Decision Making in Intelligent Systems:

Partially observable Markov decision processes

14 April 2008

Frans Oliehoek
Regular MDPs

- Up to now...

State = state of environment!
Regular MDPs

- Up to now...

Agents observe the state (of the environment) -> Fully Observable MDP
Partially observable MDPs

- Now: Partially observable environment
 - agent can't observe the full state.
 - ...but observation gives hint about the true state.
RL vs Planning

- In this course: focus on reinforcement learning (RL).
- RL = learning the model + planning
 - Planning is `using the model'
 - explicit: `model-based RL'
 - implicit: Q-learning etc.

- In this lecture: only planning!
 - We assume we have a perfect model of the (partially observable) world.
Partially observable MDPs

- States – $s_1 \ldots s_n$
- Transitions – $P(s' | s, a)$
- Rewards - $R(s, a)$
- Observations – $o_1 \ldots o_m$
- Observation probs – $P(o | a, s')$
POMDP: an example

- Where am I?
Partial observability

- When is an agent's environment partially observable?
 - Real world: almost always.

- Types of partial observability
 - Noise
 - Sensors have measurement errors.
 - Sensor (or other part of the agent) can fail.
 - Perceptual aliasing
 - When multiple situations can't be discriminated. I.e., multiple states give the same observation.
 - e.g. what is behind a wall?
Example: predator-prey

- Fully observable
- o=s=(-3,4)
Example: predator-prey

- Partially observable – perceptual aliasing
- $o = \text{Null}$
Example: predator-prey

- Partially observable – (noise?)
- \(o=(-1,1) \)
Policies under partial observability?

- Now given that the agent only gets some observations, what policy should he follow?
 - How does such a policy look?
Policies under partial observability?

• Now given that the agent only gets some observations, what policy should he follow?
 – How does such a policy look?

• No more Markovian signal (i.e. the state) directly available to the agent...
 ➔ In general: should use all information!
 ➔ The full history of observations.

• We will do something smarter in a moment...
A full POMDP: the Tiger problem

- **States**: left / right (50% prob.)
- **Actions**: Open left, open right, listen
- **Observation**: Hear left, Hear right
- **Transitions**: static, but opening resets.
- **Rewards**:
 - correct door +10,
 - wrong door -100
 - listen -1
- **Observations** are correct 85% of the time.
 - \(P(\text{HearLeft} | \text{Listen}, \text{State=left}) = 0.85 \)
 - \(P(\text{HearRight} | \text{Listen}, \text{State=left}) = 0.15 \)
The Tiger problem

• When do you open...?

• At the beginning?

• After HL?

• After HL, HL?

• After HL, HL, HL?
Beliefs

- As promised: there is something smarter than trying all possible policies.
 - mappings from obs. histories -> actions is approx. \(A^{O^t} \)

- Maintain the probability of all states.
 - Use that to make your decisions.
 - Did you estimate the probability of the states for the tiger problem?
 - The probability distribution over states at some time step, is called the belief \(b \).
 - For all \(s \): \(b(s) = \Pr(s) \)
 - Sufficient statistic for the history.
Beliefs: an example

- For the hallway problem
Calculating the belief

- A POMDP is often specified with an initial belief.
 - So we want to keep track of the probs. of the states.
 - I.e., given \(b, a \) and \(o \), we want to find the new belief \(b'_{ao} \).
 - Process is called belief update.

DO not forget: the term `belief` can be misleading.

Not: `something that one agent can belief, but some other agent would not'
But: The actual probability of the states, given the history.
Belief update – prerequisites

- b'_{ao} can be calculated from b and T, O... (resp. the transition, observation model)
- ...using Bayes' rule.

Bayes rule:

$$P(A|B) = \frac{P(A,B)}{P(B)} = \frac{P(B|A)P(A)}{P(B)}$$
Belief update

- substituting relevant vars in Bayes' rule.

\[
P(s'|o) = \frac{P(o|s') P(s')}{P(o)}
\]

- adding same arguments to `given`

\[
P(s'|b,a,o) = \frac{P(o|b,a,s') P(s'|b,a)}{P(o|b,a)}
\]

- expanding \(P(s'|b,a) \) gives the belief update:

\[
b'_{ao}(s') = \frac{P(o|a,s') \sum_s P(s'|s,a) b(s)}{P(o|b,a)}
\]

with \(P(o|b,a) = \sum_{s'} P(o|a,s') \sum_s P(s'|s,a) b(s) \)
POMDPs: making decisions

- Now we know how to maintain a belief over states...
 - but what decisions should we make?

- We treat 3 methods
 - Approximate
 - most likely state (MLS)
 - Q_{MDP}
 - Exact, given the initial belief
 - Solving the `belief MDP'
Most likely state

- Take the action that would seem best in...
 ...the most likely state s_{ml}.
 - I.e., state with highest probability.
 - $b = (0.1 \ 0.3 \ 0.5 \ 0.1)^T$ -> state 3

- But what is the best action in s_{ml}?
 - Solve the `underlying MDP'.
 - pretend there are no observations.
 - Solve the MDP.
 - Result: the MDP policy π_{MDP}
 - Perform action $\pi_{MDP} (s_{ml})$.
Q-MDP

- Also uses solution of the `underlying MDP'
 - but now uses the found Q values, not the policy.

- Find the MDP Q(s,a)-values
 - E.g., using value iteration.

- Given the current belief b, for each action compute
 \[
 Q(b, a) = \sum_s Q(s, a) b(s)
 \]

- select the action with highest Q-value
 \[
 a_{Qmdp} = \text{arg max}_a Q(b, a)
 \]
Solve the beliefs MDP

• For a finite (and not too large) horizon...
• and given an initial belief...
 ➔ we can compute all possible beliefs.
 – `belief tree'
• Propagate back the expected reward

\[
V(b) = \max_a \left(R(b, a) + \sum_o P(o|b, a) V(b_{ao}) \right)
\]

with

\[
R(b, a) = \sum_s R(s, a) b(s)
\]

– The optimal action \(a^*\) is the one that maximizes the above expression.
Pros and cons

• Exact (‘belief MDP’).
 - Gives the optimal policy.
 - Only applicable to fairly small problems.
 • Few actions and observations.
 • Small horizon.

• Approximate (MLS, Q-MDP)
 - Scales to larger problems.
 • Solving the underlying MDP is the hardest.
 • Also selecting the final action can be done on-line.
 - Not optimal:
 • Too positive.
 • Information gaining actions are undervaluated.
Solving for ANY initial belief

- In some cases no initial belief b^0 available.
 - Perform planning for all possible initial beliefs.

- This is possible because of special property of the POMDP value function:
 - Piecewise-linear and convex (PWLC)

- Like VI for MDPs: use a backup operator H
 - $V_{k+1} = HV_k$
 - inf. horizon: $V^* = HV^*$

$$V(b) = \max_a \left(R(b, a) + \gamma \sum_o P(o|b, a)V(b_{ao}) \right)$$
PWLC-property

- V_k is PWLC (when k is finite)
 - Can be represented by a set of vectors.

\[
V_n(b) = \max_i b \cdot \alpha_n^i
\]

![Graph showing PWLC-property](image)
PWLC in 3D

- 3 states

- Generalizes to arbitrary number of states.
 - Although hard to visualize.
A numeric example

- V_0 given by the immediate rewards

<table>
<thead>
<tr>
<th>$R(s, a)$</th>
<th>a_1</th>
<th>a_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>s_2</td>
<td>5</td>
<td>2</td>
</tr>
</tbody>
</table>
Constructing V_{k+1} from V_k

- Basic procedure for a particular belief b
 - for all a
 - $\alpha_{\text{temp}} = (0 \ldots 0)^T$
 - for all o
 - calculate b_{ao}
 - Select α_{ao} the maximizing vector from V_k at b_{ao}
 - $\alpha_{\text{temp}} += P(o|b,a) \times \alpha_{ao}$
 - create a new vector: $\alpha_{a} = R_a + \alpha_{\text{temp}}$
 - Select the action that maximizes $\alpha_{a} \cdot b$

- However, need to do this for all beliefs...
 - Just generate all possible vectors.
Summary

- Planning in a partially observable world.
- In such a setting an agent can maintain a belief over states.
 - using Bayes' Rule
- We considered 3 planning methods for use with an initial belief:
 - Exact: `solving the belief MDP`
 - Approximate: MLS and Q-MDP
- When no initial belief:
 - use PWLC property to generate a value function.
- PWLC property also basis for more advanced algorithms.