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Dynamics, Decisions & Uncertainty

= Why care about formal decision making?
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Uncertainty

= Outcome Uncertainty 0 i

= Partial Observability

= Multiagent Systems: uncertainty about others

May 14, 2013



Outline

= Background: sequential decision making

= Optimal Solutions of Decentralized POMDPs [JAIR'13]
= incremental clustering
* incremental expansion
= sufficient plan-time statistics [ycar13]

= Other/current work
= Exploiting Structure [AAMAS'13]
= Multiagent RL under uncertainty [MSDM'13]
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Background: sequential decision making
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Single-Agent Decision Making

= Background: MDPs & POMDPs

« AnMDP (S,A,P;,R,h)
= § - set of states

= A - set of actions

- P.- transition function P(s'ls,a)
= R -reward function R(s,a)
= h - horizon (finite)
- APOMDP (S,A,P,,0,P,,R,h)
= O - set of observations
= P, - observation function P(ola,s")
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Example: Predator-Prey Domain

* Predator-Prey domain
= 1 agent: predator
= prey is part of environment

= Formalization:

= states

= actions

= transitions
= rewards

May 14, 2013
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(-3,4)
N,W,S,E
failing to move, prey moves
reward for capturing



Example: Predator-Prey Domain

prey

\ pre’dator
\ /
A l
Markov decision process (MDP) /
»Markovian state s... (which is observed!) /
S
»policy T maps states — actions

»Value function Q(s,a)
»Compute via value iteration / policy iteration

s,a)max,.Q(s',a’)

Q(s,a)zR(s,a)er; P(s’
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Partial Observability

= Now: partial observability

= E.g., limited range of sight

= MDP + observations

= explicit observations

= observation probabilities O

* noisy observations
(detection probability)

o="nothing'

May 14, 2013




Partial Observability

= Now: partial observability
= E.g., limited range of sight

= MDP + observations
= explicit observations Y

= observation probabilities O

* noisy observations
(detection probability)

o=(—-1,1)

May 14, 2013 10



Partial Observability

= Now: partial observability

= E.g., limited range of sight

= MDP + observations

= explicit observations

= observation probabilities

* noisy observations

(detection probability)

Can not observe the state
— Need to maintain a belief over states b(s)
— Policy maps beliefs to actions T (b) —a

May 14, 2013



= multiple agents, fully observable

Multiple Agents

- takes joint action

Can coordinate based upon the state o
- reduction to single agent: 'puppeteer’ agent

= Formalization:
states
actions
= joint actions
transitions
rewards

May 14, 2013

((3,-4), (1,1), (-2,0))

{N,W,S,E}

{(N,N,N), (N,N,W),...,(E,E,E)}

probability of failing to move, prey moves
reward for capturing jointly
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Multiple Agents &
Partial Observability

= Dec-POMDP [Bernstein et al. '02]

= Reduction possible

— MPOMDP (multiagent POMDP) @

= requires broadcasting observations!

= instantaneous, cost-free, noise-free communication — optimal
[Pynadath and Tambe 2002]

= Without such communication: no easy reduction.
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Acting Based On Local
Observations

= Acting on global information

can be impractical: /

= communication not possible

= significant cost (e.g battery power)\
= not instantaneous or noise free

= scales poorly with number of agents!

May 14, 2013 14



= A

May 14

Formal Model

Dec-POMDP
(S,A,P;,0,P,,R,h)

n agents

S - set of states

A - set of joint actions
P.- transition function

O - set of joint observations
P, - observation function

R - reward function
h - horizon (finite)

, 2013

T(s,al,a2,s")
R(s,al,a2)

P

15



Running Example

= 2 generals problem

— R
5@ rmpy) r|aTge army B
ff\f b d 7

= Q \X\,,i
4 e

>
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Running Example

S-{s,s.}
A - {(O)bserve, (A)ttack }
O.-{(L)arge, (S)mall }

Transitions
* Both Observe —» no state change
- At least 1 Attack — reset (50% probability s, s.)

Observations
 Probability of correct observation: 0.85
g SP(=LpL=N s ) = 0185520.85:=40. 7225

Rewards
» 1 general attacks = he loses the battle:  R(*,<A,0>)=-10
» Both generals Observe - small cost: R(*,<0,0>) = -1
- Both Attack —» depends on state: R(s,,<A,A>) = -20

R(S,<A,A>) = +5




Off-line / On-line phases

= off-line planning, on-line execution is decentralized

Planning Phase Execution Phase

T(s,al,a2,s")
R(s,al,a2)

s

T[:<T[1,T[2>

= (Smart generals make a plan in advance!)
May 14, 2013 18




Goal of Planning

* Find an optimal joint policy
) . (o) (2)
n=(n,m,) 7,:0,-A, L s L

() (o) ) ()
ONONONONIONONONO
= Value:
expected sum of rewards:

No compact representation...

h—1

> R(s,a) | m,b’

t=0

V(n)=E

The problem is NEXP-complete [Bernstein et al. 2002]
> Also for e-approximate solution! [Rabinovich et al. 2003]

May 14, 2013 19



Should we give up on optimality?

but we care about these problems...

complexity: worst case

= may be able to optimally solve important problems
optimal methods can provide insight in problems
= serve as inspiration for approximate methods
need to henchmark: no usable upper bounds

May 14, 2013
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Advances in Exact Planning Methods

= Heuristic search + limitations

= Interpret search-tree nodes as 'Bayesian Games'
Incremental Clustering
Incremental Expansion

= Sufficient plan-time statistics

May 14, 2013
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Heuristic Search - 1

* Incrementally construct all (joint) policies
= 'forward in time'

May 14, 2013

1 joint policy
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Heuristic Search - 1

* Incrementally construct all (joint) policies
= 'forward in time' 1 partial joint policy

Start with unspecified policy

May 14, 2013 23




Heuristic Search - 1

* Incrementally construct all (joint) policies
= 'forward in time' 1 partial joint policy

May 14, 2013 24



Heuristic Search - 1

* Incrementally construct all (joint) policies
= 'forward in time' 1 partial joint policy

May 14, 2013
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Heuristic Search - 1

* Incrementally construct all (joint) policies

= 'forward in time' 1 complete joint policy
(full-length)

May 14, 2013 26



Heuristic Search - 2

= Creating ALL joint policies — tree structure!

Root node:
unspecified joint policy

May 14, 2013 27



Heuristic Search - 2

= Creating ALL joint policies — tree structure!

May 14, 2013

Creating a child node:
assignment actions at =0
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Heuristic Search - 2

= Creating ALL joint policies — tree structure!

Node expansion:
create all children

May 14, 2013 29



Heuristic Search - 2

= Creating ALL joint policies — tree structure!

May 14, 2013 30



Heuristic Search - 2

= Creating ALL joint policies — tree structure!

Next expansion: more
children!

need to assign action to
4 OHs now: 24 =16

May 14, 2013 31



Heuristic Search - 2

= Creating ALL joint policies — tree structure!

S~
May 14, 2013

Last stage: even more!

need to assign action to
8 OHs now: 228 = 256 children
(for each node at level 2!)




Heuristic Search - 3

= too big to create completely...

Idea: use heuristics o
» avoid going down oooooooooo + + - 00000
nQn-prOmising branches!  =ssssssssssssssssssssssssssssssssannns

* Apply A* - Multiagent A* [szer et al. 2005]
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Heuristic Search -4

= Use heuristics F(n) = G(n) + H(n)

— /| / \/ \/ \
0000000000 = =

. \
- G(n) _ actual reward Of reachlng n lllllllllllllllllllllllll
= a node at depth { SpECiﬁES ([)t (i.e., actions for first t stages)
— can compute V(¢') over stages 0...t-1

= H(n) - should overestimate!
= E.g., pretend that it is an MDP
= compute

H(n ZPS|(P b) MDP()

May 14, 2013 34



Heuristics

* QPOMDP: Solve 'underlying POMDP'
= corresponds to immediate communication

-

H(qf):Z-éz P (_ét|cpt, bo) IA/POMDP<b6[)

= QBG corresponds to 1-step delayed communication
= Hierarchy of upper bounds [oliehoek et al. 2008]

* A A A A
Q SQkBGSQBGSQPOMDPSQMDP

May 14, 2013
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MAA®* Limitations

= Number of children grows doubly exponentially
with nodes depth

* For a node last stage, number of children: o(|4,I"")
= Total number of joint policies: 0|4, |- 1ro1=1)

- MAA¥* can only solve 1 horizon longer than brute
force search... [Seuken & Zilberstein '08]

= We introduce methods to fix this

May 14, 2013 36



Collaborative Bayesian Games

small large

A O A O
small A +2 -1
O
A
large o

= agents, actions
. types 6. & histories

= probabilities: P(8)
= payoffs: Q(6,a)

May 14, 2013



MAA¥ via Bayesian Games

* Each node & a ¢
= decision problem

for Stage t t=0 — Jjoint actions
——» Jjoint observations
(ay, as PY joint act.-obs. history
ol o - o
gltzo ao as
a1 +2.75 —4.1 (a1, az)
() ai —0.9 +0.3
. 031 (az,02) (az,02)
9{21 a9 a9 a9 a9
(a O) al —-0.3 +0.6 —0.6 +4.0
DR g | —06 0 420 -1.3 436
(a1,01) al +3.1 +4.4 | —1.9 +1.0
DR a1 —209
(a1,01) n




MAAZ* via Bayesian Games - 2

MAA®* perspective BG perspective

o
FO0D 00w

= node & @ = node < aBG
= joint decision rule 6 = joint BG policy B
maps OHs to actions maps 'types' to actions

= Expansion: appending all next- = Expansion: enumeration of all
stage decision rules: @"'=(¢",6") joint BG policies @*'=(¢*, ")

direct correspondence: é & 3
May 14, 2013 39




MAAZ* via Bayesian Games - 2

MAA¥* perspe

0C

= node & @t
= joint decisi
maps OHs

= Expansion:
stage decis

What is the point?

»Generalized MAA* [Oliehoek & Vlassis '07]
»Unified perspective of MAA* and 'BAGA'
approximation [Emery-Montemerlo et al. '04]

»No direct improvements...

However...

» BGs provide abstraction layer

» Facilitated two improvements that lead to
state-of-the-art performance [Oliehoek et al. '13]

* Clustering of histories
* Incremental expansion

ns
tion of all

=((Pt' Bt)

May 14, 2013



The Decentralized Tiger Problem

= Two agents in a hallway

= States: tiger left (s) or right (s,)

= Actions: listen, open left, open right
= QObservations: hear left (HL), hear right (HR)

= <Listen,Listen>
= 85% prob. of getting right obs.
= e.g. P(<HLHL> | <Li,Li>, S)=0.85*0.85 = 0.7225

= otherwise: uniform random
= Reward: get the reward, acting jointly is better

May 14, 2013
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Lossless Clustering

= Two types (=action-observation histories) in a BG
are probabilistically equivalent iff

P(e—i|6i,a>:P<6—i|6i,b> Y
- - - - 02
P (S|6—i’ 61’ a): P (S|6—i , 61, b) 012 (OHL:OHL) (OHL:OHR,) (OHRJOHL) (OHR:OHR)
’ ’ (OHL:OHL) 0.261 0.047 0.047 0.016
/‘ (OHR,OHL) 0.047 0.016 0.016 0.047
Note: " (a) The joint type probabilities.
. t
b 522
512 (OHL:OHL) (OHL:OHR) (OHR,aOHL) (OHR,:OHR,)
are implicit (onL,0mL) 0.999 0.970 0.970 0.5
(OHL,OHR,) 0.970 0.5 0.5 0.030
(OHR,OHL) 0.970 0.5 0.5 0.030
(OHR,OHR) 0.9 0.030 0.030 0.001

(b) The induced joint beliefs. Listed is the probability Pr(s;|62,b") of
the tiger being behind the left door.

May 14, 2013 42



Lossless Clustering

= Two types (=action-observation histories) in a BG
are probabilistically equivalent iff

P(_é—i|_éi,a>:P<_é—i|_éi,b>

P <S|6—i’ 61’ a): P (S|6—i , 61, b) 512 (OHL:OHL) (OHL:OHR) (OHR,,OHL) (OHR,:OHR,)
’ ’ (OHL,OHL) 0.261 0.047 0.047 0.016
(OmL,0HR ) 0.047 0.016 0.016 0.047
(oum,0u) | 0.047 0.016 0.016 0.047
(OHR,OHR) 0.016 0.047 0.047 0.261
(a) The joint type probabilities.
03
512 (ouL,0un) (our.onr) (Our,onn) (Our,our)
(opr.ouL) 0.999 0.970 0.970 0.5
(omw,onr) | 0.970 0.5 0.5 0.030
(Oug.0ur) 0.970 0.0 0.0 0.030
(0uR,0HR) 0.5 0.030 0.030 0.001

(b) The induced joint beliefs. Listed is the probability Pr(s;|62,b") of
the tiger being behind the left door.

May 14, 2013 43



Lossless Clustering

= Two types (=action-observation histories) in a BG
are probabilistically equivalent iff

P(_é—i|_éi,a>:P<_é—i|_éi,b>

P<S|6—i’_é )ZP(S|6—i’éi,b)

1,d

=2

Clustering is lossless

restricting the policy space to
clustered policies does not
sacrifice optimality

» histories are best-

response equivalent
»if criterion holds —» same
'multiagent belief' b(s,q.)

May 14, 2013

03
512 (OHL:OHL) (OHL:OHR) (OHR,,OHL) (OHR,:OHR,)
(OHL,OHL) 0.261 0.047 0.047 0.016
(OmL,0HR ) 0.047 0.016 0.016 0.047
(oum,0u) | 0.047 0.016 0.016 0.047
(OHR,OHR) 0.016 0.047 0.047 0.261
(a) The joint type probabilities.
03
512 (ouL,0un) (our.onr) (Our,onn) (Our,our)
(opr.ouL) 0.999 0.970 0.970 0.5
(omw,onr) | 0.970 0.5 0.5 0.030
(Oug.0ur) 0.970 0.0 0.2 0.030 |
(0uR,0HR) 0.5 0.030 0.030 0.001

(b) The induced joint beliefs. Listed is the probability Pr(s;|62,b") of

the tiger being behind the left door.

44




Incremental Clustering

= No need to cluster from scratch

= Probabilistic equivalence
'extends forwards'

* jdentical extensions of two PE
histories are also PE

— can bootstrap from CBG of the
previous stage

= 'Incremental clustering'

May 14, 2013
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Incremental Expansion

= Key idea: nodes have many children, but only few are useful.
= j.e., only few will be selected for further expansion
= others will have too low heuristic value

= if we can generate the nodes in decreasing heuristic order
— can avoid expansion of redundant nodes

May 14, 2013 46
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Incremental Expansion

Open list
a-7/

47



Incremental Expansion

- N\
. /
Select for expansion — \ \
\ /
~ - 7
Open list
a-7/

May 14, 2013
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Incremental Expansion

s
7
\

1) best child has F=6 /

May 14, 2013

2

Open list
b-6

49



1) best child has F=6 /

May 14, 2013

Incremental Expansion

\

2

7 2) reinsert parent as
place holder (with F=6)

Open list
b-6
a-6

50



Incremental Expansion

Select for expansion -

Open list
b-6
a-6

May 14, 2013
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Incremental Expansion

—_-~

/ ~
a, F=6 )
/"
\ b, F=4

Open list
a-6
c-4
b-4

52



Incremental Expansion

Open list
d-5.5
a->55
c-4
b-4

May 14, 2013



Incremental Expansion

Open list
d-5.5
a->55
c-4
b-4

May 14, 2013



Incremental Expansion: How?

= How do we generate the next-best child? _, -~

y

\ a, F=6

~

= Node & BG, so...
= find the solutions of the BG @
= in decreasing order of value

= j.e., 'incremental BG solver'

= Modification of BaGaBaB [oliehoek et al. 2010]
= stop searching when next solution found
= save search tree for next time visited.

= Nested A*!

May 14, 2013
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Results

GMAA=*-ICE can solve
higher horizons than listed

incremental expansion e

complements incr. clustering

problem primitives

n |S| Al O]

DeEc-TiGER 2 2 3 2
BROADCASTCHANNEL 2 4 2 2
GRIDSMALL 2 16 ) 2

COOPERATIVE Box PusHING 2 100 4 5
RECYcLING ROoBOTS 2 4 3 2

Horen 1 2 16 3 4

FIREFIGHTING 2 432 3 2

‘—’ memory limit violations
x" time limit overruns
May 14, 20 # heuristic bottleneck

h  MILP DP-LPC DP-IPG GMAA — Qpq

IC ICE heur
BROADCASTCHANNEL, ICE solvable to h = 900
2 0.38 < 0.01 0.09 <001 <0.01 <0.01
3 1.83 0.50 56.66 <0.01 <001 <<£0.01
4 34.06 * * <0.01 <0.01 <0.01
__________ 5 48.94 <0.01 <001 <<£0.01
DEec-T1GER!, ICE solvable to h = 6
2 0.69 0.05 0.32 <0.01 <001 <£0.01
3 23.99 60.73 55.46 <001 <0.01 <0.01
4 * — 2286.38 0.27 <0.01 0.03
D e SR 2103 0.02 | 0.09
" FIREFIGHTING (2 agents, 3 houses, 3 firelevels), ICE solvable to h > 1000
2 4.45 8.13 10.34 <0.01 <001 <<£0.01
3 — — 569.27 0.11 0.10 0.07
4 — 950.51 1.00 0.65
GRIDSMALL] ICE solvable to h = 6
2 6.64 11.58 0.18 0.01 <001 <0.01
3 * — 4.09 0.10 <0.01 0.42
4 77.44 1.77 <0.01 67.39
ReEcycLING RoBOTS, | ICE solvable to A = 70
2 1.18 0.05 0.30 <0.01 <001 <£0.01
3 * 2.79 1.07 <001 <0.01 <0.01
4 2136.16 42.02 <0.01 <0.01 0.02
5 — 1812.15 <001 <0.01 0.02
HotEeL 1] ICE solvable to h = 9
2 1.92 6.14 0.22 <001 <0.01 0.03
3 315.16 2913.42 0.54 <0.01 <0.01 1.51
4 — - 0.73 <001 <0.01 3.74
5 1.11 <0.01 <0.01 4.54
9 8.43 0.02 < 0.01 20.26
10 17.40 - -
15 283.76
COOPERATIVE BOX PUSHING (Qpoumpp)s ICE solvable to h = 4
2 3.56 15.51 1.07 <001 <0.01 <0.01
3 2534.08 — 6.43 0.91 0.02 0.15
4 — 1138.61 * 328.97| 0.63




Results

‘ h ‘ Ve | Tgaraa«(s) | Trc(s) | Trcw(s) ‘
RECYCLING ROBOTS

3 10.660125 <0.01|<0.01| <0.01

4 13.380000 713.41 1 <0.01| <0.01

5) 16.486000 —1<0.01| <0.01

6| 19.554200 <0.01 <0.01
10| 31.863889 <0.01| <0.01
15| 47.248521 <0.01| <0.01
20| 62.633136 <0.01| <0.01
30| 93.402367 0.08 0.05
401124.171598 0.42 0.25
50 |154.940828 2.02 1.27
701216.479290 — 28.66
80 — —

BROADCASTCHANNEL

4 3.890000 <0.01|<0.01| <0.01

5) 4.790000 1.27(<0.01| <0.01

6 5.690000 —1<0.01] <€0.01

7 6.590000 <0.01| <0.01
10 9.290000 <0.01| <0.01
25| 22.881523 <0.01| <0.01
50| 45.501604 <0.01| <0.01
100 90.760423 <0.01 <0.01
2501 226.500545 0.06 0.07
500 | 452.738119 0.81 0.94
700 633.724279 0.52 0.63
300 — —
900 | 814.709393 9.57 11.11
1000 — —

Cases that compress well
* excluding heuristic

May 14, 2013

#agents

GMAA*-ICE
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Sufficient Plan-Time Statistics wienoexz0m

= Optimal decision rule
depends on past joint policy ' — search tree

= In fact possible to give an expression for the
optimal value function based on @' olienoek et al. 2008]

= Recent insight:
reformulation based on a sufficient statistic

= compact formulation of Q*
= search tree -» DAG (“suff. stat-based pruning”)

May 14, 2013 58



Optimal Value Functions

2 parts:
= Value propagation:

= Value optimization:

May 14, 2013
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Optimal Value Functions

2 parts: (past Pol, AOH, decis. rule)

expected reward

= Value propagation:
= last stage t=h-1  Q"(¢"",8" ", 8" ")=R(6"",8" (8" "))

= Value optimization:

May 14, 2013 60



Optimal Value Functions

2 parts:

= Value propagation:
- laststaget=h-1 Q" (¢" ",68" ", 8" )=R(8" ", 8" (")
= t<h-1

-

Q*<(pt,6t,6> (6 6 +ZP O|6 6( ))Q*( t~|—1\ t~|—1,6*t+1>
(pt+1—<(pt,6t>
= Value optimization:

May 14, 2013 61



Optimal Value Functions

2 parts:

= Value propagation:
= laststaget=h-1 Q" (¢"",0"",8" ")=R(6"",8" (6" "))
= t<h-1

-

Q*<(pt,6t,6> (6 6 +ZP O|6 6( ))Q*( t+1\ t+1,6*t+1>
¢ =(¢",d")
= Value optimization:

6*t+1:arg maxémzém P(‘ét+1|b0, CPHl)Q* (cpt+1,_6't+1, 6t~|—1)

(need to do 'stage-wise' maximization)
May 14, 2013



QvsV?

Optime

— we can interpret it as a 'plan-time' MDP

>state: @
) parts: »actions: § V(cpt):maxét Q (¢,8")
= Value propagatio Z P (&%, ") Q" (o', 8,0
= |ast stage t=h-1 QL0 =R (6}

" t<h-1

=t

Q*(cpt,G,f)) (6 6 _I_ZP O|6 6( ))Q*( t+1\ t+1,6*t+1>
¢ =(¢',d")
= Value optimization:

6>x<t+1:arg maxétﬂzém P(‘ét+1|b0, CPHl)Q* (cpt+1,_ét+1, 6t+1)

(need to do 'stage-wise' maximization)
May 14, 2013 63



Optimal Value Functions

2 parts:

= Value propagation:
= laststaget=h-1 Q" (¢"",0"",8" ")=R(6"",8" (6" "))
= t<h-1

Q' ('8, 8)=R(, /() + 2. P(olf', (8 >>Q*<cpt+1§6t+
¢

1: (pt,6t>
= Value optimization:

arg maxémzém P(‘ét+1|b0, Cle)Q* (cpt+1,_ét+1, 6t+1)

(need to do 'stage-wise' maximization)
May 14, 2013



Optimal Value Functions

2 parts:

= Value propagation:
= laststaget=h-1 Q" (¢"",0"",8" ")=R(6"",8" (6" "))
= t<h-1

Q' (¢',6°,0)=R(8",5'(8))+ 2. P(ole",5'(8 >>Q*<cpt+l\ét+
¢

1: (pt,6t>
= Value optimization:

arg maxamzém p (_étﬂlb* (@, 87,8

(need to do 'stage-wise' maximization)
May 14, 2013



Optimal Value Functions

2 parts:
= Value propagation:

- -

= laststage t=h-1 Q" (¢"",6" ", 8" )=R(6"",8" (6" "))
= t<h-1

= Value optimization:

arg maxémzém P(6"|b

(need to do 'stage-wise' maximization)
May 14, 2013 66



Optimal Value Functions

2 parts:
= Value propas

= |ast stage t M6 h)

. ) But: initial dependence only through
t<h-1 . ~

this probability term!

\

(need to do 'stage-wise' maximization)
May 14, 2013



Sufficient Statistic - 1

2 parts:

= Value propagation:

-

Q*(c",0,8")=R(8",8'(

= Value optimization:

+ZP |6 6( ))Q*<O't+1,_ét+l,6*t+1)

6>:<t+1:arg maxatﬂzétﬂ Ot—i—l(_ét—i—l) Q* (Ot—i-l, ‘ét+1,6t+1)

May 14, 2013
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2 parts:

Sufficient Statistic - 1

= Value propagation:

Q" (o,

-

0',8')=R(6",8'(

= Value optimization:

May 14, 2013

*t+1
0  =argmax,:: Zg

+ZP |6 6( ))Q*<Ot+1,‘ét+1,6*t+1

Ot—l—l(_ét—i-l) Q* (Gt—i-l, ‘6’t+1,6t+1)

Limited use: every deterministic past
joint policy induces a different o !

)
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Sufficient Statistic - 2

2 parts: use: o'(s,0)
= Value propagation:

-

Q*<(5t,6t,6> (6 6 +ZP |e 6( ))Q*<Ot—|—1,_ét+1,6*t+1)

= Value optimization:

6>|<t+1:arg maxatﬂzétﬂ Ot—i—l(_ét—i—l) Q* (Ot—i-l, ‘ét+1,6t+1)
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Sufficient Statistic - 2

2 parts: use: o' (s,0
= Value propagation:

= Value optimization:

6*t+1:arg maxémzém Ot—l—) Q* (O_t+1 6t+1)

»substitute AOH —» OH
»but then — also adapt R(..) and P(o]|...)
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Sufficient Statistic - 2

2 parts: use: o'(s,0)
= Value propagation:

Q*(Gt,5t,6t)=R(ot,5t,6t)+Z P(O|Gt,6t,6t)Q*<O’t+1,5t+l,6*t+l)

= Value optimization:

6>:<t+1:arg maxétﬂZam Gt(6t+1> Q* (Gt+1, 5t—|—1,6t+1>
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Results -1

= Reduction in size of Q*

t = t =2 t =3
Y1 01  $2 02 ©3 g3
tiger 9 2 729 20 4.78¢6 4520

broadcast 4 4 64 o6 1.63e4 1.16e4
recycling 9 9 729 441 4.78¢6 X
FF 9 9 729 729 4.78¢6 X
gridsmall 25 16 1.56e4 4096 6.10e9 X
hotell 9 1 5.90e4 4 1.7e19 —

Table 1: Number of o; vs. number of ¢, .
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Sufficient statistic-based pruning

= Before
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Sufficient statistic-based pruning

" many @ & same o

D >
* GMAA=*-ICE with SSBP:

= perform GMAA*-ICE, but at each node compute o
= if same o but lower G-value — prune branch
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Results - 2

= Speed-up GMAA*-ICE due to SSBP

nodes created at depth ¢

SSBP 1 2 3 4 5 6
tiger
yes 1 10 615 28475 4
QMDP.hS 55" 9 69 2319 41130 4
yes 1 2 8 18 162 1
QBG.h6 [ 9 2 g 18 166 1
hotel 1
QMDP, h4  yes 1 4 6 3
no 9 252 11178 10935
QMDP, hS  yes 1 4 12 15 7
no not solvable (out of 2GB mem.)
QBG,h5 no 9 4 3 3 1

Table 2: Number of created child nodes in GMAA-ICE, when
using sufficient statistic-based pruning (SSBP).

promising, but does not address the current bottleneck...
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