Advances in Multiagent Decision Making under Uncertainty

Frans A. Oliehoek

Maastricht University

Coauthors: Matthijs Spaan (TUD), Shimon Whiteson (UvA), Nikos Vlassis (U. Luxembourg), Jilles Dibangoye (INRIA), Chris Amato (MIT)

Dynamics, Decisions & Uncertainty

• Why care about formal decision making?

Uncertainty

Outcome Uncertainty

Partial Observability

Multiagent Systems: uncertainty about others

Outline

- Background: sequential decision making
- Optimal Solutions of Decentralized POMDPs [JAIR'13]
 - incremental clustering
 - incremental expansion
 - sufficient plan-time statistics [IJCAI'13]
- Other/current work
 - Exploiting Structure [AAMAS'13]
 - Multiagent RL under uncertainty [MSDM'13]

Background: sequential decision making

Single-Agent Decision Making

Background: MDPs & POMDPs

• An MDP
$$\langle S, A, P_T, R, h \rangle$$

- *S* set of states
- A set of actions
- P_{T} transition function
- R reward function
- h horizon (finite)

- A POMDP $\langle S, A, P_T, O, P_O, R, h \rangle$
 - O set of observations
 - P_0 observation function

Example: Predator-Prey Domain

- Predator-Prey domain
 - 1 agent: predator
 - prey is part of environment

- Formalization:
 - states (-3,4)
 - actionsN,W,S,E
 - transitions
 failing to move, prey moves
 - rewards reward for capturing

Example: Predator-Prey Domain

Markov decision process (MDP)

- ► Markovian state *s...* (which is observed!)
- ► policy π maps states \rightarrow actions
- ► Value function Q(s,a)
- ► Compute via value iteration / policy iteration

$$Q(s,a)=R(s,a)+\gamma\sum_{s'}P(s'|s,a)\max_{a'}Q(s',a')$$

Partial Observability

- Now: partial observability
 - E.g., limited range of sight
- MDP + observations
 - explicit observations
 - observation probabilities
 - noisy observations (detection probability)

o = ' nothing'

Partial Observability

- Now: partial observability
 - E.g., limited range of sight
- MDP + observations
 - explicit observations
 - observation probabilities
 - noisy observations (detection probability)

$$o = (-1,1)$$

Partial Observability

- Now: partial observability
 - E.g., limited range of sight
- MDP + observations
 - explicit observations
 - observation probabilities
 - noisy observations (detection probability)

$$o = (-1,1)$$

Can not observe the state

- \rightarrow Need to maintain a belief over states b(s)
- \rightarrow Policy maps beliefs to actions $\pi(b) = a$

Multiple Agents

multiple agents, fully observable

Can coordinate based upon the state

- → reduction to single agent: 'puppeteer' agent
- → takes joint action

Formalization:

- states ((3,-4), (1,1), (-2,0))
- actions {N,W,S,E}
- **joint** actions {(N,N,N), (N,N,W),...,(E,E,E)}
- transitions probability of failing to move, prey moves
- rewards reward for capturing jointly

Multiple Agents & Partial Observability

Dec-POMDP [Bernstein et al. '02]

→ MPOMDP (multiagent POMDP)

- requires broadcasting observations!
- instantaneous, cost-free, noise-free communication → optimal [Pynadath and Tambe 2002]
- Without such communication: no easy reduction.

Acting Based On Local Observations

- Acting on global information can be impractical:
 - communication not possible
 - significant cost (e.g battery power)
 - not instantaneous or noise free
 - scales poorly with number of agents!

14

Formal Model

A Dec-POMDP

- $\bullet \langle S, A, P_T, O, P_O, R, h \rangle$
- n agents
- S set of states
- A set of **joint** actions
- P_{T} transition function
- O set of **joint** observations
- P_0 observation function
- R reward function
- h horizon (finite)

$$a = \langle a_1, a_2, \dots, a_n \rangle$$

$$o = \langle o_1, o_2, ..., o_n \rangle$$

Running Example

2 generals problem

Running Example

```
S - \{ s_L, s_S \}

A_i - \{ (O)bserve, (A)ttack \}

O_i - \{ (L)arge, (S)mall \}
```

Transitions

- Both Observe → no state change
- At least 1 Attack → reset (50% probability s₁, s₅)

Observations

- Probability of correct observation: 0.85
- E.g., $P(\langle L, L \rangle \mid s_1) = 0.85 * 0.85 = 0.7225$

Rewards

- 1 general attacks → he loses the battle:
- Both generals Observe → small cost:
- Both Attack → depends on state:

$$R(*,) = -10$$

$$R(*, <0, 0>) = -1$$

$$R(s_1,) = -20$$

$$R(s_{s'} < A, A >) = +5$$

large army

Off-line / On-line phases

off-line planning, on-line execution is decentralized

(Smart generals make a plan in advance!)

Goal of Planning

Find an **optimal** joint policy

$$\pi^* = \langle \pi_1, \pi_2 \rangle \qquad \pi_i : \vec{O}_i \rightarrow A_i$$

Value: expected sum of rewards:

$$V(\pi) = \mathbf{E}\left[\sum_{t=0}^{h-1} R(s,a) \mid \pi,b^{0}\right]$$

No compact representation...

The problem is **NEXP-complete** [Bernstein et al. 2002]

► Also for ε-approximate solution! [Rabinovich et al. 2003]

Should we give up on optimality?

- but we care about these problems...
- complexity: worst case
 - may be able to optimally solve important problems
- optimal methods can provide insight in problems
- serve as inspiration for approximate methods
- need to benchmark: no usable upper bounds

Advances in Exact Planning Methods

- Heuristic search + limitations
- Interpret search-tree nodes as 'Bayesian Games'
- Incremental Clustering
- Incremental Expansion
- Sufficient plan-time statistics

Incrementally construct all (joint) policies

'forward in time'
1 joint policy

Incrementally construct all (joint) policies

'forward in time'

1 partial joint policy

Start with unspecified policy

Incrementally construct all (joint) policies

'forward in time'
1 partial joint policy

Incrementally construct all (joint) policies

'forward in time'
1 partial joint policy

Incrementally construct all (joint) policies

1 **complete** joint policy (full-length)

Creating ALL joint policies → tree structure!

Root node: unspecified joint policy

Creating ALL joint policies → tree structure!

Creating ALL joint policies → tree structure!

Creating ALL joint policies → tree structure!

Creating ALL joint policies → tree structure!

Creating ALL joint policies → tree structure!

- too big to create completely...
- Idea: use heuristics
 - avoid going down non-promising branches!

Apply A* → Multiagent A* [Szer et al. 2005]

• Use heuristics F(n) = G(n) + H(n)

- G(n) actual reward of reaching n
 - a node at depth t specifies ϕ^t (i.e., actions for first t stages)
 - \rightarrow can compute V(ϕ^t) over stages 0...t-1
- H(n) should overestimate!
 - E.g., pretend that it is an MDP
 - compute

$$H(n) = H(\varphi^t) = \sum_{s} P(s|\varphi^t, b^0) \hat{V}_{MDP}(s)$$

Heuristics

- QPOMDP: Solve 'underlying POMDP'
 - corresponds to immediate communication

$$H(\varphi^{t}) = \sum_{\vec{\theta}^{t}} P(\vec{\theta}^{t}|\varphi^{t},b^{0}) \hat{V}_{POMDP}(b^{\vec{\theta}^{t}})$$

- QBG corresponds to 1-step delayed communication
- Hierarchy of upper bounds [Oliehoek et al. 2008]

$$Q^* \leq \hat{Q}_{kBG} \leq \hat{Q}_{BG} \leq \hat{Q}_{POMDP} \leq \hat{Q}_{MDP}$$

MAA* Limitations

- Number of children grows doubly exponentially with nodes depth
 - For a node last stage, number of children: $O(|A_*|^{n|O_*|^{h-1}})$
 - Total number of joint policies: $O(|A_*|^{(n|O_*|^h-1)/(|O_*|-1)})$

- → MAA* can only solve 1 horizon longer than brute force search... [Seuken & Zilberstein '08]
- We introduce methods to fix this

Collaborative Bayesian Games

agents, actions

■ types $\theta_i \leftrightarrow$ histories

probabilities: P(θ)

payoffs: Q(θ,a)

MAA* via Bayesian Games

- Each node \leftrightarrow a ϕ^t
- decision problem for stage t

→	$\vec{\theta}_2^{t=0}$	()		
$\vec{\theta_1}^{t=0}$		a_2	\bar{a}_2	
	a_1	+2.75	-4.1	
()	\bar{a}_1	-0.9	+0.3	

	$\vec{\theta}_2^{t=1}$	(a_2,o_2)		(a_2)		
$\vec{\theta}_1^{t=1}$		a_2	\bar{a}_2	a_2	\bar{a}_2	
(a. a.)	a_1	-0.3	+0.6	-0.6	+4.0	
(a_1,o_1)	\bar{a}_1	-0.6	+2.0	-1.3	+3.6	
(a. ō.)	a_1	+3.1	+4.4	-1.9	+1.0	
(a_1,\bar{o}_1)	\bar{a}_1	+1.1	-2.9	+2.0	-0.4	
(=, 0,)	a_1	-0.4	-0.9	-0.5	-1.0	
(\bar{a}_1,o_1)	\bar{a}_1	-0.9	-4.5	-1.0	+3.5	
(\bar{a}_1,\bar{o}_1)	•••					

MAA* via Bayesian Games – 2

MAA* perspective

- node $\leftrightarrow \phi^t$
- joint decision rule δ maps OHs to actions
- Expansion: appending all nextstage decision rules: $\phi^{t+1}=(\phi^t,\delta^t)$

BG perspective

- node ↔ a BG
- joint BG policy β
 maps 'types' to actions
- Expansion: enumeration of all joint BG policies $\phi^{t+1}=(\phi^t,\beta^t)$

direct correspondence: $\delta \leftrightarrow \beta$

MAA* via Bayesian Games – 2

MAA* perspe What is the point?

- ► Generalized MAA* [Oliehoek & Vlassis '07]
- ► Unified perspective of MAA* and 'BAGA' approximation [Emery-Montemerlo et al. '04]
- ► No direct improvements...

node ↔ φ^t

- joint decisi maps OHs
- Expansion: stage decis

However...

- ► BGs provide abstraction layer → a BG
- ► Facilitated two improvements that lead to state-of-the-art performance [Oliehoek et al. '13]
 - Clustering of histories
 - Incremental expansion

ns tion of all

The Decentralized Tiger Problem

Two agents in a hallway

- States: tiger left (s_i) or right (s_i)
- Actions: listen, open left, open right

- Observations: hear left (HL), hear right (HR)
 - <Listen,Listen>
 - 85% prob. of getting right obs.
 - e.g. P(<HL,HL> | <Li,Li>, S_|) = 0.85*0.85 = 0.7225
 - otherwise: uniform random
- Reward: get the reward, acting jointly is better

Lossless Clustering

 Two types (=action-observation histories) in a BG are probabilistically equivalent iff

$$P(\vec{\theta}_{-i}|\vec{\theta}_{i,a}) = P(\vec{\theta}_{-i}|\vec{\theta}_{i,b})$$

$$P(s|\vec{\theta}_{-i},\vec{\theta}_{i,a}) = P(s|\vec{\theta}_{-i},\vec{\theta}_{i,b})$$

	$ec{o}_2^{2}$					
$ec{o}_1^2$	$(o_{ m HL},\!o_{ m HL})$	$(o_{ m HL}, o_{ m HR})$	$(o_{ m HR}, o_{ m HL})$	$(o_{ m HR}, o_{ m HR})$		
$(o_{ m HL}, o_{ m HL})$	0.261	0.047	0.047	0.016		
$(o_{ m HL},\!o_{ m HR})$	0.047	0.016	0.016	0.047		
$(o_{ m HR}, o_{ m HL})$	0.047	0.016	0.016	0.047		
$(o_{ m HR}, o_{ m HR})$	0.016	0.047	0.047	0.261		

(a) The joint type probabilities.

	$ec{o}_2^{2}$					
$ec{o}_1^2$	$(o_{ m HL},\!o_{ m HL})$	$(o_{ m HL}, o_{ m HR})$	$(o_{ m HR},\!o_{ m HL})$	$(o_{ m HR}, o_{ m HR})$		
$(o_{ m HL}, o_{ m HL})$	0.999	0.970	0.970	0.5		
$(o_{ m HL},\!o_{ m HR})$	0.970	0.5	0.5	0.030		
$(o_{ m HR}, o_{ m HL})$	0.970	0.5	0.5	0.030		
$(o_{ m HR},\!o_{ m HR})$	0.5	0.030	0.030	0.001		

⁽b) The induced joint beliefs. Listed is the probability $\Pr(s_l|\vec{\theta}^2, b^0)$ of the tiger being behind the left door.

Lossless Clustering

 Two types (=action-observation histories) in a BG are probabilistically equivalent iff

(a) The joint type probabilities.

		$ec{o}_2^{2}$						
$ec{o}_1^2$	$(o_{ m HL}, o_{ m HL})$	$(o_{ m HL}, o_{ m HR})$	$(o_{ m HR},\!o_{ m HL})$	$(o_{ m HR}, o_{ m HR})$				
$(o_{ m HL}, o_{ m HL})$	0.999	0.970	0.970	0.5				
$(o_{\mathrm{HL}}, o_{\mathrm{HR}})$	0.970	0.5	0.5	0.030				
$(o_{ m HR}, o_{ m HL})$	0.970	0.5	0.5	0.030				
$(o_{ m HR}, o_{ m HR})$	0.5	0.030	0.030	0.001				

(b) The induced joint beliefs. Listed is the probability $\Pr(s_l|\vec{\theta}^2, b^0)$ of the tiger being behind the left door.

Lossless Clustering

 Two types (=action-observation histories) in a BG are probabilistically equivalent iff

$$P(\vec{\theta}_{-i}|\vec{\theta}_{i,a}) = P(\vec{\theta}_{-i}|\vec{\theta}_{i,b})$$

$$P(\vec{\theta}_{-i}|\vec{\theta}_{i,a}) = P(\vec{\theta}_{-i}|\vec{\theta}_{i,b})$$

 $P(s|\vec{\theta}_{-i}, \vec{\theta}_{i,a}) = P(s|\vec{\theta}_{-i}, \vec{\theta}_{i,b})$

Clustering is lossless

restricting the policy space to clustered policies does not sacrifice optimality

- ► histories are bestresponse equivalent
- ▶if criterion holds → same 'multiagent belief' b_i(s,q_i)

		O_2^{\sim}						
)	$ec{o}_1^2$	$(o_{ m HL},\!o_{ m HL})$	$(o_{ m HL}, o_{ m HR})$	$(o_{ m HR}, o_{ m HL})$	$(o_{ m HR}, o_{ m HR})$			
	$(o_{ m HL}, o_{ m HL})$	0.261	0.047	0.047	0.016			
	$(o_{ m HL}, o_{ m HR})$	0.047	0.016	0.016	0.047			
	$(o_{ m HR}, o_{ m HL})$	0.047	0.016	0.016	0.047			
	$(o_{ m HR}, o_{ m HR})$	0.016	0.047	0.047	0.261			

(a) The joint type probabilities.

		$ec{o}_2^{2}$					
$ec{o}_1^2$	$(o_{ m HL}, o_{ m HL})$	$(o_{ m HL}, o_{ m HR})$	$(o_{ m HR},\!o_{ m HL})$	$(o_{ m HR}, o_{ m HR})$			
$(o_{ m HL}, o_{ m HL})$	0.999	0.970	0.970	0.5			
$(o_{ m HL}, o_{ m HR})$	0.970	0.5	0.5	0.030			
$(o_{\mathrm{HR}}, o_{\mathrm{HL}})$	0.970	0.5	0.5	0.030			
$(o_{ m HR}, o_{ m HR})$	0.5	0.030	0.030	0.001			

(b) The induced joint beliefs. Listed is the probability $\Pr(s_l|\vec{\theta}^2, b^0)$ of the tiger being behind the left door.

Incremental Clustering

- No need to cluster from scratch
- Probabilistic equivalence 'extends forwards'
 - identical extensions of two PE histories are also PE
 - → can bootstrap from CBG of the previous stage
 - 'Incremental clustering'

- Key idea: nodes have many children, but only few are useful.
 - i.e., only few will be selected for further expansion
 - others will have too low heuristic value

- if we can generate the nodes in decreasing heuristic order
 - → can avoid expansion of redundant nodes

Open list a – 7

Open list a – 7

Open list b – 6

Open list b – 6 a – 6

Incremental Expansion: How?

• How do we generate the next-best child?

- Node ↔ BG, so...
 - find the solutions of the BG
 - in decreasing order of value
 - i.e., 'incremental BG solver'
 - Modification of BaGaBaB [Oliehoek et al. 2010]
 - stop searching when next solution found
 - save search tree for next time visited.
 - Nested A*!

Results

GMAA*-ICE can solve higher horizons than listed

incremental expansion complements incr. clustering

	problem primitives				
	n	$ \mathcal{S} $	$ \mathcal{A}_i $	$ \mathcal{O}_i $	
Dec-Tiger	2	2	3	2	
BroadcastChannel	2	4	2	2	
GRIDSMALL	2	16	5	2	
Cooperative Box Pushing	2	100	4	5	
RECYCLING ROBOTS	2	4	3	2	
Hotel 1	2	16	3	4	
FIREFIGHTING	2	432	3	2	

'-' memory limit violations '*' time limit overruns May 14, 20'#' heuristic bottleneck

h	MILP	DP-LPC	DP-IPG	GN	IAA — G),,,,
76	WIILI	DI -LI O	DI II G	IC	ICE	heur
					ICE	
			solvable to h		4.0.01	4.0.01
2	0.38	≤ 0.01	0.09	≤ 0.01	≤ 0.01	≤ 0.01
3	1.83	0.50	56.66 *		≤ 0.01	≤ 0.01
4	34.06	*	Ψ.	≤ 0.01	≤ 0.01	≤ 0.01
5	48.94			≤ 0.01	≤ 0.01	≤ 0.01
		E solvable to				
2	0.69	0.05	0.32	≤ 0.01	≤ 0.01	
3	23.99	60.73	55.46	≤ 0.01	≤ 0.01	≤ 0.01
4	*	_	2286.38	0.27	≤ 0.01	0.03
5			_	21.03	0.02	0.09
FireF	IGHTING (2 agents, 3	houses, 3 firel	evels), IC	E solvab	le to $h \gg 1000$
2	4.45	8.13	10.34		≤ 0.01	≤ 0.01
3	_	_	569.27	0.11	0.10	0.07
4			_	950.51	1.00	0.65
GRIDS	SMALL IC	E solvable t	0, h = 6			
2	6.64	11.58	$\frac{0.18}{0.18}$	0.01	≤ 0.01	≤ 0.01
3	*	_	4.09	0.10	≤ 0.01	0.42
4	-1-		77.44	1.77	≤ 0.01 ≤ 0.01	67.39
	arma Poi	роша ІСЕ «	solvable to $h =$		_ 0.01	0.1.00
2	1.18	0.05	0.30	≤ 0.01	≤ 0.01	≤ 0.01
3	*	2.79	1.07	$\leq 0.01 \\ \leq 0.01$	≤ 0.01 ≤ 0.01	$\leq 0.01 \\ \leq 0.01$
4		2136.16	42.02		$\leq 0.01 \\ \leq 0.01$	0.02
5		2130.10	1812.15	$\leq 0.01 \\ \leq 0.01$	≤ 0.01 ≤ 0.01	0.02 0.02
				≤ 0.01	≤ 0.01	0.02
	1	olvable to h				
2	1.92	6.14	0.22		≤ 0.01	0.03
3	315.16	2913.42	0.54	≤ 0.01	≤ 0.01	1.51
4	_	_	0.73		≤ 0.01	
5			1.11		≤ 0.01	4.54
9			8.43	0.02	≤ 0.01	20.26
10			17.40	#	#	
15			283.76			
Соор	erative E	Box Pushin	$G(Q_{POMDP}),$	ICE solv	able to h	$=\overline{4}$
2	3.56	15.51	1.07	≤ 0.01	≤ 0.01	≤ 0.01
3	2534.08	_	6.43	0.91	0.02	0.15
4	_		1138.61	*	328.97	0.63

Results

V^*	$T_{GMAA*}(s)$	$T_{IC}(s)$	$T_{ICE}(s)$					
RECYCLING ROBOTS								
10.660125	≤ 0.01	≤ 0.01	≤ 0.01					
13.380000	713.41	≤ 0.01	≤ 0.01					
16.486000	_	≤ 0.01	≤ 0.01					
19.554200		≤ 0.01	≤ 0.01					
31.863889		≤ 0.01	≤ 0.01					
47.248521		≤ 0.01	≤ 0.01					
62.633136		≤ 0.01	≤ 0.01					
93.402367		0.08	0.05					
124.171598		0.42	0.25					
154.940828		2.02	1.27					
216.479290		_	28.66					
		_	_					
	$10.660125 \\ 13.380000 \\ 16.486000 \\ 19.554200 \\ 31.863889 \\ 47.248521 \\ 62.633136 \\ 93.402367 \\ 124.171598 \\ 154.940828 \\ 216.479290$	$\begin{array}{c cccc} 10.660125 & \leq 0.01 \\ 13.380000 & 713.41 \\ 16.486000 & - \\ 19.554200 & & \\ 31.863889 & & \\ 47.248521 & & \\ 62.633136 & & \\ 93.402367 & & \\ 124.171598 & & \\ 154.940828 & & \\ 216.479290 & & & \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					

BROADCASTCHANNEL

4	3.890000	≤ 0.01	≤ 0.01	≤ 0.01
5	4.790000	1.27	≤ 0.01	≤ 0.01
6	5.690000	_	≤ 0.01	≤ 0.01
7	6.590000		≤ 0.01	≤ 0.01
10	9.290000		≤ 0.01	≤ 0.01
25	22.881523		≤ 0.01	≤ 0.01
50	45.501604		≤ 0.01	≤ 0.01
100	90.760423		≤ 0.01	≤ 0.01
250	226.500545		0.06	0.07
500	452.738119		0.81	0.94
700	633.724279		0.52	0.63
800			_	_
900	814.709393		9.57	11.11
1000			_	_

Cases that compress well
May 14, 2013 * excluding heuristic

Sufficient Plan-Time Statistics [Oliehoek 2013]

- Optimal decision rule depends on past joint policy φ^t → search tree
- In fact possible to give an expression for the optimal value function based on φ^t [Oliehoek et al. 2008]
- Recent insight: reformulation based on a sufficient statistic
 - compact formulation of Q*
 - search tree → DAG ("suff. stat-based pruning")

2 parts:

Value propagation:

Value optimization:

2 parts:

(past Pol, AOH, decis. rule)

expected reward

- Value propagation:

• last stage t=h-1
$$Q^*(\varphi^{h-1}, \vec{\theta}^{h-1}, \delta^{h-1}) = R(\vec{\theta}^{h-1}, \delta^{h-1}(\vec{\theta}^{h-1}))$$

$$\delta^{t}(\vec{\theta}^{t}) = \langle \delta_{1}^{t}(\vec{\theta}_{1}^{t}), ..., \delta_{n}^{t}(\vec{\theta}_{n}^{t}) \rangle$$

Value optimization:

2 parts:

- Value propagation:
 - last stage t=h-1 $Q^*(\varphi^{h-1}, \vec{\theta}^{h-1}, \delta^{h-1}) = R(\vec{\theta}^{h-1}, \delta^{h-1}(\vec{\theta}^{h-1}))$
 - t<h-1

$$Q^{*}(\varphi^{t}, \vec{\theta}^{t}, \delta^{t}) = R(\vec{\theta}^{t}, \delta^{t}(\vec{\theta}^{t})) + \sum_{o} P(o|\vec{\theta}^{t}, \delta^{t}(\vec{\theta}^{t}))Q^{*}(\varphi^{t+1}, \vec{\theta}^{t+1}, \delta^{*t+1})$$

$$\varphi^{t+1} = (\varphi^{t}, \delta^{t})$$

Value optimization:

2 parts:

- Value propagation:
 - last stage t=h-1 $Q^*(\varphi^{h-1}, \vec{\theta}^{h-1}, \delta^{h-1}) = R(\vec{\theta}^{h-1}, \delta^{h-1}(\vec{\theta}^{h-1}))$
 - t<h-1

$$Q^{*}(\varphi^{t},\vec{\theta}^{t},\delta^{t}) = R(\vec{\theta}^{t},\delta^{t}(\vec{\theta}^{t})) + \sum_{o} P(o|\vec{\theta}^{t},\delta^{t}(\vec{\theta}^{t}))Q^{*}(\varphi^{t+1},\vec{\theta}^{t+1},\delta^{*t+1})$$

$$\varphi^{t+1} = (\varphi^{t},\delta^{t})$$

Value optimization:

$$\delta^{*t+1} = arg \, max_{\delta^{t+1}} \sum_{\vec{\theta}^{t+1}} P(\vec{\theta}^{t+1} | b^0, \phi^{t+1}) Q^*(\phi^{t+1}, \vec{\theta}^{t+1}, \delta^{t+1})$$

- Optima ve can interpret it as a 'plan-time' MDP

 ► state: 's
 - ►state: φ
 - ►actions: δ

$$V(\varphi^t) = max_{\delta^t} Q^*(\varphi^t, \delta^t)$$

• Value propagatio
$$Q^*(\varphi^t, \delta^t) = \sum_{\vec{\theta}^t} P(\vec{\theta}^t | b^0, \varphi^t) Q^*(\varphi^t, \vec{\theta}^t, \delta^t)$$

- last stage t=h-1 $Q^*(\phi^{h-1}, 0^{h-1}, \delta^{h-1}) R(0^{h-1}, \delta^{h-1})$
- t<h-1

2 parts:

$$Q^{*}(\varphi^{t}, \vec{\theta}^{t}, \delta^{t}) = R(\vec{\theta}^{t}, \delta^{t}(\vec{\theta}^{t})) + \sum_{o} P(o|\vec{\theta}^{t}, \delta^{t}(\vec{\theta}^{t}))Q^{*}(\varphi^{t+1}, \vec{\theta}^{t+1}, \delta^{*t+1})$$

$$\varphi^{t+1} = (\varphi^{t}, \delta^{t})$$

Value optimization:

$$\delta^{*t+1} = arg \, max_{\delta^{t+1}} \sum_{\vec{\theta}^{t+1}} P(\vec{\theta}^{t+1} | b^0, \phi^{t+1}) Q^*(\phi^{t+1}, \vec{\theta}^{t+1}, \delta^{t+1})$$

2 parts:

- Value propagation:
 - last stage t=h-1 $Q^*(\varphi^{h-1}, \vec{\theta}^{h-1}, \delta^{h-1}) = R(\vec{\theta}^{h-1}, \delta^{h-1}(\vec{\theta}^{h-1}))$
 - t<h-1

$$Q^{*}(\varphi^{t}, \vec{\theta}^{t}, \delta^{t}) = R(\vec{\theta}^{t}, \delta^{t}(\vec{\theta}^{t})) + \sum_{o} P(o|\vec{\theta}^{t}, \delta^{t}(\vec{\theta}^{t})) Q^{*}(\varphi^{t+1}, \vec{\theta}^{t+1}, \delta^{*t+1})$$

$$\varphi^{t+1} = (\varphi^{t}, \delta^{t})$$

Value optimization:

$$\delta^{*t+1} = \arg\max_{\delta^{t+1}} \sum_{\vec{\theta}^{t+1}} P(\vec{\theta}^{t+1}|b^0, \varphi^{t+1}) Q^*(\varphi^{t+1}, \vec{\theta}^{t+1}, \delta^{t+1})$$

2 parts:

- Value propagation:
 - last stage t=h-1 $Q^*(\varphi^{h-1}, \vec{\theta}^{h-1}, \delta^{h-1}) = R(\vec{\theta}^{h-1}, \delta^{h-1}(\vec{\theta}^{h-1}))$
 - t<h-1

$$Q^{*}(\varphi^{t}, \vec{\theta}^{t}, \delta^{t}) = R(\vec{\theta}^{t}, \delta^{t}(\vec{\theta}^{t})) + \sum_{o} P(o|\vec{\theta}^{t}, \delta^{t}(\vec{\theta}^{t}))Q^{*}(\varphi^{t+1}, \vec{\theta}^{t+1}, \delta^{t+1})$$

$$\varphi^{t+1} = (\varphi^{t}, \delta^{t})$$

Value optimization:

$$\delta^{*t+1} = \arg\max_{\delta^{t+1}} \sum_{\vec{\theta}^{t+1}} P(\vec{\theta}^{t+1}|b^{0}, \phi^{t+1}) Q^{*}(\phi^{t+1}, \vec{\theta}^{t+1}, \delta^{t+1})$$

2 parts:

- Value propagation:
 - last stage t=h-1 $Q^*(\varphi^{h-1}, \vec{\theta}^{h-1}, \delta^{h-1}) = R(\vec{\theta}^{h-1}, \delta^{h-1}(\vec{\theta}^{h-1}))$
 - t<h-1</p>

$$Q^{*}(\varphi^{t},\vec{\theta}^{t}),\delta^{t}) = R(\vec{\theta}^{t},\delta^{t}(\vec{\theta}^{t})) + \sum_{o} P(o|\vec{\theta}^{t},\delta^{t}(\vec{\theta}^{t}))Q^{*}(\varphi^{t+1},\vec{\theta}^{t+1},\delta^{*t+1})$$

$$\varphi^{t+1} = (\varphi^{t},\delta^{t})$$

Value optimization:

$$\delta^{*t+1} = \arg\max_{\delta^{t+1}} \sum_{\vec{\theta}^{t+1}} P(\vec{\theta}^{t+1}|b^{(t+1)}) Q^{*}(\varphi^{t+1}, \vec{\theta}^{t+1}, \delta^{t+1})$$

2 parts:

- Value propag
 - last stage t
 - t<h-1</p>

But: initial dependence only through this probability term!

$$, \vec{\theta}^{t+1}, \delta^{*t+1})$$

 $,\delta^{h-1}(\vec{\theta}^{h-1}))$

$$\varphi^{t+1} = (\varphi^t, \delta^t)$$

Value optimization:

$$\delta^{*t+1} = \arg\max_{\delta^{t+1}} \sum_{\vec{\theta}^{t+1}} \left(P(\vec{\theta}^{t+1}|b^{0}, \varphi^{t+1})) Q^{*}(\varphi^{t+1}, \vec{\theta}^{t+1}, \delta^{t+1}) \right)$$

2 parts:

Value propagation:

$$Q^*(\sigma^t, \vec{\theta}^t, \delta^t) = R(\vec{\theta}^t, \delta^t(\vec{\theta}^t)) + \sum_{o} P(o|\vec{\theta}^t, \delta^t(\vec{\theta}^t)) Q^*(\sigma^{t+1}, \vec{\theta}^{t+1}, \delta^{*t+1})$$

Value optimization:

$$\delta^{*t+1} = arg \, max_{\delta^{t+1}} \sum_{\vec{\theta}^{t+1}} \sigma^{t+1}(\vec{\theta}^{t+1}) Q^*(\sigma^{t+1}, \vec{\theta}^{t+1}, \delta^{t+1})$$

2 parts:

Value propagation:

$$Q^*(\sigma^t, \vec{\theta}^t, \delta^t) = R(\vec{\theta}^t, \delta^t(\vec{\theta}^t)) + \sum_{o} P(o|\vec{\theta}^t, \delta^t(\vec{\theta}^t)) Q^*(\sigma^{t+1}, \vec{\theta}^{t+1}, \delta^{*t+1})$$

Value optimization:

$$\delta^{*t+1} = arg \, max_{\delta^{t+1}} \sum_{\vec{\theta}^{t+1}} \sigma^{t+1}(\vec{\theta}^{t+1}) Q^*(\sigma^{t+1}, \vec{\theta}^{t+1}, \delta^{t+1})$$

Limited use: every **deterministic** past joint policy induces a different σ !

2 parts:

Value propagation:

use:
$$\sigma^t(s, \vec{o}^t)$$

$$Q^*(\sigma^t, \vec{\theta}^t, \delta^t) = R(\vec{\theta}^t, \delta^t(\vec{\theta}^t)) + \sum_{o} P(o|\vec{\theta}^t, \delta^t(\vec{\theta}^t)) Q^*(\sigma^{t+1}, \vec{\theta}^{t+1}, \delta^{*t+1})$$

Value optimization:

$$\delta^{*t+1} = arg \, max_{\delta^{t+1}} \sum_{\vec{\theta}^{t+1}} \sigma^{t+1}(\vec{\theta}^{t+1}) Q^*(\sigma^{t+1}, \vec{\theta}^{t+1}, \delta^{t+1})$$

2 parts:

Value propagation:

use:
$$\sigma^t(s, \vec{o}^t)$$

$$Q^{*}(\sigma(\theta^{t}, \theta^{t}, \delta^{t}) = R(\theta^{t}, \delta^{t}(\theta^{t})) + \sum_{o} P(o(\theta^{t}, \delta^{t}(\theta^{t}))) Q^{*}(\sigma^{t+1}, \theta^{t+1}) + \sum_{o} P(o(\theta^{t}, \delta^{t}(\theta^{t})) Q^{*}(\sigma^{t+1}, \theta^{t+1}) + \sum_{o} P(o(\theta^{t}, \delta^{t}(\theta^{t}))$$

Value optimization:

$$\delta^{*t+1} = \arg\max_{\delta^{t+1}} \sum_{\vec{\theta}^{t+1}} \sigma^{t+1} (\vec{\theta}^{t+1}) Q^* (\sigma^{t+1}, \vec{\theta}^{t+1}) \delta^{t+1})$$

- ► substitute AOH → OH
- ▶but then \rightarrow also adapt R(..) and P(o | ...)

2 parts:

Value propagation:

use:
$$\sigma^t(s, \vec{o}^t)$$

$$Q^*(\sigma^t, \vec{o}^t, \delta^t) = R(\sigma^t, \vec{o}^t, \delta^t) + \sum_o P(o|\sigma^t, \vec{o}^t, \delta^t) Q^*(\sigma^{t+1}, \vec{o}^{t+1}, \delta^{t+1})$$

Value optimization:

$$\delta^{*t+1} = arg \, max_{\delta^{t+1}} \sum_{\vec{o}^{t+1}} \sigma^{t}(\vec{o}^{t+1}) Q^{*}(\sigma^{t+1}, \vec{o}^{t+1}, \delta^{t+1})$$

Results -1

Reduction in size of Q*

	t = 1		t =	t = 2		t = 3	
	$arphi_1$	σ_1	$arphi_2$	σ_2	$arphi_3$	σ_3	
tiger	9	2	729	20	4.78e6	4520	
broadcast	4	4	64	56	1.63e4	1.16e4	
recycling	9	9	729	441	4.78e6	X	
FF	9	9	729	729	4.78e6	X	
gridsmall	25	16	1.56e4	4096	6.10e9	X	
hotel1	9	1	5.90e4	4	1.7e19	_	

Table 1: Number of σ_t vs. number of φ_t .

Sufficient statistic-based pruning

Before

Sufficient statistic-based pruning

- Now
 - many φ ↔ same σ

- GMAA*-ICE with SSBP:
 - perform GMAA*-ICE, but at each node compute σ
 - if same σ but lower G-value → prune branch

Results – 2

Speed-up GMAA*-ICE due to SSBP

	nodes created at depth t						
	SSBP	1	2	3	4	5	6
tiger							
QMDP, h5	yes	1	10	615	28475	4	
	no	9	69	2319	41130	4	
QBG,h6	yes	1	2	8	18	162	1
	no	9	2	8	18	166	1
hotel1							
QMDP, h4	yes	1	4	6	3		
,	no	9	252	11178	10935		
QMDP, h5	yes	1	4	12	15	7	
no not solvable (out of 2GB mem.)							
QBG, h5	no	9	4	3	3	1	
QBG, h5				<u> </u>	3	1	

Table 2: Number of created child nodes in GMAA-ICE, when using sufficient statistic-based pruning (SSBP).

promising, but does not address the current bottleneck...

References

Most references can be found in

Frans A. Oliehoek. **Decentralized POMDPs**. In Wiering, Marco and van Otterlo, Martijn, editors, *Reinforcement Learning: State of the Art*, Adaptation, Learning, and Optimization, pp. 471–503, Springer Berlin Heidelberg, Berlin, Germany, 2012.

Other:

- Dibangoye, Amato, Buffet, & Charpillet. Optimally Solving Dec-POMDPs as Continuous-State MDPs. *IJCAI*, 2013.
- Oliehoek, Spaan, Amato, & Whiteson. Incremental Clustering and Expansion for Faster Optimal Planning in Decentralized POMDPs. JAIR, 2013.
- Oliehoek. Sufficient Plan-Time Statistics for Decentralized POMDPs. IJCAI, 2013.