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Abstract

In this paper we present a preliminary investigation of modelling spatial aspects of
security games within the context of Markov games. Reinforcement learning is a
powerful tool for adaptation in unknown environments, however the basic single-
agent RL algorithms are unfit to be applied in adversarial scenarios. Therefore, we
profit from Adversarial Multi-Armed Bandit (AMAB) methods which are designed
for such situations. Based on temporal difference methods we derive two new multi-
agent algorithms using AMAB methods for spatial two-player non-cooperative
security games.

1 Introduction

Security games have gained a lot of attention in recent years due to their successful application
on real-world security threats. Examples include the ARMOR system for airport security [16],
the IRIS tool (scheduling Federal Air Marshals) [21], and the PROTECT system for scheduling
Coast Guard [18]. Additionally some work has focused on Green Security Games for poaching
problems [5]. Some of these security games however, do not consider space or time, i.e. the time it
takes the defender to travel to the target node, as part of the model. Proposed strategies need to deal
with delayed rewards in dynamic scenario, where the agents move on a map and have different levels
of knowledge about the environment, which makes finding optimal strategies very demanding.

The security game framework is defined as a non-cooperative 2-player general-sum game. We call
the two players with contradictory goals defender and attacker based on the model of the Stackelberg
Security Game (SSG), widely used in security games. In our preliminary study we model the spatial
security game to be played on a 2D graph (grid), which represents a map on which the players move
and interact with each other. Solving the game by finding equilibria strategies is often not feasible due
to limited knowledge about the model or computational intractability. A second option is to learn an
optimal strategy from the interaction with the opponent in the environment. Therefore, in this paper
we focus on reinforcement learning methods to approach spatial security games. To model the spatial
security game effectively we use the concept of Markov Games (MG), which combines Markov
Decision Processes (MDP) with repeated games, well described in [12]. In this paper we introduce
an informal class of spatial security games which are a class of Markov Games in which two players,
the attacker and defender, take moves in a physical environment represented as a grid, which we call
the Markov Security Game (MSG). Choosing an optimal strategy (actions) for the defender at each
step on the map is a decision-making process where we want to maximize the reward, therefore we
can think of these actions as arms of multi-armed bandits with unknown distributions. We can argue
that the attacker in security games is often adaptive adversary and thus it is convenient to focus on
the Adversarial Multi-Armed Bandit framework, a generalisation of standard multi-armed bandit
problems, which has no statistical assumptions on reward generation [1].
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Q-learning has been shown to perform well in a single agent setting, and there have been many efforts
to extend this Bellman style reinforcement learning techniques to multi-agent settings [22]. Such
approaches have been very successful in zero-sum repeated games, or team repeated games, but less
successful in general-sum stochastic games [19]. We present a new approach to using reinforcement
learning methods in combination with multi-armed bandit problem techniques to address Markov
Games more effectively, applied to the security domain.

The paper is organised as follows: firstly we discuss related work in Section 2, after which we
introduce the Spatial (Markov) Security Game model and define some of the key concepts in Section
3. In Section 4 we present two new algorithms and in Section 5 we evaluate both algorithms in the
security domain. Finally, we conclude our work and point out several directions for future work.

2 Related work

We base our work on two areas: (i) temporal difference learning methods and (ii) adversarial
multi-armed bandit methods. One of the fundamental temporal difference learning algorithms - Q-
learning was presented by Watkins in 1989 [24], where he described a significant connection between
reinforcement learning and Markov Decision Processes (MDP). Learning with delayed rewards
appears in many real world problems where the reward is not immediately known. This is also the
case in spatial security games where the movement on the map delays the reward which is obtained in
time of apprehending the attacker or reaching the target node. Another temporal-difference algorithm
is SARSA (state-action-reward-state-action) presented in [17]. SARSA is on-policy meaning we use
the policy for the Q-value update. A standard framework of MDP assumes a single adaptive agent
who operates in a stationary environment defined by a probabilistic transition function. Therefore any
other agents in the environment must be thought of as part of the environment from the single agent
point of view. Consequently, for multi-agent systems we need to come up with more sophisticated
algorithms.

There have been several works presenting new algorithms based on Q-learning for multi-agent
systems. Littman, 1994 [12] proposed minimax-Q, which substitutes the max operator in standard
Q-learning update by the minimax operator as known in game theory, which can be solved by linear
programming. The minimax strategy is the optimal strategy for non-cooperative zero-sum game. This
algorithm has some weaknesses; (i) the necessity of using linear programming in each step demands
high computational complexity, (ii) many domains (e.g. security games) require general-sum (non-
zero-sum) assumption on rewards, therefore this algorithm cannot be safely used in such areas. In [7]
the authors present the Nash Q-learning algorithm for general-sum stochastic games which is an
intuitive next step from the minimax-Q algorithm, moving from zero-sum to general-sum games. As
the name of the algorithm suggests the concept of Nash equilibrium (NE) is used, which is a baseline
solution concept in general-sum games. NE is used in the update function of Q-learning replacing
the max operator. Only in case of both players selecting the same NE the proposed algorithm is
proven to converge. Nevertheless this algorithm faces the selection problem of NE (non-uniqueness
property of NE), where in case of existence of multiple NE the algorithm might not converge. One of
the proposed solutions to tackle the selection NE problem is using correlated equilibrium, however,
that is not possible against an adversarial opponent (e.g. security games). Another intuitive step
from using the Nash equilibrium concept in the Q-learning algorithm is to use the concept of Strong
Stackelberg Equilibrium (SSG) as known in Stackelberg Games and has recently been widely used in
Stackelberg Security Games [8]. Q-learning combined with SSG was presented in [10], where the
authors discuss the asymmetric learning model with leader and follower as known in Stackelberg
games. By using Stackelberg equilibrium they overcome the selection problem of Nash equilibrium
because the Stackelberg equilibrium is unique and thus guarantees stronger convergence properties.
The asymmetric learning model is a relaxation of the symmetric model discussed above. However
in their model both agents need to accept their roles as leader and follower and keep a copy of the
opponent’s Q function, which is computationally demanding. In [14] the authors present and compare
two strategies - Bully and Godfather which are based on Stackelberg leader and follower concepts.
They compare combinations of these strategies played against each other in some well-known games.
There has been more work that takes similar approaches, in which the authors modify Nash Q-
learning by using the Stackelberg equilibrium concept [11]. In particular, an algorithm is proposed
that chooses between Nash and Stackelberg equilibria based on dominance. Another approach is the
friend-or-foe Q-learning (FFQ) algorithm presented in [13]. In case of coordination or adversarial
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equilibria FFQ converges to Nash equilibrium. The algorithm requires additional information before
the game starts about the relation of the players; in case of ’friend’ the algorithm uses a method for
cooperative learning and in case of ’foe’ the algorithm uses zero-sum learning method. Thus, in
cooperative setting the algorithm uses classic max update for Q-values and in adversarial setting the
algorithm uses minimax update for Q-values. In security games we face the general-sum property,
thus this algorithm cannot be used effectively here. An important temporal-difference style algorithm
was presented in [23] called Expected SARSA, based on standard on-policy SARSA. The proposed
algorithm reduces the increase in variance compared to standard SARSA. Expected SARSA bases its
Q-value update on used-policy expected value E{Q(st+1, at+1)} rather than on Q(st+1, at+1). This
new update rule seems promising in the domain of spatial security games where the policy is a mixed
strategy over possible actions, thus the expected value update better reflects the goodness of the state.

In this paper we discuss the use of Adversarial Multi-Armed Bandit (AMAB) methods for temporal
difference learning in Markov stochastic games. The AMAB framework was used for learning in
some security games, e.g. Border Patrol [9].

Another efficient family of methods deployed to Security Games using random sampling is based on
Monte Carlo Tree Search [15]. In [3] the authors use Monte Carlo Tree Search in Markov Games
using Multi-Armed Bandit algorithms for the selection policy. However, in this paper we focus on
temporal difference methods, which are better suitable for learning the strategy online.

3 Spatial Security Game model

The standard security game model is based on concept of Stackelberg game, deriving Stackelberg
Security Games [8]. The main difference to normal form games is a distinction between the players;
leader (defender) moves first and follower (attacker) observes defender strategy (to some extent;
in our model the follower knows only about previously visited nodes by the leader) and acts upon
that. The Spatial (Markov) Security Game (MSG) is a game model consisting of a grid game which
represents a map on which 2 non-cooperative players act. We propose a realistic 2D model which
captures the basic scenario of several security domains and propose effective defender strategy against
adaptive adversary. Each node on the map (see Figure 1) is a state s, defined by its coordinates and
each edge is an action a (up, down, left or right) from each node following the MDP framework
notations. We test and compare several methods based on temporal difference (TD) methods and
adversarial multi-armed bandit methods. For the opponent we assume intelligent adversarial attacker
based on fictitious play.

3.1 Markov games

Markov Games (MG) generalize Markov decision processes and repeated games. MG is a stochastic
game model with multiple agents moving in environment defined by states, actions and rewards
obtained in each state. The concept of Markov games is described in [25] chapter 14.3.1. A Markov
Game is defined as a tuple (n, S,A1,...,n, R1,...,n, T ) where n is number of agents in the system, S is
a finite set of system states, Ak is the action set of agent k, Rk : S ×A1 × ...×An × S → R is the
reward function of agent k and T : S ×A1 × ...×An × S → µ(S) is the transition function.

3.2 Temporal difference methods

A standard temporal difference off-policy learning method is Q-learning presented in [24]. We follow
the description from [20].

Q(St, At)← Q(St, At) + α[Rt+1 + γmax
a

Q(St+1, a)−Q(St, At)] (1)

This function directly approximate the optimal action-value function which is independent to the
followed policy (e.g. ε-greedy).

A modification of standard on-policy SARSA was proposed in [23] called Expected SARSA, where
the Q-value update function is defined:

Q(st, at)← Q(st, at) + α[rt+1 + γV (st+1)−Q(st, at)] (2)
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value function V is defined as V (st+1) =
∑

a π(st+1, a)Q(st+1, a) for π to be a chosen policy. For
cases where the policy π is greedy, Expected SARSA can be seen as a generalization of Q-learning;
the value function V (s) then simplifies to V (s) = maxaQ(s, a)

3.3 Adversarial multi-armed bandit

Multi-armed bandit (MAB) is an important decision-making framework designed to approach well-
known exploration vs. exploitation problem, where a player needs to decide between exploiting the
best action so far or exploring new actions with potentially high rewards. Standard MAB assumes
deterministic or stochastic generation of rewards, which we cannot assume in security game domain
where the opponent is adaptive adversary. Therefore we focus on one of the strongest generalisation
of bandit problem called Adversarial Multi-Armed Bandit (AMAB) problem where no stochastic
assumptions on generation of rewards is made [1]. Algorithm for optimizing cumulative reward
in AMAB environment is EXP3 Exponential-weight algorithm for Exploration and Exploitation
proposed in [2]. We use a numerically more stable formulation introduced by [4]. Formally, a given
action i is chosen with probability:

p(i) =
1− ε∑

j∈K
e(S(j)−S(i)) εK

+
ε

K
, (3)

where ε represents the amount of random exploration in the algorithm andK is the number of possible
actions, thus K = |A|. Vector S represents sums of rewards for each action and is defined by

St(i) = St−1(i) +
rt
pt(i)

(4)

so the vector S represents sums of rewards obtained in each round divided by probability of playing
that action in each round. Thus, actions with higher rewards or rarely played actions are preferred.

4 TD learning using MAB method

We present a new approach to learning in Markov Security Games, where we use EXP3 algorithm as
a policy for deciding on action selection using Q-values from temporal difference learning algorithms.
Using algorithm EXP3 enables us to face effectively adversarial attacker, nevertheless standard EXP3
algorithm is not designed for MDP framework, thus we make use of temporal difference methods and
combine EXP3 sum update with Q-values which makes using EXP3 in Markov Game possible. We
propose two such methods, which we call EXP3-Q learning and Expected SARSA-EXP3 learning.

4.1 EXP3-Q

We propose algorithm EXP3-Q which is based on Q-learning update and EXP3 online learning
algorithm. Using EXP3 enables us to learn effectively against adversarial opponent and Q-learning
update conserves the spatial property of the environment defined by MDP.

The sums in EXP3 algorithm (Equation 3) are updated using the Q-values from Equation 1 modifying
the standard EXP3 sum update (Equation 4) by

St(s, a) = St−1(s, a) +
Qt(s, a)

p(s, a)
(5)

4.2 Expected SARSA-EXP3

We use the algorithm Expected SARSA, where for the policy we use EXP3 algorithm stated in
Equation 3. For the sum update in EXP3 algorithm we propose to use Q-values from Expected
SARSA update function:

St(s, a) = St−1(s, a) +
Qt(s, a)

p(s, a)
(6)
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where Qt(s, a) is a Q-value from Expected SARSA Q-value update function with value function
using as policy the EXP3 algorithm:

Q(st, at)← Q(st, at) + α[rt+1 + γV (st+1)−Q(st, at)] (7)

where value function V is defined as V (st+1) =
∑

a π
EXP3(st+1, a)Q(st+1, a) where πEXP3 is

policy using EXP3 algorithm.

4.3 Attacker behaviour model

The aim of this paper is to propose effective algorithms to play against an intelligent adversarial
attacker. We assume the attacker to adapt his strategy according to defender moves on the map and
according to probability of successful attack in each particular zone. In our experiments we base the
attacker behavior model on fictitious play [6], which can be seen as a realistic simple strategy for
the attacker in security games. The attacker chooses the actions according to mixed strategy which
is proportional to number of defender visits D and probability of successful attack T in each node.
Vectors T and D are normalised to 1. Attacker strategy is then defined by probability of choosing
each of the nodes i on the map by p(i) = Ti−Di. In case of negative number we assume the attacker
covers the target with 0 probability. The assumption of the attacker knowing all past defender moves
comes from many security games where the attacker can observe the defender actions.

5 Experiments

We test classic Q-learning and the proposed algorithms EXP3-Q and Expected SARSA-EXP3 in a
grid game scenario. We assume a grid game of size 6x6 (see Figure 1), players have up to 4 actions
depending on which node there are in - left, right, up and down (players are not allowed to get out of
the map, i.e. in edging nodes). Each dot (black, red or green) is a node in the map. In our experiments
an attacker decides at each step between two targets (nodes) based on fictitious play (see Section 4.3).
Then the attacker attacks the chosen target with some probability of success given for each target.
The targets are located at coordinates [4,1] and [2,4] depicted by shaded tiles and red dots and have
probability of successful attack T1 = 0.25 and T2 = 0.35 respectively. The game stops when either
(i) defender is in the same node as the attacker; attacker is apprehended or (ii) attacker successfully
attacks the target. The defender starts at position [0,0] depicted by green dot. The attacker is assumed
to be able to enter the map from any side therefore we do not reflect his transition on the map and
only assume his presence in one of the two target nodes. The triangles contain probabilities of actions
(mixed strategy vector over the actions - up, down, right, left) for each node for chosen strategy. In
our experiments we use a fixed exploration ε = 0.1 for all the policies.

We run experiments to tune the other parameters α and γ for each of the algorithms in Table 1.
For each setting we run 10 000 games averaged over 500 runs. We provide number of average
defender wins in the 10 000 games (this number is relative depending on setting of probabilities of
successful attack T ). The standard setting for the algorithms is α = 0.5, γ = 0.9 and ε = 0.1. In
Table 1 we also provide 95% confidence intervals. The maximum number of wins for Q-learning
was 696, for EXP3-Q learning 761 wins which is statistically-significantly better and for Expected
SARSA-EXP3 learning we obtained 709 defender wins which is also better than Q-learning (in this
case not statistical significant difference). We can see that EXP3-Q and Expected SARSA-EXP3
outperforms standard Q-learning. In Figure 1 we show the two proposed algorithms with tuned
parameters; EXP3-Q with α = 0.5 and γ = 0.6 and Expected SARSA-EXP3 with α = 0.5 and
γ = 0.7. These settings of the algorithms only demonstrate their good-enough behavior and we leave
optimal tuning of the parameters (running all combinations of parameter settings) for future work. In
Figure 1 we can see how the defender chooses his actions based on mixed strategy vectors in each
node. Interesting node is [2,1], where the defender decides whether to cover target 1 at [4,1] or target
2 at [2,4]. For EXP3-Q he chooses with probability 0.45 to go down (target 1) and 0.48 to go right
(target 2) however using Expected SARSA-EXP3 he chooses to go down with probability 0.54 (target
1) and with probability 0.39 to go right (target 2). Positive probabilities for going up or left come
from exploration part of the algorithm.
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Table 1: Defender wins for varying α and γ with 95% confidence interval
α Q-learning EXP3-Q E-S-EXP3

0.1 424 ±24 456 ±15 449 ±10
0.2 471 ±21 469 ±12 556 ±9
0.3 515 ±20 390 ±12 591 ±10
0.4 558 ±18 358 ±12 623 ±11
0.5 551 ±18 311 ±12 642 ±11
0.6 536 ±16 264 ±11 653 ±12
0.7 519 ±15 223 ±11 687 ±12
0.8 487 ±13 198 ±11 685 ±12
0.9 430 ±12 163 ±11 708 ±13

γ Q-learning EXP3-Q E-S-EXP3
0.1 686 ±21 277 ±3 232 ±3
0.2 696 ±20 460 ±4 372 ±3
0.3 692 ±19 622 ±6 524 ±5
0.4 676 ±19 706 ±8 624 ±6
0.5 678 ±19 759 ±10 677 ±7
0.6 658 ±19 761 ±11 700 ±9
0.7 665 ±18 740 ±13 709 ±11
0.8 608 ±19 630 ±13 671 ±11
0.9 548 ±17 307 ±12 645 ±12
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(a) EXP3-Q with α = 0.5, γ = 0.6
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Figure 1: EXP3-Q and Expected SARSA-EXP3 against fictitious attacker

6 Conclusion

In this work we proposed Markov Security Games as a model for spatial security problems. MSG are
well suited to capture both the spatial component and delayed reward of the studied problems. This
paper presents a preliminary study of analysing and describing the concept of MSG. We have proposed
two new algorithms EXP3-Q and Expected SARSA-EXP3, which are based on temporal difference
learning and on Adversarial Multi-Armed Bandit methods. As a first step we run experiments to show
their sensitivity to different parameter settings and compared them to a standard Q-learner. We showed
they outperform standard Q-learning, as expected because Q-learning is designed for a stationary
environment. We visualised the two proposed algorithms in a grid game scenario representing MSG,
in which we show the policy mixed strategies for choosing actions in each node. Our experiments are
a first step in exploring MSGs, which shows promising performance of the two new algorithms. In
future work we plan to do a more thorough analysis and evaluation of the algorithms w.r.t. spatial
constraints and alternative baselines.
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