates an MOO problem, and
introduces different variants of the problem. Section 3 in-
troduces the three established categories of decision-support
methods we review. Section 4 includes emerging research di-
rections. Section 5 concludes the paper.

2 Problem Variants and Examples
As different types of MOO problems require different explo-
ration techniques, we begin with a brief overview of MOO
problems and variants, and provide motivating examples.

2.1 Multi-Objective Optimization
An MOO problem with K objectives, fk(x) : k = 1, ....,K,
involves optimizing (maximizing or minimizing) for all ob-
jectives, simultaneously. Typically, a solution x ∈ Rn is
a vector of n decision variables, x = (x1, . . . , xn), which
can be subject to constraints. Each objective function maps
a solution to an objective value. Thus, each solution can be
mapped to a point, z = (z1, . . . , zK), in the objective space.
Alternatively, as is common in modern sequential decision
making (RL or planning), a solution is described as a map-
ping from states to a probability distribution over actions.
While such a mapping can still be cast as a vector of deci-
sion variables when both the set of possible states and the set
of actions are discrete, when either is infinite (or prohibitively
large) this is is no longer possible and the mapping becomes
e.g., a neural network. Further, it is also possible that out-
comes are stochastic, and it may be useful or in fact necessary
to communicate not a single (expected) value for z, but rather
a distribution over possible outcome vectors, P (z|x).

Since the objectives of an MOO problem can be conflict-
ing with each other, the output of the optimization is typi-
cally a set of solutions. For example, a Pareto-optimal set
[Deb, 2011] is the typical solution set produced by evolution-
ary MOO techniques. In contrast, if the solutions or outcomes
can be stochastic, we may need to produce a stochastic mix-
ture [Vamplew et al., 2009] (for sequential decision making
problems, stochastic selection of one of the deterministic base
policies at the start of each episode) or a set of distributions
over outcomes [Hayes et al., 2022b] as the solution set (built
to maximise the expected utility).



2.2 Dimensions of the Problem
We identify two dimensions of MOO problems, which in�u-
ence the type of decision support required.

Preference Availability Knowing the DM's preferences is
a key aspect of multi-objective decision-making. Such prefer-
ences can be elicited (1)a priori, i.e., before the optimization
process, (2)a posteriori, i.e., after the optimization process,
or (3) interactivelyduring the optimization process.

When the preferences are knowna priori, combining dif-
ferent objectives into a single objective may be possible
[Castellettiet al., 2013], but not always desirable (e.g., scalar-
ization of unknown utility function may result in too much
uncertainty)[Roijers et al., 2013]. However, research on
preference construction[Warrenet al., 2011] suggests that
preferences are context-sensitive, and are often calculated at
the time a choice is to be made. Thus,a posteriori or in-
teractive elicitation of preferences is typical. Such scenarios
require decision support as the volume and the complexity
of the choices MOO provides[Zintgraf et al., 2018] can be
overwhelming.

Solution Type The type of solution produced by MOO may
call for different types of decision support. In simple cases,
the solutions are one shot, e.g., MOO yields an optimal de-
sign for an engine that is put into production. In contrast, in
complex problems the solution can consist of decision vari-
ables that need to be implemented over time (e.g., over several
years) or space (e.g., across several countries). Such prob-
lems require decision support for analyzing, e.g., the time
sensitivity[Quinnet al., 2019] of the solutions.

2.3 Uncertainty Handling
In complex decision-making problems, such as policy and
planning problems, uncertainty about the future has to be con-
sidered. The main goal for uncertainty exploration in MOO
is to help the DMs in making informed decisions by provid-
ing them with a comprehensive understanding of the range of
possible solutions and their associated uncertainty.

There are a number of methods to understand uncertainty;
in this paper, we focus on stochastic uncertainty and deep un-
certainty[Kwakkel et al., 2016]. Stochastic uncertainty can
be represented by a probabilistic model of random phenom-
ena. Random variables are central to stochastic models. They
often refer to natural phenomena, for instance, next year's
rainfall or next month's water consumption patterns. If we
obtain several observations of that variable, we can estimate
its probability distribution along with various statistical mea-
sures that characterize its distribution. This style of uncer-
tainty is often represented within the simulation which is cou-
pled with MOO with which we can then obtain a probability
distribution of the outcomes. In contrast, deep uncertainty
[Lempert, 2019] refers to the uncertainty in the system that
does not have a probabilistic representation due to the lack
of observations. Deep uncertainty is concerned with vari-
ables whose statistical behavior is unknown. This concept
has gained traction for recent decision support applications
[Popper, 2019], but is not new[Bertsekas and Rhodes, 1971].

The type of decision support depends on the nature of
uncertainty, its location in the model, and severity. The

decision-support methods also depend on whether uncer-
tainty is analyzed after[McPhail et al., 2020] or during the
optimization[Bartholomew and Kwakkel, 2020].

2.4 Motivating Examples
Table 1 shows sample problems, chosen from different do-
mains, for MOO variants. We also present a sample problem
[Sari, 2022] in detail to illustrate the problem dimensions.

Table 1: Example problems for MOO variants.

MOO Variant Example problem and reference

A posteriori preference Combined heat and power
generation[Li et al., 2018]

Interactive preference Finnish forest management
[Misitanoet al., 2022]

Uncertainty handling Production allocation problem
[Shavazipouret al., 2021b]

One-shot solution Building performance[Ling
and Jakubiec, 2018]

Sequential solution Multireservoir operating
policies[Quinnet al., 2019]

Example 1(Reservoir management). The Nile Basin, which
covers ten countries, is a crucial resource for supplying water
for hydropower generation, municipal, industrial and agri-
cultural consumption. However, tensions have risen between
Ethiopia (upstream country), and Egypt and Sudan (down-
stream countries) over Ethiopia's construction of the Grand
Ethiopian Renaissance (GERD) dam that could block the �ow
of water to downstream countries and threaten their water se-
curity. Thus, it is crucial to agree on the water release policy
for the four reservoirs (one in Egypt, two in Sudan, and one
in Ethiopia) for optimal water management. This is an MOO
problem with con�icting objectives such as minimizing wa-
ter demand de�cit in Egypt and Sudan, maximizing hydro en-
ergy generation in Egypt and Ethiopia. The problem involves
hydro-climatic and socio-economic uncertainties, as well as
uncertainties regarding yearly water demand growth, and hy-
drology of the major tributaries of the river. A solution is a
sequence of release decisions over the four reservoirs, at the
beginning of each month, over a 20-year time horizon.

3 Decision-Support Methods
Decision-support methods for MOO are often developed in
a problem-speci�c manner. Yet, these methods have com-
mon building blocks. We review three categories of decision-
support that are well-studied in the literature.

3.1 Visualization
Visualizations are a common decision-support tool for ex-
ploring an MOO solution set. Miettinen[2014] surveys
graphical methods, e.g., bar charts, value paths, spider web
charts, for visualizing a small set of alternatives in a solution
set. However, as the number of objectives, and consequently,
the number of alternative solutions increases, visualizing the
solution set becomes extremely dif�cult.



For problems with many objectives, the common visual-
izations employed include parallel coordinate plots (PCPs),
pair-wise scatter plots, heat maps, and radar charts[Dy et
al., 2022]. The PCP gives a comprehensive overview of all
the solutions, and the other plots assist in further analyzing
speci�c solutions, objectives, or their combinations. For in-
stance, Figure 2 shows example plots for a simpli�ed (four
objectives) version of the reservoir management problem in
Example 1. As shown, the PCP looks quite cluttered with
a large number of solutions. Speci�c solutions, e.g., best
solutions for each objective, can be highlighted in the PCP.
However, the extreme solutions may not be the most suitable
solutions. The number of plots in the pairwise scatter plots in-
creases combinatorially with the number of objectives. Then,
tracking how speci�c subset of solutions fare across different
pairs of objectives becomes quite challenging.

Several software tools have been developed, across appli-
cation domains, for visualizing the solutions, e.g., PAVED
[Cibulski et al., 2020] (a web app), Parasol[Raseman
et al., 2019] (a Javascript library), and EMA Workbench
[Kwakkel, 2017] (a Python library). Despite overlapping fea-
tures, most of the existing visualization tools are developed
independently—they don't build on a common core and only
offer static visualizations[Rasemanet al., 2019].

Since visualizing a many-dimensional solution set is chal-
lenging, the dimensions of the solutions can be reduced (typ-
ically, to 2D or 3D). For instance, Nagar et al.[2021] pro-
pose to use interpretable self-organizing maps (iSOM), which
works similar to a conventional SOMs in mapping a high-
dimensional space to a low-dimensional space but differ in
the way thebest matching unitis chosen in order to reduce
folds and intersections in the low-dimensional space. Elewah
et al.[2021] propose 3D radial coordinate visualization (3D-
RadViz), which maps a many dimensional objective space
into 3D, preserving some properties of the solution set. How-
ever, since mapping a solution set to a low-dimensional space
typically involves non-linear transformations, preserving the
exact geometry of the solution set is not possible.

In contrast to works that visualize the MOOoutput, Wal-
ter et al.[2022] propose Population Dynamics Plot (PopDP)
to visualize the MOOprocess(speci�cally, for evolutionary
MOO). PopDP shows not only the solutions in the objective
space, but also the parent-offspring relationships and the per-
turbation operators that yield the solutions to show how the
MOO solutions evolve through iterations.

3.2 Mining the Solution Set
Visualizing a multi-dimensional solution set, in its entirety,
is cognitively dif�cult. Although a visualization can present
complex information, as Dy et al.[2022] �nd there is a `ceil-
ing' on the number of dimensions a DM can consider simul-
taneously. Thus, data mining methods—both supervised and
unsupervised—have been developed to extract targeted infor-
mation from a solution set to augment the high-level insights
from visualizations. To apply these methods, we need to build
an MOO datasetconsisting of input and/or output features
from an MOO solution set.

In supervised methods, the input features are typically de-
rived from the decision variables and the output feature from,

(a) A parallel coordinates plot, representingN -dimensional data by
N equally spaced, parallel, axes. The polylines represent solutions
and they bisect each axes based on their values for objectives.

(b) Pair-wise scatter plots, comparing solutions for each pair of ob-
jectives and indicating the general trend with regression lines.

Figure 2: Sample visualizations of the Pareto-optimal solutions to a
simpli�ed version of reservoir management problem (Example 1).

e.g., (1) ranks obtained by non-dominated sorting solutions;
(2) one of the objective functions; (3) preference information
elicited from the decision-maker; or (4) clustering methods
[Bandaruet al., 2017]. Since the goal of such methods is
to extract knowledge in a human-perceivable way, black-box
models such as neural networks are typically not used. In
contrast, methods such decision trees and logistic regression,
which are easier to interpret, are used. For instance, Dudas et
al. [2015] use decision trees for the post-analysis of MOO so-
lutions by utilizing the whole set of feasible solutions to �nd
rules separating preferred from undesirable solutions.

Unsupervised methods do not require `labeling' a feature
of an MOO dataset as the output feature. For instance, a va-
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