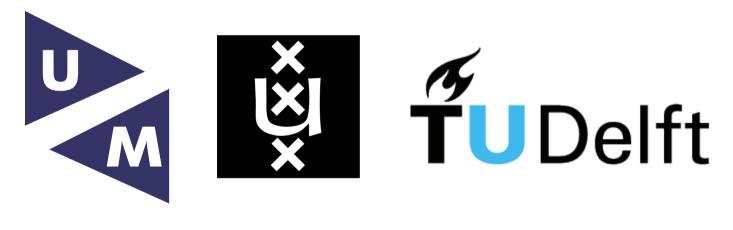
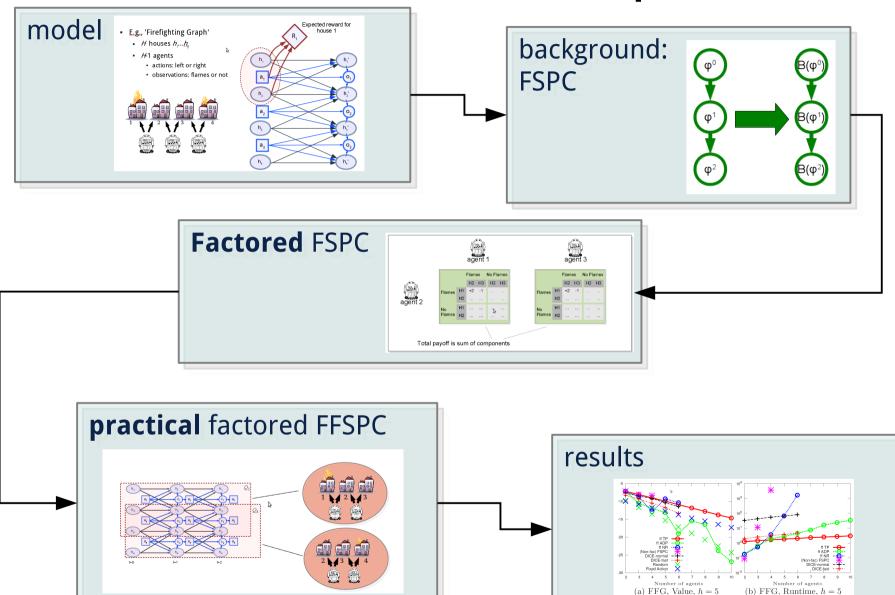
Approximate Solutions for Factored Dec-POMDPs with Many Agents

Frans A. Oliehoek, Shimon Whiteson, & Matthijs T.J. Spaan



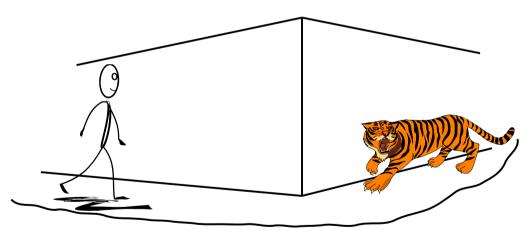
AAMAS, Wednesday May 8, 2013

Visual Roadmap



Multiagent decision making under Uncertainty

Outcome Uncertainty

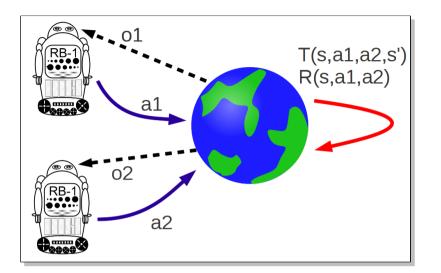


Multiagent Systems: uncertainty about others

May 8, 2013 Oliehoek, Whiteson & Spaan - Factored Dec-POMDPs with Many Agents

Formal Model

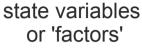
- A Dec-POMDP
 - $\langle S, A, P_T, O, P_O, R, h \rangle$
 - n agents
 - S set of states
 - A set of joint actions
 - P_{T} transition function
 - *O* set of **joint** observations
 - *P*₀ observation function
 - *R* reward function
 - *h* horizon (finite)

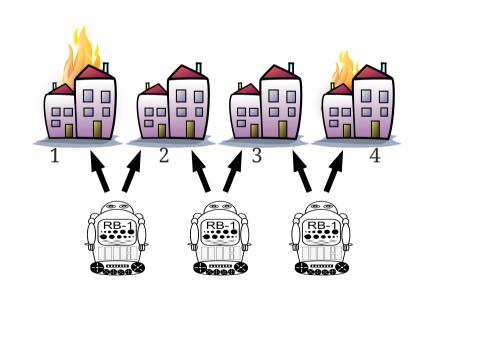


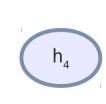
$$a = \langle a_1, a_2, \dots, a_n \rangle$$
$$P(s'|s, a)$$

$$o = \langle o_1, o_2, \dots, o_n \rangle$$
$$P(o|a, s')$$
$$R(s, a) = E_{s'}R(s, a, s')$$

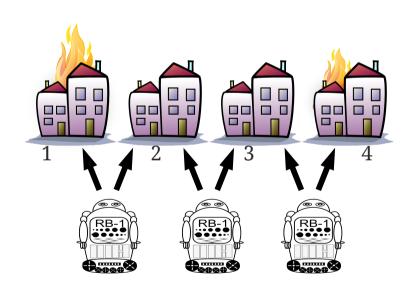
- E.g., 'Firefighting Graph'
 - *H* houses $h_1...h_H$
 - *H*-1 agents
 - actions: left or right
 - observations: flames or not





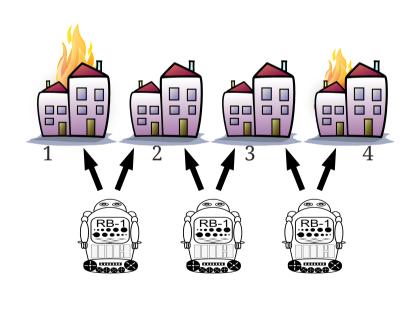


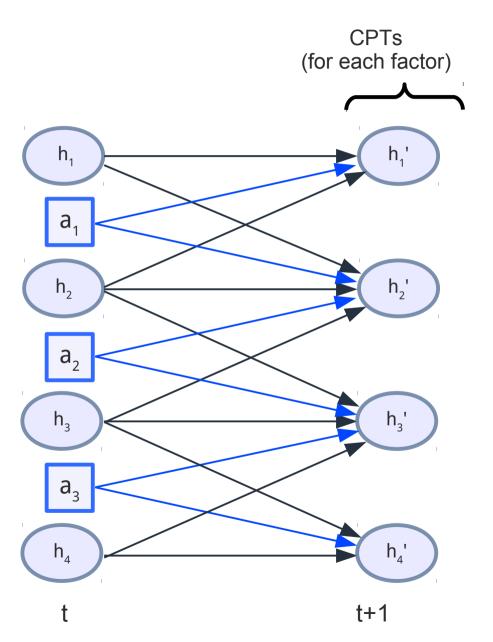
- E.g., 'Firefighting Graph'
 - *H* houses $h_1...h_H$
 - *H*-1 agents
 - actions: left or right
 - observations: flames or not



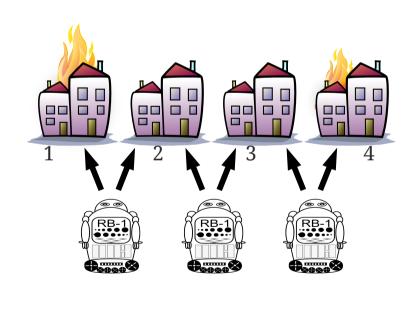


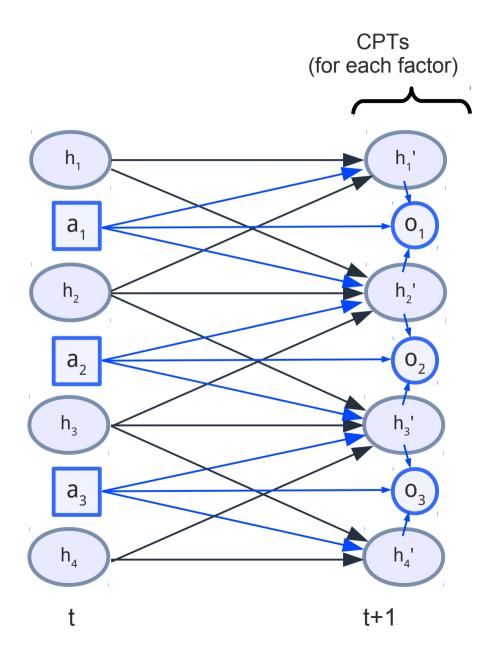
- E.g., 'Firefighting Graph'
 - *H* houses $h_1...h_H$
 - *H*-1 agents
 - actions: left or right
 - observations: flames or not





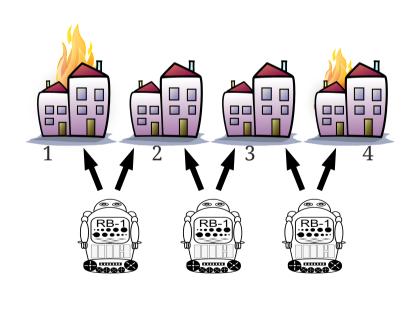
- E.g., 'Firefighting Graph'
 - *H* houses $h_1...h_H$
 - *H*-1 agents
 - actions: left or right
 - observations: flames or not

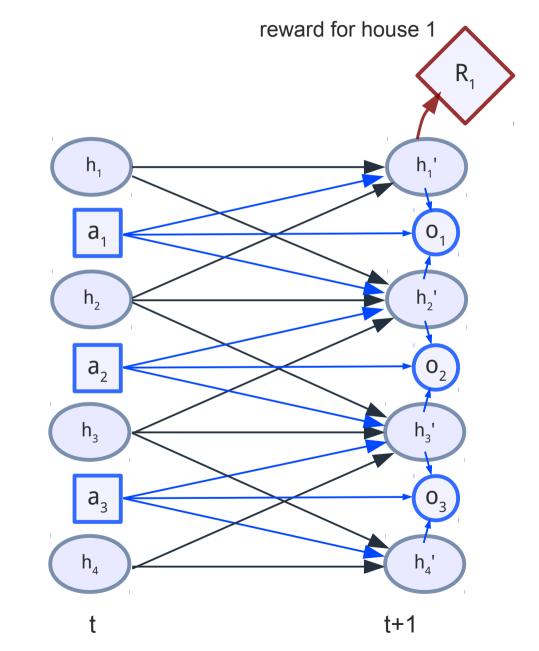




May 8, 2013 Oliehoek, Whiteson & Spaan - Factored Dec-POMDPs with Many Agents

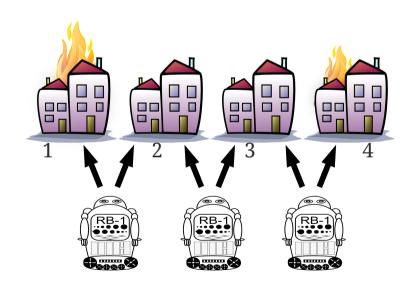
- E.g., 'Firefighting Graph'
 - *H* houses $h_1...h_H$
 - *H*-1 agents
 - actions: left or right
 - observations: flames or not

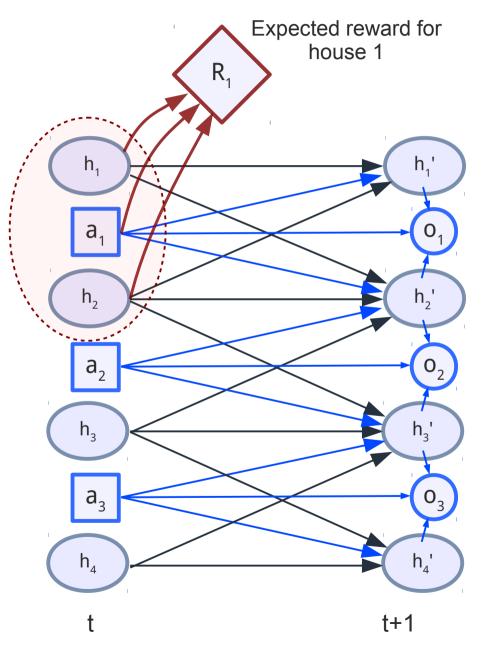




9/33

- E.g., 'Firefighting Graph'
 - *H* houses $h_1...h_H$
 - *H*-1 agents
 - actions: left or right
 - observations: flames or not

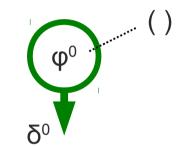




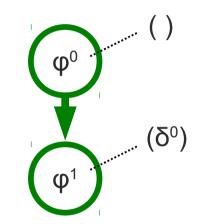
- Goal: scalability w.r.t. #agents
- Forward-sweep policy computation (FSPC)
 - for each t=0,...,h-1
 - compute best joint decision rule δ^t
 - given past joint policy φ^t

- Goal: scalability w.r.t. #agents
- Forward-sweep policy computation (FSPC)
 - for each t=0,...,h-1
 - compute best joint decision rule δ^t
 - given past joint policy φ^t

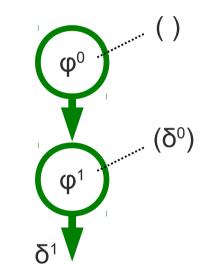
- Goal: scalability w.r.t. #agents
- Forward-sweep policy computation (FSPC)
 - for each t=0,...,h-1
 - compute best joint decision rule δ^t
 - given past joint policy φ^t



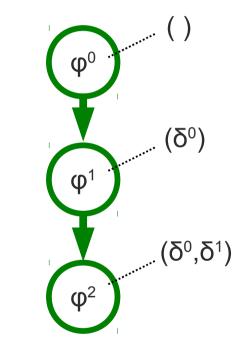
- Goal: scalability w.r.t. #agents
- Forward-sweep policy computation (FSPC)
 - for each t=0,...,h-1
 - compute best joint decision rule δ^t
 - given past joint policy φ^t



- Goal: scalability w.r.t. #agents
- Forward-sweep policy computation (FSPC)
 - for each t=0,...,h-1
 - compute best joint decision rule δ^t
 - given past joint policy φ^t

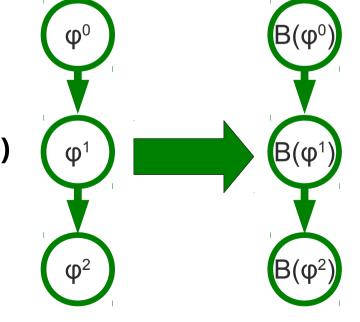


- Goal: scalability w.r.t. #agents
- Forward-sweep policy computation (FSPC)
 - for each t=0,...,h-1
 - compute best joint decision rule δ^t
 - given past joint policy φ^t

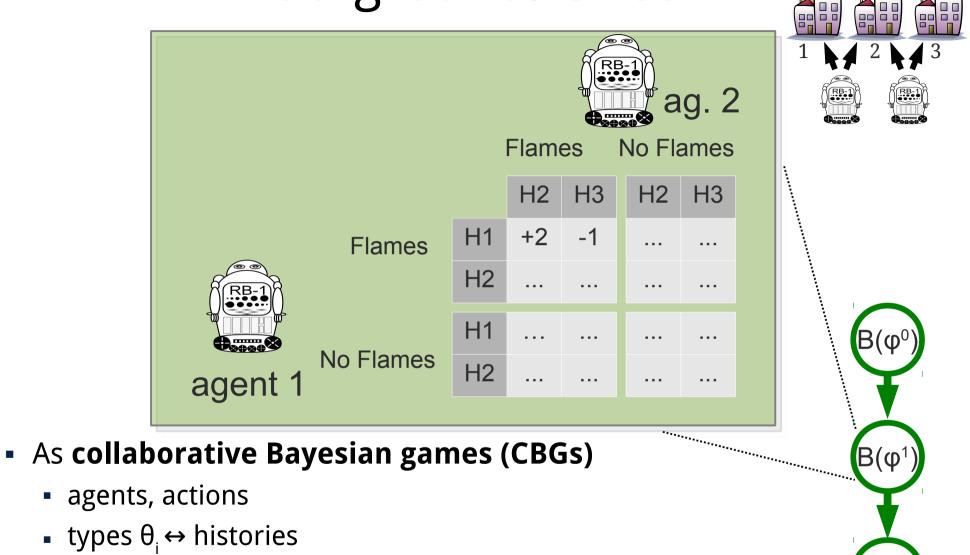


- Problem at stage t
 - select $\delta = <\delta_1, ..., \delta_n >$
 - δ_i : histories \rightarrow actions $\delta_i^t(\vec{\theta}_i^t) = a_i^t$

- As collaborative Bayesian games (CBGs)
 - agents, actions
 - types $\theta_i \leftrightarrow$ histories
 - probabilities: P(θ)
 - payoffs: Q(θ,a)



Background: CBGs



- probabilities: P(θ)
- payoffs: Q(θ,a)

This paper: Factored FSPC

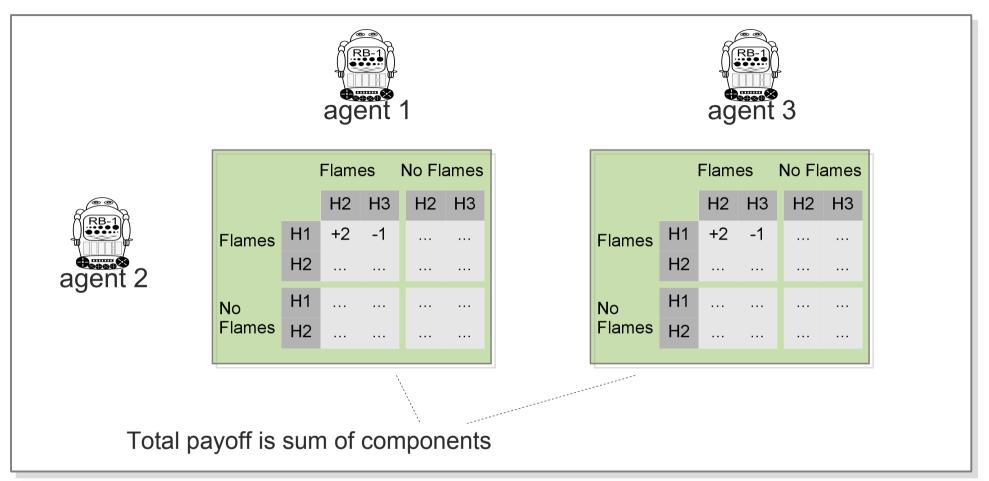
Factored FSPC – Basic idea:

exploit independence between agents in FSPC

• if value function factored $Q(x, \vec{\theta}, a) = \sum_{e} Q_{e}(x_{e}, \vec{\theta}_{e}, a_{e})$

→ replace CBGs with Collaborative **graphical** Bayesian games (CGBGs)

This paper: Factored FSPC



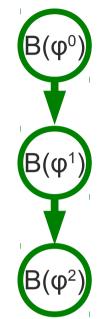
\rightarrow replace CBGs with

Collaborative graphical Bayesian games (CGBGs)

Factored FSPC for Many Agents

Improving scalability w.r.t. the number of agents...

- 1) Approximate structure of Q^*
 - Predetermined scope structure
- 2) Compute CGBG payoff functions
 - Transfer Planning (TP)
- 3) Inference techniques to construct CGBGs
 - Extension of factored frontier [Murphy&Weiss UAI 2001]
- 4) Efficient solutions of CGBGs
 - Max-plus to ATI-FG [OWS UAI 2012]



Factored FSPC for Many Agents

Improving scalability w.r.t. the number of agents...

- 1) Approximate structure of Q^*
 - Predetermined scope structure

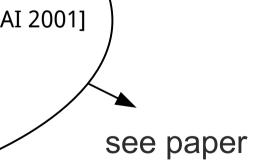
2) Compute CGBG payoff functions

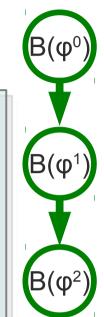
Transfer Planning (TP)

3) Inference techniques to construct CGBGs

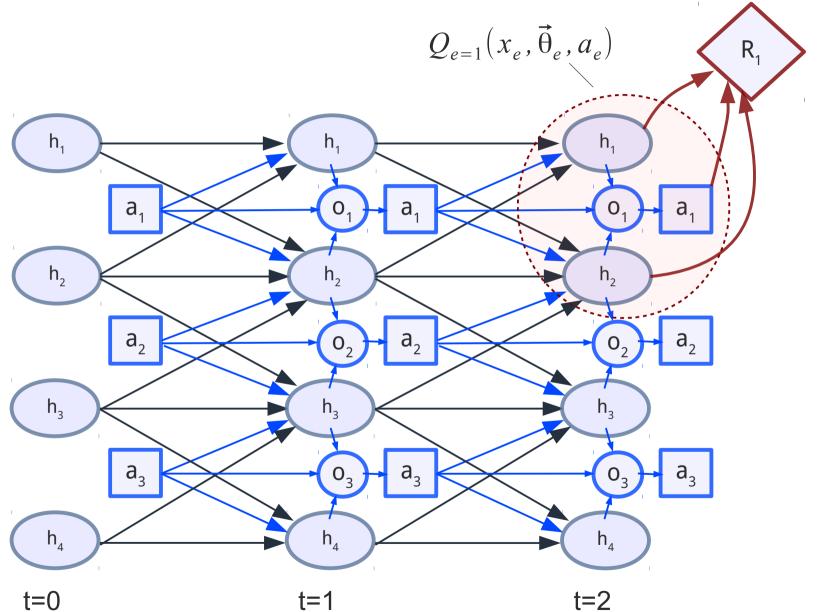
- Extension of factored frontier [Murphy&Weiss UAI 2001]
- 4) Efficient solutions of CGBGs
 - Max-plus to ATI-FG [OWS UAI 2012]

Rest of this talk

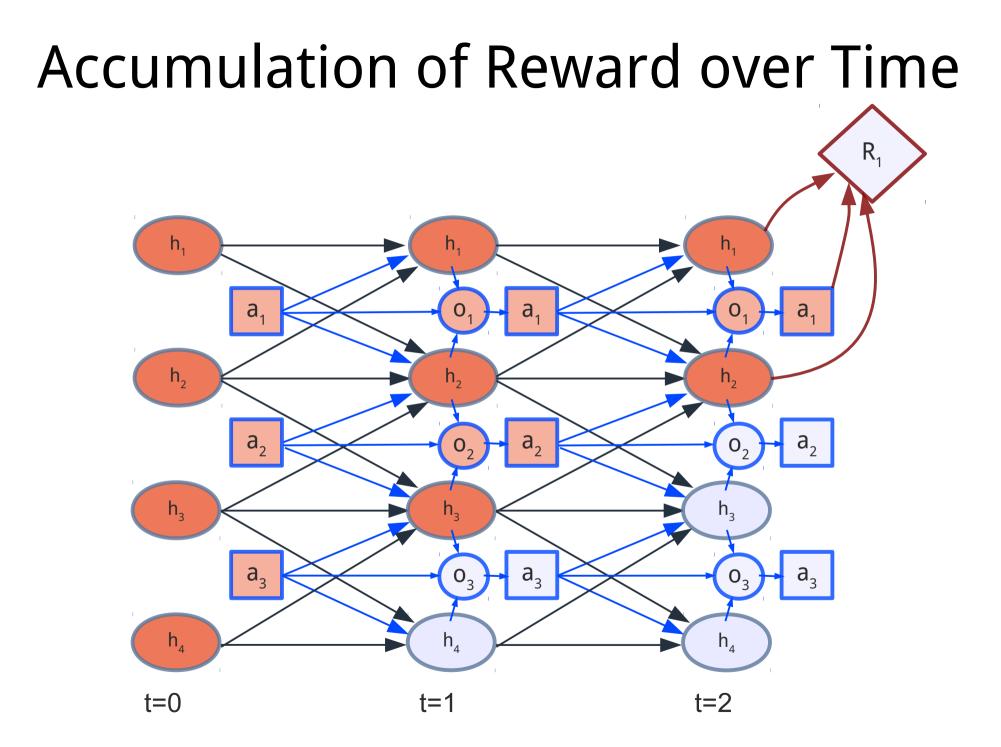




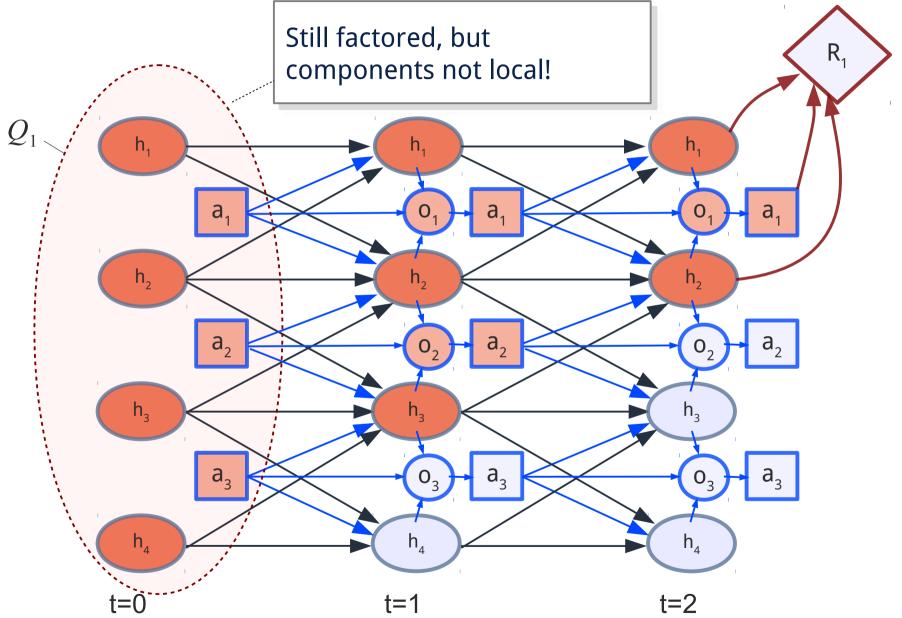
Accumulation of Reward over Time



May 8, 2013 Oliehoek, Whiteson & Spaan - Factored Dec-POMDPs with Many Agents 23 / 33

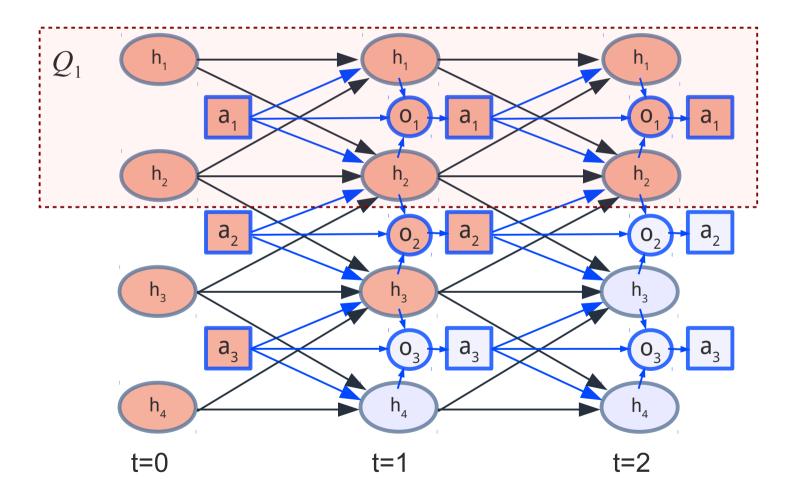


Accumulation of Reward over Time



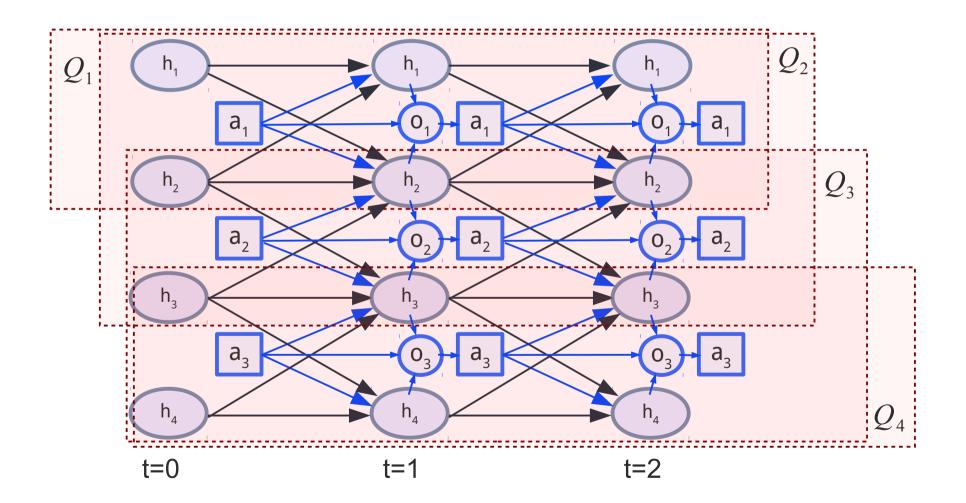
1) Predetermined Scope Structure

Use smaller scopes



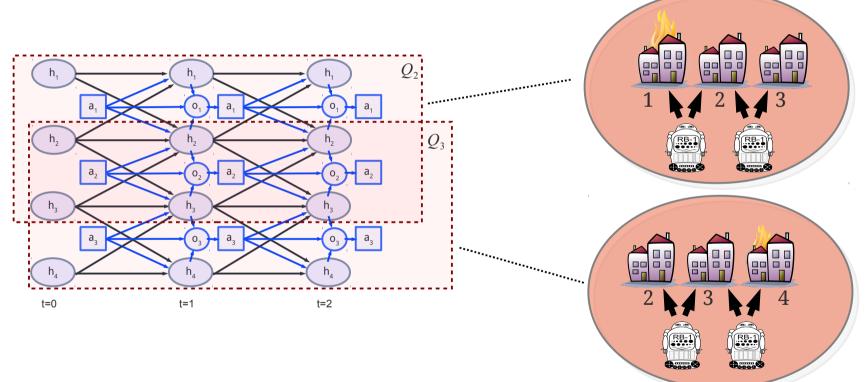
1) Predetermined Scope Structure

Use smaller scopes



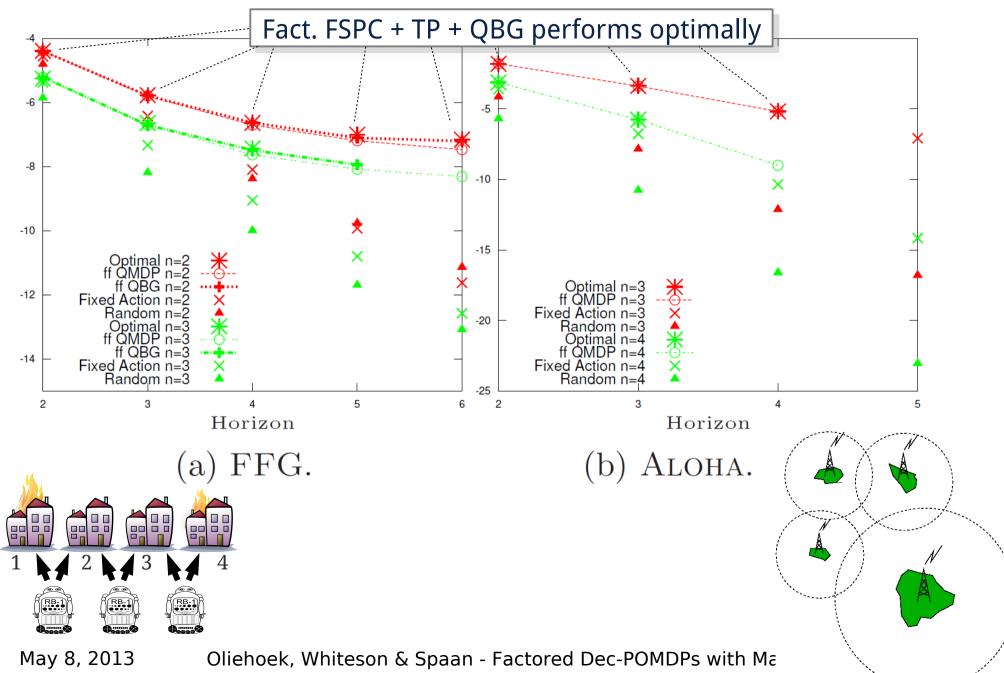
2) Transfer Planning

- Define a source problem for each component
 - involving fewer agents

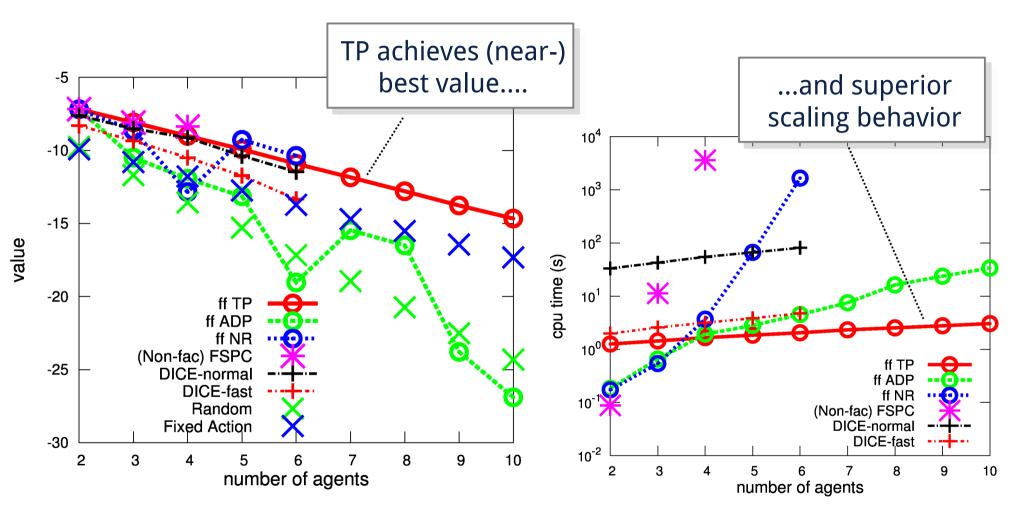


Solve those exactly or approximately (QMDP, etc.)

Results – Compared to Optimal



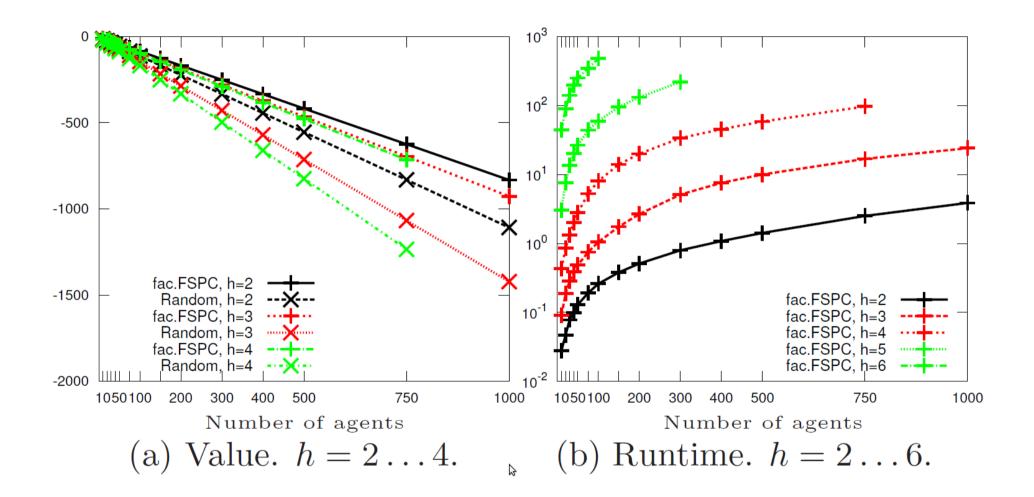
Results – vs. Approximate



- FFSCP: TP vs ADP, NR
- Non-factored FSPC, DICE [Oliehoek et al. 2008 Informatica]

May 8, 2013 Oliehoek, Whiteson & Spaan - Factored Dec-POMDPs with Many Agents 30 / 33

Results – Many Agents



May 8, 2013 Oliehoek, Whiteson & Spaan - Factored Dec-POMDPs with Many Agents 31 / 33

Conclusions

- Factored FSPC with transfer planning: approximates factored Dec-POMDPs with multiple abstractions involving subsets of agents
- Unprecedented scalability for this class
 - results up to 1000 agents
- Future work:
 - scale to higher horizon
 - understand such abstractions
 - empirically verified near-optimal quality
 - formal understanding influence-based abstraction [AAAI' 12]

References

- R. Emery-Montemerlo, G. Gordon, J. Schneider, and S. Thrun. Approximate solutions for partially observable stochastic games with common payoffs. In AAMAS, 2004.
- K. P. Murphy and Y. Weiss. The factored frontier algorithm for approximate inference in DBNs. In UAI, 2001.
- F. A. Oliehoek, J. F. Kooi, and N. Vlassis. The cross-entropy method for policy search in decentralized POMDPs. Informatica, 32:341–357, 2008
- F. A. Oliehoek, M. T. J. Spaan, S. Whiteson, and N. Vlassis. Exploiting locality of interaction in factored Dec-POMDPs. In AAMAS, 2008.
- F. A. Oliehoek, S. Witwicki, and L. P. Kaelbling. Influence-Based Abstraction for Multiagent Systems. In AAAI, 2012.
- F. A. Oliehoek, S. Whiteson, and M. T. J. Spaan. Exploiting structure in cooperative Bayesian games. In UAI, 2012.
- D. Szer, F. Charpillet, and S. Zilberstein. MAA*: A heuristic search algorithm for solving decentralized POMDPs. In UAI, 2005.