
The MADP Toolbox 0.4.1

Frans A. Oliehoek
University of Amsterdam, Amsterdam, The Netherlands
University of Liverpool, Liverpool, United Kingdom

Matthijs T. J. Spaan
Delft University of Technology

Delft, The Netherlands

Philipp Robbel
Massachusetts Institute of Technology

Cambridge, MA, USA

João V. Messias
University of Amsterdam, Amsterdam, The Netherlands

May 23, 2017

Abstract

This is the user and developer guide accompanying the version 0.4.1 release of the Multia-
gent Decision Process (MADP) Toolbox. It is meant as a first introduction to the organization
of the toolbox, and tries to clarify the approach taken to certain implementation details. In
addition, it covers a few typical use cases and provides an installation guide. This document
complements the automatically generated API reference.

Contents

1 Introduction 3

I User Guide 3

2 For the Impatient:
Compiling, and Running an MADP Program 4

3 Theory: MADPs and Basic Notation 5
3.1 Discrete Time MASs . 5
3.2 Basic MADP Components . 5
3.3 Histories . 6
3.4 Policies, Planning & Learning . 6

4 Finding Things: Useful Directories 7

5 Using the Toolbox: Some Examples 7
5.1 General Options . 7
5.2 Solving a Dec-POMDP . 8
5.3 Solving a (Multiagent) POMDP with Perseus 9
5.4 Other POMDP Methods . 10
5.5 Planning: Solving a (Multiagent) MDP . 12
5.6 Learning in a (Multiagent) MDP . 13

6 Specifying Problems: File Formats, etc. 13
6.1 Using the OpenMarkov Graphical Editor . 13
6.2 Specifying & Parsing .pomdp & .dpomdp files 13
6.3 Specifying Problems as a Sub-Class . 14

1

7 The ProbModelXML Format 14
7.1 Using OpenMarkov to Design Factored Problems 16
7.2 Designing Event-Driven Models . 18

II Developer Guide 19

8 Overview of the MADP Toolbox Libraries 19
8.1 MADP Libraries . 20

8.1.1 The Base Library (libMADPBase) . 20
8.1.2 The Parser Library (libMADPParser) . 20
8.1.3 The Support Library (libMADPSupport) 20
8.1.4 The Planning Library (libMADPPlanning) 21

8.2 MADP Directory Structure . 22

9 Using the MADP Toolbox: An Example 22

10 Typical Use Cases 23
10.1 One-Shot Decision Making . 23
10.2 Sequential Planning Algorithms . 23

10.2.1 MultiAgentDecisionProcessInterface and PlanningUnits 23
10.2.2 Multiagent Planning . 25
10.2.3 Planning for a Single Agent . 26

10.3 Simulation and Reinforcement Learning . 26
10.3.1 Simulations . 26
10.3.2 The Agents Hierarchy . 26
10.3.3 Reinforcement Learning . 27

11 Specifying Problems as a Sub-Class 27
11.1 Dec-POMDPs . 27
11.2 Factored Dec-POMDPs . 28
11.3 Fully-observable problems . 28

12 IndexTools: Indices for Discrete Models 28
12.1 Enumeration of Joint Actions and Observations 28
12.2 Enumeration of (Joint) Histories . 29

12.2.1 Observation Histories . 29
12.2.2 Action Histories . 30
12.2.3 Action-Observation Histories . 30
12.2.4 Joint Histories . 31

13 Joint Beliefs and History Probabilities 32
13.1 Theory . 32
13.2 Implementation . 33

14 Policies 33

A Installation Guide 34
A.1 System requirements . 34
A.2 Compiling, installing and linking . 34
A.3 Using CPLEX . 35
A.4 Using CUDA . 35
A.5 Specifying problem and result directories . 35
A.6 Mac OSX support . 35
A.7 Testing . 36

A.7.1 Code coverage . 36

2

1 Introduction

This text describes the Multiagent Decision Process (MADP) Toolbox version 0.4.1, which is a
software toolbox for scientific research in decision-theoretic planning and learning in multiagent
systems (MASs). We use the term MADP to refer to a collection of mathematical models for mul-
tiagent decision making: multiagent Markov decision processes (MMDPs) [6], decentralized MDPs
(Dec-MDPs), decentralized partially observable MDPs (Dec-POMDPs) [2], partially observable
stochastic games (POSGs) [12], etc.

The toolbox is designed to be rather general, potentially providing support for all these models,
although so far most effort has been put in planning algorithms for discrete Dec-POMDPs. It
provides classes modeling the basic data types used in MADPs (e.g., action, observations, etc.) as
well as derived types for planning (observation histories, policies, etc.). It also provides base classes
for planning algorithms and includes several example applications using the provided functionality.
Additionally, the toolbox also provides a number of more mature ‘solvers’ that can be used to solve
certain MADPs. For instance, applications that use JESP or brute-force search to solve problems
(specified as .dpomdp files) for a particular planning horizon. In this way, Dec-POMDPs can be
solved directly from the command line. Furthermore, several utility applications are provided, for
instance one which empirically determines a joint policy’s control quality by simulation.

Here we highlight some of the functionality of the MADP toolbox:

• (Multiagent) MDP solvers and learning:

– value iteration

– Q-learning

– export to SPUDD

• (Multiagent) POMDP solvers:

– Perseus [34]

– Monahan [16]

– Incremental Pruning [8]

• Dec-POMDP solvers:

– JESP [18]

– DP-LPC [5]

– (Generalized) Multiagent A* (GMAA) and variants [37, 25, 30, 35]

– GMAA-ELSI for factored Dec-POMDPs [26]

• Parsers:

– .pomdp (Tony Cassandra’s POMDP file format [7])

– .dpomdp (a Dec-POMDP extension of Tony Cassandra’s format, see Section 6.2)

– .pgmx (a file format for factored models, see Section 7)

A more detailed description of features can be found in the developer guide (see Section 8).
This document is split in two parts. The first part is intended for people that intend to use

MADP as a “out-of-the-box” tool without writing any code themselves. It presents a mathematical
model of the family of MADPs, which also introduces notation, gives a high-level overview of the
toolbox and an example of how to use it. The second part, is intended for people that do want to
use MADP in their own code. It gives pointers to useful classes for typical functionality and some
more specific design choices and mechanisms are explained.

3

Part I

User Guide
Even though MADP is designed as a library (or collection of libraries), with as the primary goal
to use this in one’s own code, there is also much functionality that can be used “out of the box”.
This part of the document is intended for people that want to use MADP to perform simulations,
reinforcement learning or solve a planning problem, without writing code themselves.

2 For the Impatient:
Compiling, and Running an MADP Program

You should be able to compile the MADP toolbox on any recent Linux distribution (for details see
Appendix A). It makes use of GNU autotools and therefore, a typical installation is as follows:

tar xfz madp-0.4.1.tar.gz

cd madp-0.4.1

./configure

make

It is not required to make install to use the toolbox. Please see Appendix A for more information
about installation.

Now in order to run your first program do

src/examples/example BFS DT -h2 -v

which should solve the horizon h = 2 DecTiger problem and produce the following output:

ArgumentUtils: Problem DecTiger instantiated.

BruteForceSearchPlanner initialized

value=-4

JointPolicyPureVector:

JPolComponent VectorImplementation index 0

Policy for agent 0 (index 0):

Oempty, --> a00:Listen

Oempty, o00:HearLeft, --> a00:Listen

Oempty, o01:HearRight, --> a00:Listen

Policy for agent 1 (index 0):

Oempty, --> a10:Listen

Oempty, o10:HearLeft, --> a10:Listen

Oempty, o11:HearRight, --> a10:Listen

This tells you that the problem is solved and that the optimal value of this problem (a Dec-
POMDP [2]), is −4. The optimal policy is the one with index 0 (and is represented by the class
JointPolicyPureVector). The rest of the output specifies the behavior of this optimal joint
policy: both agents perform the action Listen for all their observation histories. (“Oempty” is the
empty observation that agents have at the start of the problem, and “Oempty, o00:HearLeft”
encodes the history where the agent has gotten the observation HearLeft).

If you have your own .dpomdp file, you can try to solve it using, e.g., GMAA∗-ICE [35, 30]:

src/solvers/GMAA-ICE <PATH-TO-YOUR-.dpomdp-FILE> -h2

MADP includes a number of .dpomdp and .pgmx problem files, others can be found online at
http://masplan.org/problem domains.

4

3 Theory: MADPs and Basic Notation

Even though MADP is a toolbox aimed at finding numerical solutions for all kinds of multiagent
planning and learning problems, these problems themselves have formal definitions. This section
provides some theoretical background with respect to the models that can be represented and
solved in MADP.

As mentioned, MADPs encompass a number of different models. Here we briefly introduce
the components of these mathematical models and some basic notation. For a more extensive
introduction to these models, see, e.g., [33, 20, 21].

3.1 Discrete Time MASs

An MADP is often considered for a particular finite number of discrete time steps t. When searching
policies (planning) that specify h actions, this number is referred to as the (planning-)horizon. So
typically we look at time steps:

t = 0, 1, 2, ..., h− 2, h− 1.

At each time step:

• The world is in a specific state s ∈ S.

• Each agent receives an individual observation: a (noisy) observation of the environment’s
state.

• The agents take an action.

The individually selected actions form a joint action. After such a joint action, the system jumps to
the next time step. In this jump the system’s state may change stochastically, and this transition
is influenced by the taken joint action. In MADPs (such as the Dec-POMDP), there are transition
and observation functions describing the probability of state transitions and observations.

3.2 Basic MADP Components

More formally, a multiagent decision process (MADP) consists of a subset of the following compo-
nents:

• D = {1, . . . , n}, a finite set of n agents.

• S is a finite set of world states.

• The set A = ×iAi is the set of joint actions, where Ai is the set of actions available to agent
i. Every time step, one joint action a = 〈a1, ..., an〉 is taken. Agents do not observe each
other’s actions.

• O = ×iOi is the set of joint observations, where Oi is a finite set of observations available to
agent i. Every time step one joint observation o = 〈o1, ..., on〉 is received, from which each
agent i observes its own component oi.

• b0 ∈ 4(S), is the initial state distribution at time t = 0.1

• A transition function that specifies the probabilities Pr(s′|s,a).

• An observation function that specifies the probabilities Pr(o|a, s′).
• A set of reward functions {Ri} that specify the payoffs of the agents.

The partially observable stochastic game (POSG) [12] is the most general model in the MADP
family. Dec-POMDPs are similar, but all the agents receive the same reward, so only 1 reward
function is needed.

Unless stated otherwise, we use superscript for time indices. I.e., a2
i denotes the agent i’s action

at time t = 2.

1We use 4(X) to denote the infinite set of probability distributions over the finite set X.

5

3.3 Histories

Let us more formally consider what the history of the process is. An MADP history of horizon h
specifies h time steps t = 0, ..., h − 1. At each of these time steps, there is a state st, joint
observation ot and joint action at. Therefore, when the agents will have to select their k-th
actions (at t = k − 1), the history of the process is a sequence of states, joint observations and
joint actions, which has the following form:(

s0,o0,a0, s1,o1,a1, ..., sk−1,ok−1
)
.

Here s0 is the initial state, drawn according to the initial state distribution b0. The initial joint
observation o0 is usually assumed to be the empty joint observation: o0 = o∅ =

〈
o1,∅, ..., on,∅

〉
. (In

multiagent decision making, it customary to assume that all information that is available before to
process is started is collected in the initial distribution over states, and consequently in the MADP
toolbox there is no initial observation.)

In many MADPs, an agent can only observe his own actions and observations. Therefore we
introduce notions of histories from the perspective of an agent. We start with the action-observation
history of agent i at time step t:

θ̄ ti =
(
a0
i , o

1
i , a

2
i , ..., o

t−1
i , at−1

i , oti
)

note that the choice points for the agents are right before the action:

θ̄ ki =

(
↑t=0

a0
i , o

1
i , ↑t=1

a2
i , ..., o

k−1
i , ↑t=k−1

ak−1
i , oki

)
Therefore, when we write ō ti =

(
o1
i , , ..., o

t−1
i , oti

)
for agent i’s observation history at time step t

and ā ti =
(
a0
i , a

1
i , , ..., a

t−1
i

)
for the action history of agent i at time step t. We can thus redefine

the action-observation history as: θ̄ ti , 〈ō ti , ā ti 〉 . For time step t = 0, we have that ā 0
i = (()) = ā∅

and ō 0
i = (()) = ō∅ are empty sequences.

3.4 Policies, Planning & Learning

The overall goal of the toolbox is to support algorithms that allow agents to behave intelligently
in MADPs. Roughly, we can discriminate two main types of approaches:

Planning When given a complete specification of the environment (i.e., the MADP), ‘all’ there is
left to do is to compute policies that seem reasonable for that particular model. For instance,
for a Dec-POMDP we may want to compute an optimal joint policy, while for a POSG we
may want to find a joint policy that forms a Nash equilibrium.

(Reinforcement) Learning When the model is not completely known in advance, the agents
will not need to merely execute a policy that is computed for them. Instead, the agents will
need to interact repeatedly in the environment to learn about the environment (and possibly
each other), updating their policy as a result of these interactions.

Clearly, the challenges in learning settings are even bigger than those in planning settings, but
planning settings are already very hard by themselves. Both planning and learning revolves around
finding ‘policies’.

For instance, when planning for (‘solving’) a finite-horizon Dec-POMDP, we typically try and
find a joint policy, i.e., a tuple of policies

π = 〈π1, . . . , πn〉

with individual policies πi that deterministically map observations histories to actions (i.e., πi(ōi) =
ai). The goal in a Dec-POMDP typically is to optimize the expected expected cumulative reward:

V (π) = E

[
h−1∑
t=0

R(s,a) | π, b0
]
,

6

where the expectation is over the realization of sequences of states and observations.
Similarly, learning settings also aim at finding policies. For instance Q-learning [36] is a standard

RL method for single-agent fully observable problems. It finds a policy that is implicitly represented
by Q-values Q(s, ai): the represented policy is the one that is greedy with respect to these values.
That is:

πi(s) , arg max
ai

Q(s, ai).

Since Q-learning continually adapts the Q-values it effectively searches through the space of policies.
These two examples show that in very different settings there is still a common ground: both

settings are looking for policies and these policies map from a type of internal state (observation
history and global state respectively) to actions. The MADP Toolbox is designed to be flexible
enough to allow such differences by making explicit the domain of policies (e.g., see Section 14 for
more details). Moreover, the question of what the environment is like (e.g., stochastic and/or par-
tially observable) is for a large part orthogonal to whether we are in a learning or planning setting.
As such the MADP toolbox’s philosophy is to separate the representation of these environments
from the planning and learning algorithms, making them usable for both types of algorithms.

4 Finding Things: Useful Directories

When using MADP out of the box, many of the directories can be ignored. The following directo-
ries, however, do contain useful information and/or programs:

path description

/ Package root.
/doc Documentation.
/doc/html The html documentation generated by doxygen. (perform ‘make

htmldoc’ in root.)
/problems A number of problems in .dpomdp file format.
/src C++ code
/src/solvers Code for a number of executables that use the MADP libs to

implement (Dec-)POMDP solvers.
/src/utils Code for a number of executables that perform auxiliary tasks (e.g.,

printing problem statistics or evaluating a joint policy through
simulation).

Directories for Results and Problem Specification In addition, MADP is coded to use the
following default locations:

~/.madp/results

~/.madp/problems

for writing results, and reading problem descriptions respectively. Here the tilde (˜) denotes
your home directory. In order to let MADP find problem description files without specifying
the full path, it is recommended to create a symbolic link from MADP’s problems directory to
~/.madp/problems. Alternatively, one can copy the problems one wants to use to ~/.madp/problems.

5 Using the Toolbox: Some Examples

Here we show how to use some of the command-line tools MADP provides.

5.1 General Options

Before we start discussing particular methods, we point out that nearly all provided tools expect
standard unix style arguments. In particular, they typically support to following standard options:

7

General options

-q, -s, --quiet, --silent Don’t produce any output

-v, --verbose Produce verbose output. Specifying this option

multiple times increases verbosity.

-?, --help Give this help list

--usage Give a short usage message

-V, --version Print program version

We have tried to make the help messages as clear as possible, so when in doubt on the usage of a
program, a first good step is to run it with the ----help option.

In addition, there are some options that most tools in the toolkit support, such as:

----sparse Specifies that the program should make use of sparse datastructures (e.g., to represent
transition matrices, etc.)

----dry-run Specifies that the program should not actually try to write the results to an output
file.

----horizon Specifies the finite horizon over which we want to solve the problem.

----inf Used to specify an infinite horizon.

5.2 Solving a Dec-POMDP

Much of the functionality currently present in MADP is directed at solving finite-horizon Dec-
POMDPs. Here we show how to use some of them, focusing on GMAA∗-ICE, a state-of-the-art
optimal solution method. We also briefly discuss other methods.

Generalized MAA* One of the most comprehensive solvers in the MADP toolbox is the
program GMAA which implements a whole range of algorithms in the ‘generalized multiagent A*’
family [20]. All these algorithms are variants of heuristic search (i.e., MAA* [37]) that use collab-
orative Bayesian games (CBGs, also referred to as Bayesian Games with Identical Payoffs, BGIPs,
in many parts of the code) to represent the one-stage node expansion problems.

The GMAA solver has two main options that determine the working (what algorithm is per-
formed):

• The BGIP SOLVERTYPE parameter, specified with -B or ----BGIP Solver, specifies the
type of Bayesian game solver used:

– BFS, solve the CBGs using brute-force search.

– AM, approximate solution via alternating maximization.

– CE, approximate solution via Cross-Entropy optimization.

– MP, approximate solution via Max-Plus.

– BnB, Branch-and-Bound (see BnB options)

– Random, gives random solutions, for testing purposes

• The GMAA parameter is specified using -G or ----GMAA and specifies whether the method
performs a full backtracking heuristic search, samples just one path from root to leaf, or does
something in between [25]. In particular, you can specify the following values:

– MAAstar, this is the option to select full backtracking (MAA*) search. It performs
incremental expansion [30] of the search nodes.

– FSPC, this selects forward-sweep policy computation: at every node in the search tree it
only expands the most promising child.

– kGMAA, this uses an argument (specified using option -k) to expand only the k most
promising children at each node.

– MAAstarClassic, this is an older version that uses a built-in BFS solver (and does not
do incremental expansion).

8

Not all combination of the above two options are possible. For instance, MAAStar requires an
optimal CBG solver that can (incrementally, in order of the heuristic value) deliver all children.
Nevertheless, many combinations are useful. For instance

./GMAA -G FSPC -B AM -h5 DT

will run FSPC with alternating maximization on the horizon h = 5 Dec-Tiger problem. (Essentially
the BAGA approximation method [10] without pruning or clustering). While

./GMAA --GMAA=MAAstar --useBGclustering --BGIP Solver=BnB -h4 DT

runs GMAA∗-ICE. (Note that there is also a GMAA-ICE shell script provided for convenience.)
Finally, an important option of all GMAA flavors is the QHEUR option (specified with -Q) which

determines the heuristic. Currently, the supported heuristics are:

QMDP (defined on joint beliefs)

QPOMDP (defined on joint history tree)

QBG (defined on joint history tree)

QMDPc (cached for each joint AO history)

QPOMDPav (uses alpha vectors over joint beliefs)

QBGav (uses alpha vectors over joint beliefs)

QHybrid (hybrid between vector and trees, customizable)

QPOMDPhybrid (QPOMDP hybrid between vector and trees, no options)

QBGhybrid (QBG hybrid between vector and trees, no options)

QBGTreeIncPrune (vector-based QBG using tree-based inc. pruning with

memoization)

QBGTreeIncPruneBnB(vector-based QBG using tree-based inc. pruning with

branch-and-bound)

These heuristics can also be pre-computed and stored to disk using utils/calculateQheuristic,
in which case they can be loaded from disk by GMAA by specifying --useQcache.

Other Provided Methods A number of other methods for solving Dec-POMDPs are also
provided:

BFS Brute-force search. Very slow, but instructive.

JESP Joint Equilibrium-based Search for policies [18]. Performs alternating maximization in the
space of entire policies. This is the dynamic-programming version of JESP.

GMAA ELSI Exploits factored structure in the last stage of factored Dec-POMDPs [26].

DICEPS Direct CE Policy Search [24]. An approximate method based on CE optimization. Not
always the best method, but tends to give you at least an answer on bigger problems, and
has been recently proven very effective also for controllers [32] (though this has not been
implemented in MADP yet).

DP-LPC Dynamic Programming with Lossless Policy Compression [5]. This is a port of Boular-
ias’ code and is limited to two-agent problems. It requires CPLEX.

5.3 Solving a (Multiagent) POMDP with Perseus

MADP provides exact POMDP solving algorithms such as Monahan’s algorithm [16] with incre-
mental pruning [8] (discussed below in Section 5.4) but here we show how a (multiagent) POMDP
can be approximately solved by the Perseus algorithm [34]. It operates on POMDP models with a
single agent or with multiple agents, in which case it considers the centralized POMDP defined over
joint actions, observations and states. Currently, Perseus only supports infinite-horizon problems,
which means that you must specify the ----inf command line flag, as well as a discount factor
(----discount=XXX).

The most important options of the Perseus program are the following:

9

Sampling 50 beliefsWarning: sampling beliefs for an infinite horizon without reset.

PerseusPOMDP: max reward in beliefset is 17.8859

PerseusPOMDP: iteration 0 |V| 1 sumV/nrB -1010 V0 -1010 (best -1.79769e+308)

Added vector for 2 (V -911 improved 50)

...

...

PerseusPOMDP: iteration 169 |V| 3 sumV/nrB 60.5307 V0 59.8165 (best 59.8165)

Added vector for 26 (V 59.8166 improved 47)

Added vector for 30 (V 71.7207 improved 2)

Added vector for 6 (V 71.7207 improved 1)

Figure 1: Sample Perseus output.

• -n specifies how many beliefs should be sampled for the belief set on which Perseus operates.
Add -u if you want unique beliefs (by default duplicates are allowed). Other options related
to belief sampling are -H, indicating the horizon for the belief sampling process (after this
many steps, the sampling will be restarted from the initial belief), -Q to indicate to follow a
QMDP policy when sampling beliefs instead of taking actions uniformly at random. The -x

option allows you to specify the probability of taking a random action instead of the QMDP
one when using -Q.

• -b specifies which type of backup to use, which defaults to the standard POMDP backup.
Other possibilities are the BG backup [25] or the backup for event-driven models (see 7.2).

For instance,

$ cd src/solvers

$./Perseus ../../problems/dectiger.dpomdp --inf --discount=0.9 -d -n50

should run Perseus on dec-tiger, i.e., treating it as a (multiagent) POMDP, rather than a Dec-
POMDP and output something like the output shown in Figure 1.

5.4 Other POMDP Methods

MADP incorporates more POMDP machinery, albeit not implemented as fully equipped solvers;
much of the POMDP functionality has actually been used in order to provide heuristics for Dec-
POMDPs. Nevertheless, this can still be used to solve (finite-horizon) POMDPs exactly.2

In particular, one can use the calculateQheuristic utility to perform the Monahan algo-
rithm [16] with incremental pruning [8].3 The pruning algorithm includes a decomposition tech-
nique to accelerate the traditional incremental pruning algorithm [38]. By default MADP uses
the decomposition technique to solve large linear programs more efficiently. If the size of a linear
program is below a threshold, then it uses the traditional approach. The threshold can be modified
by using the acceleratedPruningThreshold flag. A threshold of zero corresponds to traditional
incremental pruning. An example execution is shown below:

$ cd src/utils

$./calculateQheuristic DT -h6 -Q QPOMDPav

MonahanPOMDPPlanner: t 5 contains < 1 1 1 1 1 1 1 1 1 > vectors (total 9)

MonahanPOMDPPlanner::BackupStage < 7 1 1 1 1 1 1 1 1>
MonahanPOMDPPlanner: t 4 contains < 7 1 1 1 1 1 1 1 1 > vectors (total 24)

MonahanPOMDPPlanner::BackupStage < 11 1 1 1 1 1 1 1 1>
MonahanPOMDPPlanner: t 3 contains < 11 1 1 1 1 1 1 1 1 > vectors (total 43)

2Infinite-horizon POMDPs can also be specified using the, e.g., ----inf ----discount=0.9 switches, but are
effectively treated as a 1 million stage finite-horizon POMDP.

3Since there typically is no need to do so, incremental pruning is enabled by default and cannot be disabled on
the command line. If one really needs to disable incremental pruning, it is possible to do so by modifying the code.

10

MonahanPOMDPPlanner::BackupStage < 15 1 1 1 1 1 1 1 1>
MonahanPOMDPPlanner: t 2 contains < 15 1 1 1 1 1 1 1 1 > vectors (total 66)

MonahanPOMDPPlanner::BackupStage < 19 1 1 1 1 1 1 1 1>
MonahanPOMDPPlanner: t 1 contains < 19 1 1 1 1 1 1 1 1 > vectors (total 93)

MonahanPOMDPPlanner::BackupStage < 19 1 1 1 1 1 1 1 1>
MonahanPOMDPPlanner: t 0 contains < 19 1 1 1 1 1 1 1 1 > vectors (total 120)

MonahanPOMDPPlanner[h=6]: Vjb0=19.7164

Wallclock: from 1421058982.981798 until 1421058983.7764 which took 2 clock

ticks

Q saved to /home/frans/.madp/results/GMAA/DecTiger/QAVMonahanPOMDPheuristic h6

ComputeQ: 0.03 s in 1 measurements, max 0.03, avg 0.03, min 0.03

Overall: 0.03 s in 1 measurements, max 0.03, avg 0.03, min 0.03

Parsing: 0 s in 1 measurements, max 0, avg 0, min 0

PlanningUnit: 0 s in 1 measurements, max 0, avg 0, min 0

Save: 0 s in 1 measurements, max 0, avg 0, min 0

WallclockTime: 0.02 s in 1 measurements, max 0.02, avg 0.02, min 0.02

Timings saved to /home/frans/.madp/results/GMAA/DecTiger/calculateQheuristicQAV

MonahanPOMDP h6 Timings

Value of jaohI 0 = 19.7164

This shows that the DecTiger problem is solved for h = 6 leading to a value of 19.7164 for the
initial belief (corresponding to the joint action-observation history with index 0). It also reports
timing results, and gives statistics on the number of ‘α-vectors’ used to represent each stage (it
shows the number of α-vectors associated with each joint action, e.g., for t = 0 we have 19 vectors
for 〈Listen, Listen〉 and 1 vector for all other joint actions).

Alternatively, the (M)POMDP solution can be computed by performing dynamic programming
over the tree of joint action-observation histories (using -Q QPOMDP) or making use of a hybrid
(using -Q QPOMDPhybrid) representation [30].

calculateQheuristic can also be used to use Monahan’s algorithm compute the so-called
‘QBG’ value function [25] (using -Q QBGav), which gives the optimal solution of a Dec-POMDP
under 1-step-delayed synchronizing communication. It also supports the tree-based incremental
pruning algorithms (using -Q QBGTreeIncPrune and -Q QBGTreeIncPruneBnB) [22].

Finally, the prunePWLCValueFunction utility can be used to obtain the parsimonious represen-
tation of a given set of α-vectors. The utility takes a file containing α-vectors as input, computes
the minimal set of dominant vectors, and writes these vectors to a file. In the literature this pro-
cedure is also known as pruning. The utility is based on the vector pruning algorithm of White
and Lark [39] and requires the lpsolve linear programming solver. The utility also includes the
decomposition technique to accelerate the pruning algorithm [38], which we discussed above. The
utility has one argument: the path of the file containing the set of vectors. For instance:

utils$./calculateQheuristic DT -h4 -QQPOMDPav

MonahanPOMDPPlanner: t 3 contains < 1 1 1 1 1 1 1 1 1 > vectors (total 9)

MonahanPOMDPPlanner::BackupStage < 7 1 1 1 1 1 1 1 1>
MonahanPOMDPPlanner: t 2 contains < 7 1 1 1 1 1 1 1 1 > vectors (total 24)

MonahanPOMDPPlanner::BackupStage < 11 1 1 1 1 1 1 1 1>
MonahanPOMDPPlanner: t 1 contains < 11 1 1 1 1 1 1 1 1 > vectors (total 43)

MonahanPOMDPPlanner::BackupStage < 15 1 1 1 1 1 1 1 1>
MonahanPOMDPPlanner: t 0 contains < 15 1 1 1 1 1 1 1 1 > vectors (total 66)

MonahanPOMDPPlanner[h=4]: Vjb0=18.6761

Wallclock: from 1463739864.24273 until 1463739864.62887 which took 3 clock ticks

Q saved to /home/frans/.madp/results/GMAA/DecTiger/QAVMonahanPOMDPheuristic h4

ComputeQ: 0.04 s in 1 measurements, max 0.04, avg 0.04, min 0.04

Overall: 0.04 s in 1 measurements, max 0.04, avg 0.04, min 0.04

Parsing: 0 s in 1 measurements, max 0, avg 0, min 0

PlanningUnit: 0 s in 1 measurements, max 0, avg 0, min 0

Save: 0 s in 1 measurements, max 0, avg 0, min 0

WallclockTime: 0.03 s in 1 measurements, max 0.03, avg 0.03, min 0.03

11

Timings saved to /home/frans/.madp/results/GMAA/DecTiger/

calculateQheuristicQAVMonahanPOMDP h4 Timings

Value of jaohI 0 = 18.6761

utils$./prunePWLCValueFunction /home/frans/.madp/results/GMAA/DecTiger/

QAVMonahanPOMDPheuristic h4 t0

Original Q function contains 15 1 1 1 1 1 1 1 1 vectors (total 23)

Parsimonious Q function contains 15 1 1 1 1 1 1 1 1 vectors (total 23)

Stored resulting Q function to /home/frans/.madp/results/GMAA/DecTiger/

QAVMonahanPOMDPheuristic h4 t0 parsimonious

(Since calculateQheuristic already performs pruning, no further reduction in the size of the set
of vectors was achieved in this case.)

5.5 Planning: Solving a (Multiagent) MDP

MADP provides an implementation of value iteration (VI) for finite and infinite-horizon problems
to compute an optimal (joint) policy, as well as policy iteration (PI) and a variation of PI that uses
the GPU (CUDA) to accelerate policy evaluation. As for the multiagent POMDP solver, these
methods operate on MDPs with a single agent, or, alternatively, multiagent (MMDP) models in
which case the centralized MDP in joint action and state space is solved. As usual, infinite-horizon
problems are indicated with the ----inf parameter (and require a discount factor of less than 1)
whereas finite-horizon problems can be specified using the ----horizon switch.

Note that the MMDP Solver solver also simulates the resulting optimal policy and outputs
statistics (e.g., average reward) on the command-line and log files. For simulation, two options of
relevance are:

• ----runs to specify the number of iterations over which the (joint) policy is simulated.

• ----seed to specify the random number generator seed for simulations.

For instance,

$ cd src/solvers

$./MMDP Solver ../../problems/dectiger.dpomdp --inf --discount=0.9

runs VI on dec-tiger, i.e., treating it as a fully-observable (multiagent) MDP, rather than a Dec-
POMDP.

Policy iteration only supports infinite horizon problems, to run it try:

$./MMDP Solver ../../problems/dectiger.dpomdp --mmdp method=PolicyIteration --inf --discount=0.9

and

$./MMDP Solver ../../problems/dectiger.dpomdp --mmdp method=PolicyIterationGPU --inf --discount=0.9

It is clear that the overhead on such a small problem is not worth using the GPU. For a larger
problem, the GPU is useful for policy evaluation, but as the following example makes clear, now
policy improvement (which is not yet parallelized) becomes a bottleneck:

$./MMDP Solver FFG --agents=6 --mmdp method=PolicyIterationGPU --inf -g 0.9

<...>
Total policy iteration time: 78.105215

Total policy evaluation time: 7.475413

Total policy improvement time: 70.629802

Number of iterations: 5

12

...done.

Simulating policy with nrRuns: 1000 and seed: 42

...done

Avg rewards: < -22.4103 >
<...>
$./MMDP Solver FFG --agents=6 --mmdp method=PolicyIteration --inf -g 0.9

<...>
Total policy iteration time: 94.968202

Total policy evaluation time: 26.652496

Total policy improvement time: 68.315706

<...>

(Also, the current MDPPolicyIteration(GPU) perform a very slow caching step of the rewards and
transitions, that might not be worthwhile)

5.6 Learning in a (Multiagent) MDP

For infinite-horizon problems, MADP comes with an implementation of the Q-learning algorithm.
Q-learning Sutton and Barto [36] is a single-agent learning method and hence in principle operates
on MDPs with a single agent. However, it is also possible to run it on MMDPs in which case
learning is run on the centralized MDP in joint action and state space. Only infinite-horizon
problems are supported, therefore a discount factor has to be specified via the --discount switch.

The most important options of the MMDP QLearner program are the following:

• ----nrRuns number of learning episodes, each consisting of a reset to a random initial state
followed by h learning iterations (where h = 999999 is chosen inside the solver for infinite
horizon problems). Each learning iteration is performed in joint action and state space using
the well-known Q-learning update rule.

• ----seed random number seed.

• ----verbose run value iteration (VI) on identical (M)MDP in addition to Q-learning and
output first row of Q-table for both VI and Q-learning to the command-line. Both results
should be comparable if ----nrRuns is set large enough.

For instance,

$ cd src/solvers

$./MMDP QLearner DT --discount 0.9 --verbose --runs 100

runs Q-learning (and VI, since --verbose is specified) on Dec-Tiger, i.e., treating it as a fully-
observable (multiagent) MDP, rather than a Dec-POMDP. Note that for MMDP QLearner, ----inf
is implicit and does not need to be specified.

6 Specifying Problems: File Formats, etc.

There are three main ways to specify problems in MADP: in the ProbModelXML format, as a
.dpomdp file, or as a sub-class of a suitable a MultiAgentDecisionProcess.

6.1 Using the OpenMarkov Graphical Editor

OpenMarkov (http://www.openmarkov.org/users.html) is a GUI editor for creating Factored
Models in the ProbModelXML format. Using this tool is treated in detail in Section 7.

6.2 Specifying & Parsing .pomdp & .dpomdp files

For single-agent POMDPs, it is possible to use Tony Cassandra’s .pomdp file format, which is
specified at http://www.pomdp.org/code/pomdp-file-spec.shtml, to specify problems. For

13

http://www.openmarkov.org/users.html
http://www.pomdp.org/code/pomdp-file-spec.shtml

non-factored (i.e., typically smaller) multiagent problems, an easy way to specify them is to create
a .dpomdp file. It is easiest to get an understanding of this format by example: the code for the
(in)famous decentralized tiger benchmark is illustrated in Figure 2. The figure clearly shows that
there are parts to specify the number of agents, the states, the possible actions and observations,
and finally the transition-, observation- and reward model. A version of this file including comments
is available in the problems/ directory. This also contains example.dpomdp which provides even
further information.

6.3 Specifying Problems as a Sub-Class

Another way to specify problems is to actually program them. This has some advantages in terms
of space and time requirements. Please refer to the second part of this document (Section 11) for
more information.

7 The ProbModelXML Format

MADP can parse problem files written in the ProbModelXML format [1]. This format is useful
for the definition of Factored MDPs / POMDPs / Dec-POMDPs, or any other class of problems
that can be represented graphically as a two-time-slice Dynamic Bayesian Network (DBN). You
can find the complete specification of the ProbModelXML format at: http://www.cisiad.uned.
es/ProbModelXML/. You should save your ProbModelXML files with the “.pgmx” extension.

Since ProbModelXML supports many different probabilistic graphical models and concepts
that are outside of the scope of MADP, there are some constraints on what can be interpreted by
the MADP ProbModelXML parser:

Network Types: The MDP, POMDP, and DEC_POMDP formats are supported. The network type
is actually inferred by the parser, so you can always safely specify DEC_POMDP as the net-
work type, even if you are designing a less general model. This is also valid for centralized
multiagent models (MMDPs, MPOMDPs).

Variables: Only discrete, finite-domain variables (state factors, actions, observations and reward
factors) are currently supported. You can only specify variables for time “0” and “1”, which
respectively represent time steps t and t+ 1 in the two-time-slice DBNs. In ProbModelXML
terminology, model variables can be defined as follows:

• State Factors: Chance nodes, that should be defined both at time 0 and 1. The Potential
of a state factor node at time 0 is its initial distribution, and at time 1 it is its Conditional
Probability Distribution (CPD);

• Actions: Decision nodes, that should be defined both at time 0 and 1.

• Reward Factors: Utility nodes, that can be defined either at time 0 or at time 1 (but
not both), depending on whether you want to represent R(st,a) or R(a, st+1).

• Observations: ProbModelXML does not explicitly recognize “observations” as a sepa-
rate type of variable. Instead, observations are defined implicitly as time 1 “chance”
nodes that link to the actions (at time 1) of their respective agents. Examples are shown
in the following section. The Potential of an observation node defined in this way is its
CPD.

CPDs: CPDs can only be defined as Table, Tree/ADD, or Uniform. Note that, internally, MADP
only supports CPDs defined as tables, but you can still use decision trees or ADDs in the
ProbModelXML representation - just keep in mind that they’ll be “flattened” into tables.

Inference options: Even though ProbModelXML provides some options for probabilistic infer-
ence, this is ignored in MADP, since belief propagation is handled internally.

The MADP problems folder contains some examples of problem files written in ProbModelXML.
The “Dec-Tiger” problem file (“DTPGMX.pgmx”) can be referred to as a starting point to under-
stand the general layout of this file format, as it includes additional descriptive comments.

14

http://www.cisiad.uned.es/ProbModelXML/
http://www.cisiad.uned.es/ProbModelXML/

agents: 2

discount: 1

values: reward

states: tiger-left tiger-right

start:

uniform

actions:

listen open-left open-right

listen open-left open-right

observations:

hear-left hear-right

hear-left hear-right

T: * :

uniform

T: listen listen :

identity

O: * :

uniform

O: listen listen : tiger-left : hear-left hear-left : 0.7225

O: listen listen : tiger-left : hear-left hear-right : 0.1275

O: listen listen : tiger-left : hear-right hear-left : 0.1275

O: listen listen : tiger-left : hear-right hear-right : 0.0225

O: listen listen : tiger-right : hear-right hear-right : 0.7225

O: listen listen : tiger-right : hear-left hear-right : 0.1275

O: listen listen : tiger-right : hear-right hear-left : 0.1275

O: listen listen : tiger-right : hear-left hear-left : 0.0225

R: listen listen: * : * : * : -2

R: open-left open-left : tiger-left : * : * : -50

R: open-right open-right : tiger-right : * : * : -50

R: open-left open-left : tiger-right : * : * : +20

R: open-right open-right : tiger-left : * : * : 20

R: open-left open-right: tiger-left : * : * : -100

R: open-left open-right: tiger-right : * : * : -100

R: open-right open-left: tiger-left : * : * : -100

R: open-right open-left: tiger-right : * : * : -100

R: open-left listen: tiger-left : * : * : -101

R: listen open-right: tiger-right : * : * : -101

R: listen open-left: tiger-left : * : * : -101

R: open-right listen: tiger-right : * : * : -101

R: listen open-right: tiger-left : * : * : 9

R: listen open-left: tiger-right : * : * : 9

R: open-right listen: tiger-left : * : * : 9

R: open-left listen: tiger-right : * : * : 9

Figure 2: The dectiger.dpomdp file.

15

Figure 3: The Firefighting Graph (FFG) problem [19] in OpenMarkov.

7.1 Using OpenMarkov to Design Factored Problems

OpenMarkov (http://www.openmarkov.org/users.html) is a Java-based graphical editor for
ProbModelXML files. Although using OpenMarkov is not strictly necessary to design ProbMod-
elXML factored problems, it is the recommended option for this purpose, since it is far more
intuitive and less time-consuming than coding the .pgmx file directly. As of the time of writing,
OpenMarkov requires Java 7. The MADP ProbModelXML parser has been tested with the latest
(0.1.4) version of OpenMarkov. Note that since OpenMarkov is an independent project, and it
is not authored or maintained by the MADP community, later versions are not guaranteed to be
immediately compatible.

After you download OpenMarkov, move it to your MADP folder and rename it to something
simpler (e.g. “openmarkov.jar”). Then you can start it by typing:

~/madp$ java -jar openmarkov.jar

After OpenMarkov is loaded, try to open one of the .pgmx problem files in the MADP problems/

folder, for instance, FFG343.pgmx. Your view should then be similar to Figure 3.
In this view, chance nodes, shown in yellow, correspond to the state and observation variables

of the problem; decision nodes, shown in blue, correspond to the actions of each agent; and utility
nodes, shown in green, correspond to local reward factors. The bracketed number next to each
node ([0] or [1]) represents the time-slice that it belongs to (t or t+ 1 respectively). Notice that
observation variables (O1, O2, O3) are simply chance nodes, but they are only defined at time 1 and
they link only to the actions of the agents that they belong to (A1, A2, A3, respectively).4 This
symbolizes that the actions of those agents at time t+ 1 “depend” on the values of these variables,
although the way through which that dependency is manifested is not explicitly represented in the
model. For fully observable problems, there is no need to specify observations, since all chance

4That is, observation nodes are interpreted as observations by the MADP toolbox because they are the parent of
an action node. In general, the ProbModelXML format would support multiple observation factors per agent (i.e.,
multiple parents for an action), but due to limitations of the internal representation employed by OpenMarkov, such
more complex structures will not be exported.

16

http://www.openmarkov.org/users.html

nodes are assumed to be observable. In that case, you can either ommit the time 1 action nodes
or represent them as “orphaned” nodes.

Right-click a chance node and view its “Node properties”. There, you can view and edit its
name, time slice, and domain values (Figure 4). Other options are not relevant for MADP.

Figure 4: The domain values of a chance node in OpenMarkov. The variable type should always
be “Finite states”. You can add, delete, or rearrange the domain values. The bottom-most value
will have index 0.

Likewise, right-click a time 1 chance node and select “Edit probability”. Your view should be
similar to Figure 5. In the Tree/ADD view, branches are represented by the white labeled boxes
under each of the colored “variable” elements, each of them assigned to a particular value or set of
values of that variable. You can expand or contract each branch by clicking to the left of its box.
You can also right-click each branch to add or remove values (a.k.a. “states” in OpenMarkov), and
right-click variable nodes to change their assignment (only possible if there are valid alternatives).
In leaf nodes, you can right-click to “edit potential”, i.e. define the CPD at that point. To define a
CPD as an ADD, you can assign a label to a branch (“set label”), and then you can bind subsequent
equivalent branches to that label, so that you don’t have to re-define them (“set reference”).

A CPD can also be specified as a table (Figure 6). In that case, the various combinations of
the parent variables will be shown at the top, and each row of the table corresponds to one specific
value of the dependent variable (shown on the left). This implies that all columns should sum to 1.

Again, in order to define the initial state distribution for your problem, you should define the
potentials for all state variables in time slice 0. The potentials at time slice 1 encode the CPDs
of all relevant variables, which are assumed to be stationary (do not depend on the absolute time
index).

Rewards (a.k.a. utilities) can be defined in the same way as CPDs – the only difference is that
they can have real-valued outcomes outside of the [0, 1] interval.

To create a new problem file (“File→ New”), select “Dec-POMDP” as the network type, and
simply follow the above guidelines. Here’s what you can’t do:

• You can’t have time slices with indexes greater than 1;

• You can’t have variables at time 1 that influence variables at time 0;

• You can’t have non-stationary (dynamic) CPDs;

• You can define ADDs by “labeling” certain branches and linking to those labels elsewhere in
the graph, but you can’t link to labels of other ADDs;

• In partially-observable problems, you can’t have a different number of observations and de-
cision nodes. Both these should always be equal to the number of agents (an exception is
discussed in the next subsection).

17

Figure 5: A t+ 1 CPD specified as a tree.

Figure 6: A t+ 1 CPD specified as a table (from “problems/DTPGMX.pgmx”).

7.2 Designing Event-Driven Models

A special kind of model that is supported in MADP is the Event-Driven MPOMDP model [15].
In these models, state factor transitions are typically asynchronous, that is, only a small subset
of state variables change between t and t + 1 (typically only one). The change that occurs is
called an event. Event-Driven MPOMDPs are not as straightforward to represent as two-time-
slice DBNs as standard (Dec-)POMDPs due to this property. However, they can still be modeled
by considering a “virtual” state-factor that encodes the underlying cause of the event and its
probability of occurring. These factors are special in that they are influenced by time t variables,
but they subsequently influence time t+1 variables, that is, they establish intra-slice dependencies
at time t + 1. An example of an Event-Driven POMDP model, with an associated virtual state
factor “Cause of Events”, is shown in (Figure 7).5

Another characteristic of event-driven models is that observations depend on transitions, as
opposed to states. This means that the (only) observation node, Event[1], at time t + 1 contains
both time t+ 1 and time t parents.

Event-Driven POMDPs are useful to represent decision-making problems in which random

5As is illustrated, the model also needs to specify an Cause of Events [0] variable, since it is not possible to
specify an Cause of Events [1] without it.

18

Figure 7: The “MAIS+S” problem, an Event-Driven MPOMDP, modeled in OpenMarkov.

amounts of “real-time” can elapse between decision steps. However, note that these models are
typically associated with a stochastic “temporal” model for each transition, a probability distri-
bution over event firing instants. In OpenMarkov (and at the time of writing), it is not possible
to represent these temporal models, and so it is assumed that all events follow the same temporal
distribution.

Event-Driven POMDPs are the only type of model that can accept a different number of action
nodes and observation nodes (since there is always only one observation node). If you include more
than one decision node at time 0, you should warn the MADP parser by including the following
element in your .pmgx file (under the ProbNet element):
<AdditionalProperties>

<Property name="EventDriven" value="1" />

</AdditionalProperties>

Part II

Developer Guide
This part of the documentation is intended for people interested in using MADP in their own
coding projects. It tries to give an overview of some typical functionality and how this is organized
in classes. The documentation here is only intended as a starting point. For a reference style
documentation, please refer to the documentation generated by doxygen (via “make htmldoc”).

8 Overview of the MADP Toolbox Libraries

The MADP framework consists of several parts, grouped in different libraries. A brief overview
of these ‘MADP libraries’ is given in Section 8.1. Also, there are a number of other libraries and
software included to realize compilation with a minimum of effort. Therefore, Section 8.2 gives an
overview of the entire directory structure.

19

8.1 MADP Libraries

The main part of MADP is the set of core libraries. These are briefly discussed here.

8.1.1 The Base Library (libMADPBase)

The base library is the core of the MADP toolbox. It contains:

• A representation of the basic elements in a decision process such as states, (joint) actions
and observations.

• A representation of the transition, observation and reward models in a multiagent decision
process. These models can also be stored in a sparse fashion.

• A uniform representation for MADP problems, which provides an interface to a problem’s
model parameters.

• Auxiliary functionality regarding manipulating indices, exception handling and printing: E,
IndexTools, PrintTools, StringTools, TimeTools, VectorTools. Some project-wide defi-
nitions are stored in the Globals namespace.

8.1.2 The Parser Library (libMADPParser)

The parser library depends on the base library, and contains a parser for Cassandra’s .pomdp file
format as well as for .dpomdp files, which is a file format for problem specifications of discrete
Dec-POMDPs, as well as a parser for models specified in the ProbModelXML format. A set of
benchmark problem files in both formats can be found in the problems/ directory.

The syntax for Cassandra’s .pomdp file format is detailed on the POMDP.org website.6. For
this format, MADP includes its own parser based on the Boost Spirit framework. MADP also
includes a parser for a multiagent extension of this format, the so-called .dpomdp file format. The
.dpomdp file format is based on the same ideas, but limits some of the freedom that is available in
the .pomdp (such as putting elements of the header in different orders, also the .dpomdp format
is newline sensitive). The .dpomdp syntax is documented in problems/example.dpomdp and the
formal specification is found in src/parser/dpomdp.spirit. Also, parsers for several transition-
observation independent models are provided, which are derived from the .dpomdp parser.

The ProbModelXML format is an XML format and parsed using libXML2. The format is covered
in detail by Arias et al. [1], and a detailed introduction is given in Section 7.

8.1.3 The Support Library (libMADPSupport)

The support library contains basic data types and support useful for planning, such as:

• A representation for (joint) histories, for storing and manipulating observation, action and
action-observation histories.

• A representation for (joint) beliefs, both stored as a full vector as well as a sparse one.

• Functionality for representing (joint) policies, as mappings from histories to actions.

• Shared functionality for discrete MADP planning algorithms, collected in PlanningUnit-

MADPDiscrete and PlanningUnitDecPOMDPDiscrete. These classes compute, e.g., (joint)
history trees, joint beliefs, and value functions.

• Implementation for various problems:

– An implementation of the DecTiger problem [18] which does not use dectiger.dpomdp,
see ProblemDecTiger.

– Also an implementation of the Fire Fighting problem (ProblemFireFighting), as well
as a factored version (ProblemFireFightingFactored) [25].

– Implementation of factored problem domains ProblemFireFightingGraph and
ProblemAloha [26, 31].

6 http://pomdp.org/code/pomdp-file-spec.html

20

http://pomdp.org/code/pomdp-file-spec.html

– Fully observable versions of the firefighting problem:
ProblemFOBSFireFightingFactored and ProblemFOBSFireFightingGraph.

• Functionality for handling command-line arguments is provided by ArgumentHandlers.

8.1.4 The Planning Library (libMADPPlanning)

The planning library depends on the other libraries and contains functionality for planning algo-
rithms, as well as some solution methods. In particular, it contains

• MDP solution techniques: value iteration [36].

• POMDP solution techniques: Monahan’s algorithm [16] with incremental pruning [8], as well
as Perseus [34].

• Dec-POMDP solution algorithms:

– Brute Force Search.

– JESP (exhaustive and dynamic programming variations) [18].

– Direct Cross-Entropy (DICE) Policy Search [24].

– GMAA∗ type algorithms, in particular:

∗ MAA∗ [37],

∗ k-GMAA∗ (as well as forward sweep policy computation) [25],

∗ GMAA∗-ELSI [26].

∗ GMAA∗-Cluster [27] (also called GMAA∗-IC [35])

∗ GMAA∗-ICE [35].

∗ DP-LPC [5]. (implemented mostly inside solvers/DP-LPC.cpp).

• Functionality for building and solving collaborative Bayesian Games:

– Random, Brute force search, Alternating Maximization, Cross-entropy optimization [24],
BaGaBaB [28], and Max-Plus for regular CBGs [29].

– Random, Non-serial dynamic programming (a.k.a. variable elimination) [26] and Max-
Plus for collaborative graphical BGs (CGBGs) [29].

• Heuristic Q-functions: QMDP, QPOMDP, and QBG [25]. Including ‘hybrid’ representations [35]
and tree-based pruning for QBG [22].

• A simulator class to empirically test the control quality of a solution, or perform evaluation
of particular types of agents (e.g., reinforcement learning agents).

21

1 #include "ProblemDecTiger.h"

2 #include "JESPExhaustivePlanner.h"

3 int main()

4 {

5 ProblemDecTiger dectiger;

6 JESPExhaustivePlanner jesp(3,&dectiger);

7 jesp.Plan();

8 cout << jesp.GetExpectedReward() << endl;

9 cout << jesp.GetJointPolicy()->SoftPrint() << endl;

10 return(0);

11 }

Figure 8: A small example program that runs JESP on the DecTiger problem.

8.2 MADP Directory Structure

path description

/ Package root.
/config

/doc Documentation.
/doc/html The html documentation generated by doxygen. (perform ‘make

htmldoc’ in root.)
/m4 M4 macros used by configure.
/problems A number of problems in .dpomdp file format.
/src C++ code
/src/base The MADP base lib.
/src/boost Included parts of the boost library
/src/example Lists several introductory examples of how MADP can be used.
/src/include This contains configuration .h files.
/src/libDAI Library for Discrete Approximate Inference by Joris Mooij [17].

Used for max-plus implementation for Collaborative (graphical)
Bayesian Games.

/src/parser The MADP parser lib.
/src/planning The MADP planning lib.
/src/solvers Code for a number of executables that use the MADP libs to

implement (Dec-)POMDP solvers.
/src/support The MADP support lib.
/src/utils Code for a number of executables that perform auxiliary tasks (e.g.,

printing problem statistics or evaluating a joint policy through
simulation).

9 Using the MADP Toolbox: An Example

Here we give an example of how to use the MADP toolbox. Figure 8 provides the full source
code listing of a simple program. It uses exhaustive JESP to plan for 3 time steps for the DecTiger
problem, and prints out the computed value as well as the policy. Line 5 constructs an instance of
the DecTiger problem directly, without the need to parse dectiger.dpomdp. Line 6 instantiates the
planner, with as arguments the planning horizon and a pointer to the problem it should consider.
Line 7 invokes the actual planning and lines 8 and 9 print out the results.

This is a simple but complete program, and in the distribution (in src/examples) more elab-
orate examples are provided which, for instance, demonstrate the command-line parsing function-
ality and the use of the .dpomdp parser. Furthermore, for each of the solution methods provided
there is a program to use it directly.

22

10 Typical Use Cases

In this section we elaborate on and provide pointers to examples of typical ways in which the
MADP toolbox can be used.

10.1 One-Shot Decision Making

MADP implements one-shot team decision making via Bayesian games with identical payoffs,
also referred to as collaborative Bayesian games. These are implemented as different sub-classes
of BayesianGameIdenticalPayoffInterface. These Bayesian games can trivially also model
strategic (i.e., ‘normal-form’) games by defining just one type per agent.

The current version of MADP includes a number of solvers for such collaborative BGs. For
instance:

• BGIP SolverRandom provides a random solution.

• BGIP SolverBruteForceSearch a naive enumeration of all joint policies.

• BGIP SolverAlternatingMaximization implements alternating maximization (a best-
response hill-climbing).

• BGIP SolverCE implements a cross-entropy optimization procedure [4] for optimizing the
joint BG policy (see also [24]).

• BGIP SolverBranchAndBound, the BaGaBaB method from [28] (note that it really performs
A*).

• BGIP SolverMaxPlus the max-plus solver from [29].

The usage of these solvers is illustrates in examples/example RandomBGs.cpp. Additionally, there
also are solvers for collaborative graphical Bayesian games:

• BGCG SolverRandom provides a random solution.

• BGCG SolverNonserialDynamicProgramming provides the exact solution via non-serial dy-
namic programming [3] (a.k.a. value iteration [11, 14] and bucket elimination [9]).

• BGCG SolverMaxPlus provides a approximate solution via max-plus message passing [29].
This is based on (a older version of) the LibDAI library [17] which is included with MADP.

MADP also includes a (non-identical payoff) BayesianGame class. But so far, there is no solver
for this class.

10.2 Sequential Planning Algorithms

Even though one-shot decision making is interesting on its own, the focus of the MADP toolbox
lies on sequential decision making. Here we give a concise overview of the main components for
planning for sequential decision settings.

10.2.1 MultiAgentDecisionProcessInterface and PlanningUnits

Two important sets of classes are those that represent actual multiagent decision process problems
and those that represent planners.

The former classes inherit from MultiAgentDecisionProcessInterface, as illustrated in Fig-
ure 9. The figure indicates the relations between different models such as Dec-POMDPs, and
POSGs, and shows that the toolbox separates interface classes from implementation. The figure
also illustrates that the code offers opportunities to develop MADPs with continuous states, ac-
tions and observations, even though so far development has focused on problems with discrete sets
(e.g., as represented by the DecPOMDPDiscrete class). Note that a number of included problems
of type FactoredDecPOMDPDiscrete are shown in Figure 10.

The second important collection of classes pertain to planning. These classes all derive from
the PlanningUnit base class. Part of this hierarchy is shown in Figure 11, centered around the

23

Figure 9: The MultiAgentDecisionProcess hierarchy.

24

Figure 10: Included problems of type FactoredDecPOMDPDiscrete, the top branch are fully ob-
servable (a factored MMDP is the fully-observable special case of a factored Dec-POMDP), while
the bottom two branches are actual Dec-POMDPs.

Figure 11: A part of the PlanningUnit class hierarchy.

PlanningUnitMADPDiscrete class. This class provides auxiliary functionality (e.g., generation of
histories and conversion of history indices) for planners for discrete problems. The figure also
shows that the class implements the so called ‘Interface ProblemToPolicyDiscretePure’. This
is the mechanism by which the planner gets to know certain basic information about the problem
it will be planning for, for more details, see Section 14.

10.2.2 Multiagent Planning

A typical program that performs multiagent planning has three main components: 1) first, there
is an ‘experiment’ (or ‘solver’) file which contains main(). This experiment instantiates both 2)
the MADP (e.g., a Dec-POMDP), and the planner (e.g., GMAA*), and 3) subsequently performs
the actual planning by calling Plan().

An Example: example decTigerJESP.cpp. For instance, let’s look a the
example decTigerJESP.cpp file, of which the important content was already shown in Fig-
ure 8. The file it self is the ‘experiment’ file that contains main. It instantiates an MADP—a
ProblemDecTiger, see also Figure 9—on line 5. Next, it instantiates a planning unit—a
JESPExhaustivePlanner, see Figure 11— and calls the Plan() method.

Solving fully-observable MADPs. MADP currently implements value iteration in
MDPValueIteration (for flat models of limited scope) and supports finite and infinite
horizon problems. Usage is best demonstrated by an example, such as in the file
./src/examples/MMDP SolveAndSimulate.cpp. This file also shows how an offline policy can
then be simulated on a specific problem.

For larger, generally factored settings, every existing problem, be it a
FactoredMMDPDiscrete or the fully-observable subset of any class derived from
FactoredDecPOMDPDiscrete, can be exported into SPUDD format with a call to
FactoredDecPOMDPDiscrete::ExportSpuddFile("filename").7

7 There currently exists no functionality to load and simulate policies from SPUDD in MADP, however (see the
SPUDD package for this functionality [13]).

25

10.2.3 Planning for a Single Agent

Of course, it is also possible to perform single-agent planning. From a modeling point of view, a
single-agent model is just a multiagent one in which there happens to be just one agent. From
a solution method perspective, however, this is different: most multiagent planning algorithms
are not particularly suited for single agent planning. Methods suitable for single agents currently
include MDPValueIteration (for MDPs) and PerseusPOMDPPlanner, MonahanPOMDPPlanner (for
POMDPs).

10.3 Simulation and Reinforcement Learning

The toolbox also provides functionality to perform simulations for (teams of) agents interacting
in a environment, as well as doing reinforcement learning. For instance, the following command
performs 10000 simulations of the MMDP solution for the horizon 5 GridSmall problem:8

1 src/example$./example_MMDP_SolveAndSimulate ../../problems/GridSmall.dpomdp \

2 -h5 --runs=10000

3 Instantiating the problem...

4 ...done.

5 Avg rewards: < 3.00999 >

10.3.1 Simulations

MADP provides functionality for doing simulations for a wide range of models. Simulations are
performed using the following classes:

• Simulation — base class for all simulations.

• SimulationDecPOMDPDiscrete — actually implements simulations.

• SimulationResult — class that stores the results of simulations.

• SimulationAgent — base class for agents that can interact in a simulation.

Currently, there is just one class, SimulationDecPOMDPDiscrete, that actually implements simu-
lations, but (contrary to what the name suggests) it can work for many type of models. There are
two modes in which it works:

1. By giving it a joint policy. In this mode, a Dec-POMDP policy will be simulated (e.g., to
empirically test its quality).

2. By giving it a vector of SimulationAgent objects. In this mode, the
SimulationDecPOMDPDiscrete will give all relevant information to each agent, and
the agents return back an action.

The second mode can be used to simulate also environments that are not Dec-POMDPs. The trick
is that SimulationDecPOMDPDiscrete simply provides all relevant information (e.g., state, taken
joint action, and/or received joint observation) to each SimulationAgent. For instance, it knows
(via function overloading) that if it is dealing with agents of the type AgentFullyObservable it
should provide them with the entire current state, while it will will only give the individual obser-
vations to agents of type AgentLocalObservations. (e.g., see the different GetAction functions
in SimulationDecPOMDPDiscrete.cpp). Since the simulator does not dictate anything about the
inner working of the agents, this framework directly supports (reinforcement) learning agents.

10.3.2 The Agents Hierarchy

As may be clear by now, MADP provides a hierarchy of some different types of SimulationAgent.
The current hierarchy is shown in Figure 12. It shows the class AgentDecPOMDPDiscrete, which is

8Note that this demonstrates the flexibility of the toolbox. Even though GridSmall is a Dec-POMDP benchmark,
it can be treated as a fully observable (MMDP) problem.

26

Figure 12: The SimulationAgent Hierarchy.

a superclass for all agents that make use of a (special case of a) PlanningUnitDecPOMDPDiscrete.
It also shows that there are a number of different subclasses of agent: one for teams of agents with
shared observations (i.e., for a POMDP or a ‘multiagent POMDP’), one for agents with just local
observations (i.e., the ‘real Dec-POMDP setting’), one for agents with full observability, and one
for teams of agents with delayed shared observations (i.e., the one-step delayed communication
setting [23]).

10.3.3 Reinforcement Learning

For fully-observable problems, MADP includes a Q-learning agent which learns a joint policy in
the joint state and action space. Both ε-greedy and Boltzmann exploration methods are currently
implemented.

If multiple agents are specified in a problem, team learning can be performed without having
to replicate the learning in each individual agent: a single agent can be designated as the only
learning agent with the SetFirstAgent() call. In this case, only the specified agent learns a
(sparse) Q-table while the other agents look up their respective action in the joint table.

Note that we currently do not handle (reinforcement learning style) episode ends. MADP
simulations are always run as many times as specified in the SimulationDecPOMDPDiscrete hori-
zon parameter. However, episode ends can be modeled with special sink states in the problem
formulation, i.e., absorbing states that generate no more rewards until simulation end.

The program ./src/examples/example MMDP OnlineSolve.cpp illustrates the use of the
simple (joint) Q-learning agent. Only agent 0 is designated as the learning agent with the
SetFirstAgent() call so that all other agents refer to its learned Q-table for action selection.
The program first computes the off-line policy using value iteration and then performs Q-learning
for a number of iterations. Finally, a single row from both resulting Q-tables is compared and
displayed. An example run (e.g. on the fully-observable Tiger problem for a discount factor of
0.99) is as follows: ./example MMDP OnlineSolve -g 0.99 DT

11 Specifying Problems as a Sub-Class

While less portable, and arguably more complex, specifying your own problem as a sub-class is
the most (run-time and space) efficient and gives you the most flexibility. In MADP, one typically
implements a problem by deriving from the appropriate base class. We give a few examples here.

11.1 Dec-POMDPs

For instance, to specify a Dec-POMDP with discrete states, actions and observations, one would
inherit from DecPOMDPDiscrete. This class specifies the state, action and observation spaces, as

27

well as the transition, observation and reward model. All that the derived class needs to do is
actually construct these. For an example on how this works, see the ProblemDecTiger class.

11.2 Factored Dec-POMDPs

Similarly, factored Dec-POMDPs derive from FactoredDecPOMDPDiscrete, shown in Figure 10.
The class ProblemAloha is a good example of a Factored Dec-POMDP model implemented as a
class, and could serve as a template for new classes.

11.3 Fully-observable problems

Factored fully-observable problems can directly derive from the FactoredMMDPDiscrete class
(which in turn derives from the partially-observable FactoredDecPOMDPDiscrete class). The ben-
efit is that FactoredMMDPDiscrete includes convenience functions that shield the user from having
to define an observation model. That is, construction of a factored MMDP is then no different
than constructing a factored Dec-POMDP in MADP, except that observations do not have to be
considered. 9

The file ./src/tests/test mmdp.cpp gives an example of how a fully-observable version
of the ProblemFireFightingFactored would be modeled in MADP. The code is equivalent
to the partially-observable version, except that ComputeObservationProb and SetOScopes are
omitted from the class declaration and that no calls to either ConstructObservations or
ConstructJointObservations are performed. See the classes ./src/support/ProblemFOBS* for
further examples of fully-observable, factored problem domains already implemented. For demon-
stration, test mmdp.cpp prints the entire observation model and exports the problem specification
to the SPUDD file format as well.

Currently, there is no convenience class provided to specify flat, non-factored (but fully-
observable) problems in MADP. Note, however, that it is easy to use the fully-observable subsets
of already existing flat Dec-POMDP problems by simply ignoring the observation model. Alter-
natively, a factored problem with one (joint) agent could be set up according to the description
above.

12 IndexTools: Indices for Discrete Models

Although the design allows for extensions, the MADP toolbox currently only provides implementa-
tion for discrete models. I.e., models where the sets of states, actions and observations are discrete.
For such discrete models, implementation typically manipulates indices, rather than the basic ele-
ments themselves. The MADP toolbox provides such index manipulation functions. In particular,
here we describe how individual indices are converted to and from joint indices.

12.1 Enumeration of Joint Actions and Observations

As a convention, joint actions a = 〈a1, ..., an〉 are enumerated as follows

〈0, . . . , 0, 0〉 — 0

〈0, . . . , 0, 1〉 — 1

...
...

...

〈0, . . . , 0, |An|〉 — |An| − 1

〈0, . . . , 1, 0〉 — |An|
...

...
...

〈|A1| , . . . , |An − 1| , |An|〉 — |A1| · . . . · |An| − 1.

9Internally, an observation model with one certain observation per (joint) state is implicitly maintained: Recall
that in the general case O = ×iOi is the set of joint observations. In the fully-observable MMDP, Oi = S and
P (o|a, s ′) maps oi to s ′ deterministically: all agents know the true state of the world with certainty.

28

Figure 13: Illustration of the enumeration of (joint) observation histories. This illustration is
based on a MADP with 4 (joint) observations.

This enumeration is enforced by ConstructJointActions in MADPComponentDiscreteActions.
The joint action index can be determined using the IndividualToJointIndices functions
fromIndexTools.h. This file also lists functions for the reverse operation.

Joint observation enumeration is analogous to joint action enumeration (and therefore the same
functions can be used).

12.2 Enumeration of (Joint) Histories

Most planning procedures work with indices of histories. For example, PolicyPureVector im-
plements a mapping not from observation histories to actions, but from indices (of typically
observation-) histories to indices (of actions).

It is important to be able convert between indices of joint/individual action/observation histo-
ries and therefore that the method by which the enumeration is performed is clear. This is what
is described in this section.

The number of such histories is dependent on the number of observations for each agent, as
well as the planning history h. As a result the auxiliary functions for histories have been included
in PlanningUnitMADPDiscrete. This class also provides the option to generate and cache joint
(action-) observation histories, so that the computations described here do not have to be performed
every time.

12.2.1 Observation Histories

Figure 13 illustrates how observation histories are enumerated. This enumeration is

• based on the indices of the observations of which they consist.

• breadth-first, such that smaller histories have lower indices and histories for a particular time
step t occupy a closed range of indices (also indicated in figure 13).

We will now describe the conversion between observation history indices and observation indices
in more detail.

Observation indices to observation history index. Let Ioi denote the index of observa-
tion oi. In order to convert a sequence of observation indices up to time step k for agent i

29

(
Io1i , Io2i , ..., Ioki

)
10 to an observation history index, the following formula can be used:

Iō k
i

= offsetk +
(
Io1i · |Oi|

k−1
+ Io2i · |Oi|

k−2
+ ...+ Iok−1

i
· |Oi|1 + Ioki · |Oi|

0
)
,

I.e.,
(
Io1i , Io2i , ..., Ioki

)
is interpreted as a base-|Oi| number and offset by

offsetk =

k−1∑
j=0

|Oi|j − 1 =
|Oi|k − 1

|Oi| − 1
− 1.

(One is subtracted, because the indices start numbering from 0.)
As an example, the sequence leading to index 45 in figure 13 is (1, 2, 0) with k = 3 and |Oi| = 4.

We therefore get: [
43 − 1

4− 1
− 1

]
+
[
1 · 42 + 2 · 41 + 0 · 40

]
=

64− 1

3
+ 16 + 8 + 0 =

21 + 24 = 45.

This conversion is performed by GetObservationHistoryIndex.

Observation history index to observation indices The inverse is given by a standard divi-
sion procedure:

45− 21 =24 %4
→ 0
/4
→ 6 %4

→ 2
/4
→ 1

(Here % denotes modulo.)

12.2.2 Action Histories

Individual action histories are enumerated exactly the same way as observation histories: a sequence

of actions indices up to time step k
(
Ia0i , Ia1i , ..., Iak−1

i

)
can be converted to an action history index

by:

Iā k
i

= offsetk +
(
Ia0i · |Ai|

k−1
+ ...+ Iak−1

i
· |Ai|0

)
.

12.2.3 Action-Observation Histories

Enumeration of action-observation histories follows the same principle as for observation histories
(and action histories), but have a complicating factor. ‘Action-observations’ are no data type and
indices are not clearly defined.

Therefore, in order to implement action-observation histories an enumeration of action-
observation is assumed. Let an action observation history θ̄ ki =

(
a0
i , o

1
i , a

1
i , o

2
i , ..., a

k−1
i , oki

)
be

characterized by its indices
(
Ia0i , Io1i , Ia1i , Io2i , ..., Iak−1

i
, Ioki

)
(again we assume no initial observa-

tion). We can group these indices as
(〈
Ia0i , Io1i

〉
,
〈
Ia1i , Io2i

〉
, ...,

〈
Iak−1

i
, Ioki

〉)
, such that each〈

Iat−1
i
, Ioti

〉
corresponds to an action-observation. Clearly, there are |Ai| · |Oi| action-observations.

Let’s denote an action-observation with θi and its index with Iθi , corresponding to action ai and
observation oi, we then have that:

Iθi = Iai · |Oi|+ Ioi .

10Note, we assume the initial observation o0i to be empty. I.e. the sequence of indices
(
Io1i

, Io2i
, ..., Ioki

)
corresponds

to the following sequence of observations:
(
oi,∅, o

1
i , o

2
i , ..., o

k
i

)
.

30

0

1

[0,0]

[1,6]

[7,42]

0 1

0 1 2 0 1 2

2 3 4 5 6

13

0

0 1 2

14 15 16

1

0 1 2

17 18

0

0 1 2

32 3331

1,2,...

1,2,... (joint) action-observation history indices

(joint) observation indices

1,2,... (joint) action indices

Figure 14: Illustration of the enumeration of (joint) action-observation histories. This illustration
is based on a MADP with 2 (joint) actions and 3 (joint) observations.

ActionAndObservation to ActionObservationIndex from IndexTools.h performs this com-
putation. The inverse operation is performed by ActionObservation to ActionIndex and
ActionObservation to ObservationIndex,

Now these indices are defined, the same procedure for observation histories can be used as
illustrated in fig. 14. I.e.,

Iθ̄ k
i

=offsetk + Iθ1i · (|Ai| · |Oi|)
k−1

+ Iθ2i · (|Ai| · |Oi|)
k−2

+ ...

+ Iθk−1
i
· (|Ai| · |Oi|)1

+ Iθki · (|Ai| · |Oi|)
0
,

Note that

Iθti · (|Ai| · |Oi|)
k−t

=
(
Iati · |Oi|+ Ioti

)
· (|Ai| · |Oi|)k−t

= Iati · |Oi|
k−t+1 · |Ai|k−t + Ioti |Oi|

k−t · |Ai|k−t

As an example, index 32 is corresponds to index sequence (1, 1, 0, 1) which, in action-observation
indices, corresponds with (4, 1) and thus:

(
60 + 61

)
+ 4 · 62−1 + 1 · 62−2 =

7 + 24 + 1 = 32

Alternatively we can use the sequence (1, 1, 0, 1) directly:

7 +
(
1 · 32−1+1 · 22−1 + 1 · 32−1 · 22−1

)
+
(
0 · 31−1+1 · 21−1 + 1 · 31−1 · 21−1

)
=

7 +
(
1 · 32 · 21 + 1 · 31 · 21

)
+
(
0 · 31 · 20 + 1 · 30 · 20

)
=

7 + (1 · 9 · 2 + 1 · 3 · 2) + (0 · 3 · 1 + 1 · 1 · 1) =

7 + 18 + 6 + 1 =

7 + 25 =32

12.2.4 Joint Histories

Joint observations are enumerated in the same way as individual observation histories, only now
using the indices of joint observations rather than individual observations.

31

I.e., figure 13 also illustrates how joint observation histories are enumerated. And in order to
convert a sequence of joint observations indices up to time step k (Io1 , ..., Iok) to an observation
history index, the following formula can be used:

Iō = offsetk +
(
Io0 · |O|k−1

+ Io1 · |O|k−1
+ ...+ Iok−1 · |O|1 + Iok · |O|

0
)
,

I.e., (Io1 , ..., Iok) is interpreted as a base-|O| number and offset by

offsetk+1 =

k−1∑
j=0

|O|j − 1 =
|O|k − 1

|O| − 1
− 1.

Indices for joint action histories and joint action-observation histories are computed in the same
way. The action-observation functions (ActionObservation to ActionIndex, etc.) can also be
used for joint action-observations.

PlanningUnitMADPDiscrete also provides functions to convert joint to individual history in-
dices JointToIndividualObservationHistoryIndices, etc.

13 Joint Beliefs and History Probabilities

Planning algorithms for MADPs will typically need the probabilities of particular joint ac-
tion observation histories, and the probability over states they induce (called joint beliefs).
PlanningUnitMADPDiscrete provides some functionality for performing such inference, which we
discuss here.

13.1 Theory

Let Prπ(at|θ̄t) denote the probability of a as specified by π, then Pr(st, θ̄t|π, b0) is recursively
defined as

Pr(st, θ̄t|π, b0) =
∑

st−1∈S

Pr(st, θ̄t|st−1, θ̄t−1,π) Pr(st−1, θ̄t−1|π, b0). (1)

with
Pr(st, θ̄t|st−1, θ̄t−1,π) = Pr(ot|at−1, st) Pr(st|st−1,at−1) Prπ(at−1|θ̄t−1).

For stage 0 we have that ∀s0 Pr(s0, θ̄∅|π, b0) = b0(s0).

Since we tend to think in joint beliefs bθ̄
t

(st) , Pr(st|θ̄t,π, b0), we can also represent the
distribution (1) as:

Pr(st, θ̄t|π, b0) = Pr(st|θ̄t,π, b0) Pr(θ̄t|π, b0) (2)

The joint belief Pr(st|θ̄t,π, b0) The joint belief Pr(st|θ̄t,π, b0) is given by:

Pr(st|θ̄t,π, b0) =
Pr(ot|at−1, st)

∑
st−1 Pr(st|st−1,at−1) Pr(st−1|θ̄t−1,π, b0)∑

st Pr(ot|at−1, st)
∑
st−1 Pr(st|st−1,at−1) Pr(st−1|θ̄t−1,π, b0)

=
Pr(st,ot|at−1, θ̄t−1,π, b0)

Pr(ot|at−1, θ̄t−1,π, b0)
(3)

where Pr(ot|at−1, θ̄t−1,π, b0) = Pr(θ̄t|at−1, θ̄t−1,π, b0) .

The probability of an history Pr(θ̄t|π, b0) The second part of (2) is given by

Pr(θ̄t|π, b0) = Pr(θ̄t|θ̄t−1,π, b0) Pr(θ̄t−1|π, b0)

= Pr(θ̄t|at−1, θ̄t−1,π, b0) Prπ(at−1|θ̄t−1,π, b0) Pr(θ̄t−1|π, b0)

= Pr(ot|at−1, θ̄t−1,π, b0) Prπ(at−1|θ̄t−1,π, b0) Pr(θ̄t−1|π, b0) (4)

where Pr(ot|at−1, θ̄t−1,π, b0) is the denominator of (3).

32

Algorithm 1 [bθ̄
t

,Pr(θ̄t|π, θ̄t′ , bθ̄t′

)] = GetJAOHProbs(θ̄t,π, bθ̄
t′

, θ̄t
′
)

1: if θ̄t = θ̄t
′

then
2: return [bθ̄

t

= bθ̄
t′

, Pr(θ̄t|π, θ̄t′ , bθ̄t′

) = 1]
3: end if
4: if θ̄t not an extension of θ̄t

′
then

5: return [bθ̄
t

= ~0, Pr(θ̄t|π, θ̄t′ , bθ̄t′

) = 0]
6: end if
7: θ̄t

′′
= (θ̄t

′
,at

′
,ot
′+1) {consist. with θ̄t}

8: [bθ̄
t′′

,Pr(θ̄t
′′ |at′ , θ̄t′ , bθ̄t′

)] = bθ̄
t′

.Update(at
′
,ot
′+1) {belief update, see (3)}

9: [bθ̄
t

,Pr(θ̄t|π, θ̄t′′ , bθ̄t′′

)] = GetJAOHProbs(θ̄t,π, bθ̄
t′′

, θ̄t
′′
)

10: Pr(θ̄t|π, θ̄t′ , bθ̄t′

) = Pr(θ̄t|π, θ̄t′′ , bθ̄t′′

) Pr(θ̄t
′′ |at′ , θ̄t′ , bθ̄t′

) Prπ(at
′ |θ̄t′ ,π)

11: return [bθ̄
t

, Pr(θ̄t|π, θ̄t′ , bθ̄t′

)]

13.2 Implementation

Since computation of Pr(θ̄t|π, b0) is interwoven with the computation of the joint belief through
Pr(ot|at−1, θ̄t−1,π, b0), it is impractical to separately evaluate (3) and (4).

Rather we define a function

[bθ̄
t

,Pr(θ̄t|π, b0)] = GetJAOHProbs(θ̄t,π, b0)

Because in many situations an application might evaluate similar θ̄t (i.e., ones with an identical
prefix), a lot of computation will be redundant. To give the user the possibility to avoid this, we
also define

[bθ̄
t

,Pr(θ̄t|π, θ̄t
′
, bθ̄

t′

)] = GetJAOHProbs(θ̄t,π, bθ̄
t′

, θ̄t
′
)

which returns the probability and associated joint belief of θ̄t, given that θ̄t
′

(and associated joint

belief bθ̄
t′

) are realized (i.e., given that Pr(θ̄t
′
) = 1).

14 Policies

Here we discuss some properties and the implementation of policies. Policies are plans for agents
that specify how they should act in each possible situation. As a result a policy is a mapping
from these ‘situations’ to actions. Depending on the assumption on the observability in an MADP,
however, these ‘situations’ might be different. Also we would like to be able to reuse the imple-
mentations of policies for problems with a slightly different nature, for instance (Bayesian) games.

In the MADP toolbox, the most general form of a policy is a mapping from a domain
(PolicyDomain) to (probability distributions over) actions. Currently we have only considered
policies for discrete domains, which are mappings from indices (of these histories) to indices
(of actions). It is typically still necessary to know what type of indices a policy maps from in
order to be able to reuse our implementation of policies. To this end a discrete policy main-
tains its IndexDomainCategory. So far there are four types of index-domain categories: TYPE INDEX,
OHIST INDEX, OAHIST INDEX and STATE INDEX.

As said PolicyDiscrete class represents the interface policies for discrete domains.
PolicyDiscretePure is the interface for a pure (deterministic) policy. A class that actually im-
plements a policy is PolicyPureVector. This class also implements a function to get and set the
index of the policy (pure policies over a finite domain are enumerable). Joint policies are repre-
sented by similarly named classes JointPolicyDiscrete, JointPolicyPureVector, etc.

In order to instantiate a (joint)policy, it needs to know several things about the problem it
is defined over. We already mentioned the index domain category, but there is other informa-
tion needed as well (the number of agents, the sizes of their domains, etc.). To provide this

33

information, each problem for which we want to construct a (joint) policy has to implement the
Interface ProblemToPolicyDiscretePure.

A Installation Guide

This section elaborates on the quick start instructions presented in Section 2.

A.1 System requirements

The MADP Toolbox has mainly been developed on Debian GNU/Linux (64 bit, amd64 architec-
ture), but should work on any recent Linux distribution. It has been known to compile on Debian
5, 6, 7 & 8, Ubuntu 12.04lts, 13.10 & 14.04lts, Linux Mint 17, Fedora 17 & 20 and OpenSuSe 13.1.
For details on Mac OSX support see Section A.6.

MADP requires the following software to compile (as Debian package names):

• libtool (libtool)

• GCC, version >=4.2 (g++)

Optional software:

• Doxygen (doxygen) [for generating documentation]

• Graphviz (graphviz) [for dependency graphs in the generated documentation]

• lp-solve (liblpsolve55-dev and libufsparse-dev) [for alpha vector pruning]

• libxml2 (libxml2-dev) [for using the XML-based factored model parser]

• cplex [for the DP-LPC solver]

The software also uses part of the Boost C++ libraries, but due to potential compatibility issues
we ship the relevant parts in src/boost.

A.2 Compiling, installing and linking

Execute the following:

tar xfz madp-0.4.1.tar.gz

cd madp-0.4.1

./configure

make

make install [optional]

If you need to install MADP locally in your home directory (e.g., because you are no root on your
machine), you can use the following configure line:

./configure --prefix=<PATHTOMADP>
(E.g., ‘‘./configure --prefix=$HOME/madp-local” will install into a directory called

’madp-local’ in your home dir.)
The installation will create the following directories:
<PATHTOMADP>/bin
<PATHTOMADP>/include
<PATHTOMADP>/lib
In order to be able to execute the binaries, you may need to add the lib dir to

the LD LIBRARY PATH (E.g.: export LD LIBRARY PATH=<PATHTOMADP>/lib:$LD LIBRARY PATH).

Also, for conveniently running the binaries, you may want to add the bin dir to your PATH variable
(E.g.: export PATH=<PATHTOMADP>/bin:$PATH).

If you intend to use MADP as a library and link your own code against it, you only have to
add <PATHTOMADP>/include to your compiler flags (e.g., -I <PATHTOMADP>/include) and link
to libMADP.so (e.g., -L <PATHTOMADP>/lib -lMADP -lxml2 -lm).

34

A.3 Using CPLEX

For some functionality, such as the DP-LPC algorithm, CPLEX is required. In order to compile
against CPLEX, the configure script should be called with options to indicate the location of
those (see also configure --help). The easiest approach is to create a script that specified these
options and calls configure. For instance, one of the authors has been using a bash script with the
following contents:

CPLEX LOCATION=/opt/ibm/ILOG/CPLEX Studio125

CPLEX STRING="--with-cplex-includes=\"$INCLUDE -I$CPLEX LOCATION/cplex/include/ \
-I$CPLEX LOCATION/concert/include/\" "

CPLEX STRING="$CPLEX STRING \
--with-cplex-ldflags=\"-L$CPLEX LOCATION/cplex/lib/x86-64 sles10 4.1/static pic \
-L$CPLEX LOCATION/concert/lib/x86-64 sles10 4.1/static pic\" "

CPLEX STRING="$CPLEX STRING --with-cplex-libs=\"-lilocplex -lconcert -lcplex \" "

configure $CPLEX STRING <OTHER OPTIONS>

A.4 Using CUDA

The support for CUDA (Nvidia’s GPU framework) should be automatically detected. However, it
may be needed to add the library path to LD LIBRARY PATH. E.g., include

export LD LIBRARY PATH=$LD LIBRARY PATH:/usr/local/cuda-7.5/lib64/

to your .bashrc or whatever.
If this is an issue you will see this type of error:

/usr/bin/ld: warning: libcuda.so.1, needed by ../../src/madp/.libs/libMADP.so, not found (try using -rpath or -rpath-link)

/usr/bin/ld: warning: libcudart.so.7.5, needed by ../../src/madp/.libs/libMADP.so, not found (try using -rpath or -rpath-link)

/usr/bin/ld: warning: libcusolver.so.7.5, needed by ../../src/madp/.libs/libMADP.so, not found (try using -rpath or -rpath-link)

/usr/bin/ld: warning: libcublas.so.7.5, needed by ../../src/madp/.libs/libMADP.so, not found (try using -rpath or -rpath-link)

../../src/madp/.libs/libMADP.so: undefined reference to ‘NullPlanner::NullPlanner(unsigned long, DecPOMDPDiscreteInterface*)’

../../src/madp/.libs/libMADP.so: undefined reference to ‘cusolverDnDgeqrf bufferSize’

../../src/madp/.libs/libMADP.so: undefined reference to ‘cudaFree’

A.5 Specifying problem and result directories

By default, MADP assumes problems to be located in $HOME/.madp/problems, as discussed in Sec-
tion 4. That is, problem descriptions can be loaded without specifying a path if ~/.madp/problems
is a symlink to the problems subdir in the MADP tree (or if you simply copy the problem descrip-
tions to ~/.madp/problems). Similarly, results are saved in (subdirs of) ~/.madp/results, so will
be convenient to make a symlink to the desired results locations.

The following commands should get most people started:

mkdir ~/.madp

mkdir ~/.madp/results

cd ~/.madp

ln -s <PATH-TO-EXTRACTED-MADP-TAR>/problems

Alternatively, one can adapt these locations in the code (src/planning/directories.cpp)
and recompile. If you get an error like: “ERROR: mkdir error
for /home/*/.madp/results/<METHODNAME>/...” or “failed to open file
/home/*/.madp/results/<METHODNAME>/...” you should also create a sub-directory for
<METHODNAME>. E.g., in case of GMAA: mkdir ~/.madp/results/GMAA .

A.6 Mac OSX support

The following steps have been reported to work:

1. Install XCode

35

2. Install argp-standalone from MacPorts or Homebrew

3. If necessary, create symbolic links from (or move the files) /opt/local/include/argp.h

to /usr/local/include/argp.h and /opt/local/lib/libargp.a to
/usr/local/lib/libargp.a.

In order to use vector pruning methods, it is also needed to install lpsolve:

brew install homebrew/science/lp solve

A.7 Testing

The src/tests directory contains test software to check for errors for software verfication purposes.
These tests can be run with:

make check

Each test should pass. For each test a detailed log file is generated with its output, see
src/test/*.log.

A.7.1 Code coverage

To check the code coverage, which source lines of the library were and which were not visited when
running the test software, we uses ’gcov’. Here we explain how to generate a code coverage report.
First install ’lcov’ version 1.12 or higher available from:

http://ltp.sourceforge.net/coverage/lcov.php

Then configure and recompile the library to enable recording of code coverage statistics by running
these instructions from within the root directory:

export CPPFLAGS="--coverage -g -O0" # sets some required flags

export CXXFLAGS="--coverage -g -O0" # sets some required flags

./configure --disable-shared # configure with libtool problem workaround

make clean # remove previously compiled software

make -j 8 # recompile all sources

Then generate the coverage report with:

cd ./src # so report uses exisiting directory structure

lcov -z --directory . # removes existing coverage statistics

make check -j 8 # runs all tests

lcov -d . -c -o app.info # processes coverage statistics

genhtml app.info # generates html report

The result is a code coverage report in file ’index.html’ and others viewable in a browser. Source
code that was not included in the report (because it was not used by the tests) can afterwards be
found with:

./tests/listCodeNotInCoverageReport.sh

Acknowledgments

We like to thank Erwin Walraven for contributions to both this manual and the MADP toolbox, as
well as all other toolbox contributors: Abdeslam Boularias, Julian Kooij, Tiago Veiga, Francisco
Melo, Timon Kanters, Philipp Beau. Also, we are grateful for numerous suggestions and bug-
reports we have received to improve the MADP Toolbox.

F.O. is funded by NWO Innovational Research Incentives Scheme Veni #639.021.336.

36

References

[1] M. Arias, F. J. Dı́ez, and M. P. Palacios. ProbModelXML. A format for encoding probabilistic
graphical models. Technical report cisiad-11-02, UNED, Madrid, Spain, 2011.

[2] Daniel S. Bernstein, Robert Givan, Neil Immerman, and Shlomo Zilberstein. The complexity
of decentralized control of Markov decision processes. Mathematics of Operations Research,
27(4):819–840, 2002.

[3] Umberto Bertele and Francesco Brioschi. Nonserial Dynamic Programming. Academic Press,
Inc., 1972.

[4] Pieter-Tjerk de Boer, Dirk P. Kroese, Shie Mannor, and Reuven Y. Rubinstein. A tutorial on
the cross-entropy method. Annals of Operations Research, 134(1):19–67, 2005.

[5] Abdeslam Boularias and Brahim Chaib-draa. Exact dynamic programming for decentralized
POMDPs with lossless policy compression. In Proceedings of the International Conference on
Automated Planning and Scheduling, 2008.

[6] Craig Boutilier. Planning, learning and coordination in multiagent decision processes. In Proc.
of the 6th Conference on Theoretical Aspects of Rationality and Knowledge, pages 195–210,
1996.

[7] A. R. Cassandra. Exact and Approximate Algorithms for Partially Observable Markov Decision
Processes. PhD thesis, Brown University, 1998.

[8] Anthony Cassandra, Michael L. Littman, and Nevin L. Zhang. Incremental pruning: A
simple, fast, exact method for partially observable Markov decision processes. In Proceedings
of Uncertainty in Artificial Intelligence, pages 54–61. Morgan Kaufmann, 1997.

[9] Rina Dechter. Bucket elimination: a unifying framework for processing hard and soft con-
straints. Constraints, 2(1):51–55, 1997.

[10] Rosemary Emery-Montemerlo, Geoff Gordon, Jeff Schneider, and Sebastian Thrun. Approxi-
mate solutions for partially observable stochastic games with common payoffs. In Proceedings
of the International Conference on Autonomous Agents and Multi Agent Systems, pages 136–
143, 2004.

[11] Carlos Guestrin, Daphne Koller, and Ronald Parr. Multiagent planning with factored MDPs.
In Advances in Neural Information Processing Systems 14, pages 1523–1530, 2002.

[12] Eric A. Hansen, Daniel S. Bernstein, and Shlomo Zilberstein. Dynamic programming for
partially observable stochastic games. In Proceedings of the National Conference on Artificial
Intelligence, pages 709–715, 2004.

[13] Jesse Hoey, Robert St-Aubin, Alan Hu, and Craig Boutilier. SPUDD: Stochastic planning
using decision diagrams. In Proceedings of Uncertainty in Artificial Intelligence, 1999.

[14] Jelle R. Kok and Nikos Vlassis. Collaborative multiagent reinforcement learning by payoff
propagation. Journal of Machine Learning Research, 7:1789–1828, 2006.

[15] Joao V. Messias, Matthijs T. J. Spaan, and Pedro U. Lima. Asynchronous execution in
multiagent POMDPs: Reasoning over partially-observable events. In AAMAS’13 Workshop
on Multi-agent Sequential Decision Making under Uncertainty (MSDM), pages 9–14, May
2013.

[16] George E. Monahan. A survey of partially observable Markov decision processes: theory,
models and algorithms. Management Science, 28(1), January 1982.

[17] Joris M. Mooij. libDAI: A free and open source C++ library for discrete approximate inference
in graphical models. Journal of Machine Learning Research, 11:2169–2173, August 2010.

37

[18] Ranjit Nair, Milind Tambe, Makoto Yokoo, David V. Pynadath, and Stacy Marsella. Taming
decentralized POMDPs: Towards efficient policy computation for multiagent settings. In
Proceedings of the International Joint Conference on Artificial Intelligence, pages 705–711,
2003.

[19] Frans A. Oliehoek. Value-Based Planning for Teams of Agents in Stochastic Partially Observ-
able Environments. PhD thesis, Informatics Institute, University of Amsterdam, February
2010.

[20] Frans A. Oliehoek. Decentralized POMDPs. In Marco Wiering and Martijn van Otterlo,
editors, Reinforcement Learning: State of the Art, volume 12 of Adaptation, Learning, and
Optimization, pages 471–503. Springer Berlin Heidelberg, Berlin, Germany, 2012.

[21] Frans A. Oliehoek and Christopher Amato. A Concise Introduction to Decentralized POMDPs.
SpringerBriefs in Intelligent Systems. Springer, 2016. URL http://www.springer.com/us/

book/9783319289274. (In press).

[22] Frans A. Oliehoek and Matthijs T. J. Spaan. Tree-based solution methods for multiagent
POMDPs with delayed communication. In Proc. of the AAAI Conference on Artificial Intel-
ligence, pages 1415–1421, 2012.

[23] Frans A. Oliehoek, Matthijs T. J. Spaan, and Nikos Vlassis. Dec-POMDPs with delayed
communication. In Proceedings of the AAMAS Workshop on Multi-Agent Sequential Decision
Making in Uncertain Domains (MSDM), May 2007.

[24] Frans A. Oliehoek, Julian F.P. Kooi, and Nikos Vlassis. The cross-entropy method for policy
search in decentralized POMDPs. Informatica, 32:341–357, 2008.

[25] Frans A. Oliehoek, Matthijs T. J. Spaan, and Nikos Vlassis. Optimal and approximate Q-
value functions for decentralized POMDPs. Journal of Artificial Intelligence Research, 32:
289–353, 2008.

[26] Frans A. Oliehoek, Matthijs T. J. Spaan, Shimon Whiteson, and Nikos Vlassis. Exploiting lo-
cality of interaction in factored Dec-POMDPs. In Proceedings of the International Conference
on Autonomous Agents and Multi Agent Systems, pages 517–524, May 2008.

[27] Frans A. Oliehoek, Shimon Whiteson, and Matthijs T. J. Spaan. Lossless clustering of histories
in decentralized POMDPs. In Proceedings of the International Conference on Autonomous
Agents and Multi Agent Systems, pages 577–584, May 2009.

[28] Frans A. Oliehoek, Matthijs T. J. Spaan, Jilles Dibangoye, and Christopher Amato. Heuristic
search for identical payoff Bayesian games. In Proceedings of the International Conference on
Autonomous Agents and Multi Agent Systems, pages 1115–1122, May 2010.

[29] Frans A. Oliehoek, Shimon Whiteson, and Matthijs T. J. Spaan. Exploiting structure in
cooperative Bayesian games. In Proceedings of the Twenty-Eighth Conference on Uncertainty
in Artificial Intelligence, pages 654–664, August 2012.

[30] Frans A. Oliehoek, Matthijs T. J. Spaan, Christopher Amato, and Shimon Whiteson. In-
cremental clustering and expansion for faster optimal planning in decentralized POMDPs.
Journal of Artificial Intelligence Research, 46:449–509, 2013.

[31] Frans A. Oliehoek, Shimon Whiteson, and Matthijs T. J. Spaan. Approximate solutions
for factored Dec-POMDPs with many agents. In Proceedings of the Twelfth International
Conference on Autonomous Agents and Multiagent Systems, pages 563–570, 2013.

[32] Shayegan Omidshafiei, Ali-Akbar Agha-Mohammadi, Christopher Amato, Shih-Yuan Liu,
Jonathan P How, and John Vian. Graph-based cross entropy method for solving multi-robot
decentralized POMDPs. In Proceedings of the IEEE International Conference on Robotics
and Automation, May 2016.

38

http://www.springer.com/us/book/9783319289274
http://www.springer.com/us/book/9783319289274

[33] Sven Seuken and Shlomo Zilberstein. Formal models and algorithms for decentralized decision
making under uncertainty. Autonomous Agents and Multi-Agent Systems, 17(2):190–250, 2008.

[34] Matthijs T. J. Spaan and Nikos Vlassis. Perseus: Randomized point-based value iteration for
POMDPs. Journal of Artificial Intelligence Research, 24:195–220, 2005.

[35] Matthijs T. J. Spaan, Frans A. Oliehoek, and Chris Amato. Scaling up optimal heuristic
search in Dec-POMDPs via incremental expansion. In Proceedings of the International Joint
Conference on Artificial Intelligence, pages 2027–2032, 2011.

[36] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT
Press, March 1998.

[37] Daniel Szer, François Charpillet, and Shlomo Zilberstein. MAA*: A heuristic search algorithm
for solving decentralized POMDPs. In Proceedings of Uncertainty in Artificial Intelligence,
pages 576–583, 2005.

[38] Erwin Walraven and Matthijs T. J. Spaan. Accelerated Vector Pruning for Optimal POMDP
Solvers. In Proceedings of the 31st AAAI Conference on Artificial Intelligence, 2017.

[39] Chelsea C. White. A survey of solution techniques for the partially observed Markov decision
process. Annals of Operations Research, 32(1):215–230, 1991.

39

	Introduction
	I User Guide
	For the Impatient: Compiling, and Running an MADP Program
	Theory: MADPs and Basic Notation
	Discrete Time MASs
	Basic MADP Components
	Histories
	Policies, Planning & Learning

	Finding Things: Useful Directories
	Using the Toolbox: Some Examples
	General Options
	Solving a Dec-POMDP
	Solving a (Multiagent) POMDP with Perseus
	Other POMDP Methods
	Planning: Solving a (Multiagent) MDP
	Learning in a (Multiagent) MDP

	Specifying Problems: File Formats, etc.
	Using the OpenMarkov Graphical Editor
	Specifying & Parsing .pomdp & .dpomdp files
	Specifying Problems as a Sub-Class

	The ProbModelXML Format
	Using OpenMarkov to Design Factored Problems
	Designing Event-Driven Models

	II Developer Guide
	Overview of the MADP Toolbox Libraries
	MADP Libraries
	The Base Library (libMADPBase)
	The Parser Library (libMADPParser)
	The Support Library (libMADPSupport)
	The Planning Library (libMADPPlanning)

	MADP Directory Structure

	Using the MADP Toolbox: An Example
	Typical Use Cases
	One-Shot Decision Making
	Sequential Planning Algorithms
	MultiAgentDecisionProcessInterface and PlanningUnits
	Multiagent Planning
	Planning for a Single Agent

	Simulation and Reinforcement Learning
	Simulations
	The Agents Hierarchy
	Reinforcement Learning

	Specifying Problems as a Sub-Class
	Dec-POMDPs
	Factored Dec-POMDPs
	Fully-observable problems

	IndexTools: Indices for Discrete Models
	Enumeration of Joint Actions and Observations
	Enumeration of (Joint) Histories
	Observation Histories
	Action Histories
	Action-Observation Histories
	Joint Histories

	Joint Beliefs and History Probabilities
	Theory
	Implementation

	Policies
	Installation Guide
	System requirements
	Compiling, installing and linking
	Using CPLEX
	Using CUDA
	Specifying problem and result directories
	Mac OSX support
	Testing
	Code coverage

