Scientific Computing
 Maastricht Science Program

Week 6

Frans Oliehoek
frans.oliehoek@maastrichtuniversity.nl

The World is Dynamic

- Many problems studied in science are 'dynamic'
- change over time
- Examples:
- change of temperature
- trajectory of a baseball
- populations of animals
- changes of price in stocks or options

Visualization of heat transfer in a pump casing
Heat is generated internally, cooled at the boundary \rightarrow steady state temperature distribution.

- Commonly modeled with differential equations
- (Not to be confused with difference equations)

Recap Difference Equations

- Remember difference equations (week1, week5)
- e.g. polulation growth:

$$
\begin{aligned}
P_{t} & =P_{t-1}+\Delta P_{t-1} \\
\Delta P_{t-1} & =(b-d) P_{t-1}
\end{aligned}
$$

- discrete time steps
- Now differential equations: continuous time

Differential Equations

- Simple growth of bacteria model:

$$
r(t)=C p(t)
$$

- r - rate of growth
- p-population size

Differential Equations

- Simple growth of bacteria model:

$$
r(t)=C p(t)
$$

- r - rate of growth
- p-population size

Question to solve:

- How many bacteria are there at some time t
- given $p\left(t_{0}\right)=41$?
- More general: find $p(t)$ for some range $a<t<b$

Differential Equations

- Simple growth of bacteria model:

$$
\frac{d p(t)}{d t}=C p(t)
$$

- r - rate of growth
- p-population size

This is the derivative of p !

Differential Equations

- Simple growth of bacteria model:

$$
\frac{d p(t)}{d t}=C p(t)
$$

- r - rate of growth
- p-population size

This is the derivative of p !

Contrast this with ΔP_{t-1} in difference equations
\rightarrow now the change also needs to be a continuous function of time!

Differential Equations

- Simple growth of bacteria model:

$$
\frac{d p(t)}{d t}=C p(t) \longrightarrow p^{\prime}(t)=C p(t)
$$

- r - rate of growth
- p-population size

Also:

$$
\begin{aligned}
& \dot{p}(t)=C p(t) \\
& \dot{p}=C p
\end{aligned}
$$

Differential Equations

- Simple growth of bacteria model:

$$
\frac{d p(t)}{d t}=C p(t) \longrightarrow p^{\prime}(t)=C p(t)
$$

- r - rate of growth
- p - population size
- Different types
- ordinary (ODEs) : all derivatives w.r.t. 1 'independent variable' (vs. 'partial DE' with multiple variables)
- Order of a DE: maximum order of differentiation.

Problem

- Given an ODE

$$
y^{\prime}(t)=f(t, y(t)), \quad \forall t \in I
$$

- some time interval
- find a function $y(t)$ that satisfies it.

Problem

- Given an ODE

$$
y^{\prime}(t)=f(t, y(t)), \quad \forall t \in I
$$

- find a function $y(t)$ that satisfies it.

Problem

$$
f(t, y(t))=C y(t)
$$

- Given an ODE

$$
y^{\prime}(t)=f(t, y(t)), \quad \forall t \in I
$$

- find a function $y(t)$ that satisfies it.
- But: there are infinitely many solutions!

Direction Fields

$$
f(t, y(t))=C y(t)
$$

- Given an ODE

$$
y^{\prime}(t)=f(t, y(t)), \quad \forall t \in I
$$

- Many functions satisfy it...
- Let's plot the derivatives...

Direction Fields

$$
f(t, y(t))=C y(t)
$$

- Given an ODE

$$
y^{\prime}(t)=f(t, y(t)), \quad \forall t \in I
$$

- Many functions satisfy it...
- Let's plot the derivatives...

Direction Fields

$$
f(t, y(t))=C y(t)
$$

- Given an ODE

$$
y^{\prime}(t)=f(t, y(t)), \quad \forall t \in I
$$

- Many functions satisfy it...
- Let's plot the derivatives...

Direction Fields

$$
f(t, y(t))=C y(t)
$$

- Given an ODE

$$
y^{\prime}(t)=f(t, y(t)), \quad \forall t \in I
$$

- Many functions satisfy it...
- Let's plot the derivatives...

Direction Fields

$$
f(t, y(t))=C y(t)
$$

- Given an ODE

$$
y^{\prime}(t)=f(t, y(t)), \quad \forall t \in I
$$

- Many functions satisfy it...
- Let's plot the derivatives...

Direction Fields

$$
f(t, y(t))=C y(t)
$$

- Given an ODE

$$
y^{\prime}(t)=f(t, y(t)), \quad \forall t \in I
$$

- Many functions satisfy it...
- Let's plot the derivatives...

Initial Value problem

- Given an ODE

$$
y^{\prime}(t)=f(t, y(t)), \quad \forall t \in I
$$

- find a function $y(t)$ that satisfies it.
- Initial Value Problem (also: 'Cauchy Problem')
- specifies $y\left(t_{d}\right)$
\rightarrow unique solution

Initial Value problem

- Initial value problem:

$$
\begin{aligned}
& y^{\prime}(t)=f(t, y(t)), \quad \forall t \in I \\
& y\left(t_{0}\right)=y_{0}
\end{aligned}
$$

- find a function $y(t)$ that satisfies it

Initial Value problem

- Initial value problem:

$$
\begin{aligned}
& y^{\prime}(t)=f(t, y(t)), \quad \forall t \in I \\
& y\left(t_{0}\right)=y_{0}
\end{aligned}
$$

- find a function $y(t)$ that satisfies it However...
- closed-form solutions $y(t)$ only available for very special cases.
\rightarrow Need for numerical solutions!
Approach
- Discretization: divide interval / in short steps of length h
- At each node t_{n} compute $u_{n} \approx y\left(t_{n}\right)$
- Numerical solution: $\left\{u_{0}, u_{1}, \ldots, u_{N}\right\}$

Initial Value problem

- Initial value problem:

$$
\begin{aligned}
& y^{\prime}(t)=f(t, y(t)), \quad \forall t \in I \\
& y\left(t_{0}\right)=y_{0}
\end{aligned}
$$

- find a function $v(t)$ that satisfies However...
- closed-form solutions $y(t)$ only available for Effectively we
\rightarrow Need for numerical solutions!
Approach
perform a simulation!
- Discretization: divide interval / in short s
- At each node t_{n} compute $u_{n} \approx y\left(t_{n}\right)$
- Numerical solution: $\left\{u_{0}, u_{1}, \ldots, u_{N}\right\}$

Forward Euler Method

- The forward Euler method
- just perform the 'simulation'
- shorthand $f_{n}=f\left(t_{n}, u_{n}\right)$

$$
u_{n+1}=u_{n}+h f_{n}
$$

Forward Euler Method

- The forward Euler method
- just perform the 'simulation'
- shorthand $f_{n}=f\left(t_{n}, u_{n}\right)$

$$
u_{n+1}=u_{n}+h f_{n}
$$

Example

$$
u_{0}=12740
$$

$t=(0,19)$
$h=1$
$p(0)=12740$
$r(p)=0.1$ * p

Forward Euler Method

- The forward Euler method
- just perform the 'simulation'
- shorthand $f_{n}=f\left(t_{n}, u_{n}\right)$

$$
u_{n+1}=u_{n}+h f_{n}
$$

Example

$$
\begin{aligned}
& u_{0}=12740 \\
& u_{1}=u_{0}+h * r\left(u_{0}\right)=12740+1 * 1274.0=14014
\end{aligned}
$$

$t=(0,19)$
$h=1$
$p(0)=12740$
$r(p)=0.1$ * p

Forward Euler Method

- The forward Euler method
- just perform the 'simulation'
- shorthand $f_{n}=f\left(t_{n}, u_{n}\right)$

$$
u_{n+1}=u_{n}+h f_{n}
$$

Example

$$
t=(0,19)
$$

$$
\mathrm{h}=1
$$

$$
p(0)=12740
$$

$$
r(p)=0.1 * p
$$

$$
\begin{aligned}
& u_{0}=12740 \\
& u_{1}=u_{0}+h * r\left(u_{0}\right)=12740+1 * 1274.0=14014 \\
& u_{2}=u_{1}+h * r\left(u_{1}\right)=14014+1 * 1401.4=15415.40
\end{aligned}
$$

Forward Euler Method - Errors

- Errors...

Forward Euler Method - Errors

- Errors...

Computational Issues

- How accurate is this?
- Does it 'converge' ?
- What is the order p of convergence?

Computational Issues

- How accurate is this?

Can we deriver an expression for the error?
if $h \rightarrow 0$,
" Does it 'converge' ? does error $\rightarrow 0$?

- What is the order p of convergence?

Do we have

$$
|e r r|<C(h)=O\left(h^{p}\right)
$$

Computational Issues

- How accurate is this?

Can we deriver an expression for the error?
if $h \rightarrow 0$,
" Does it 'converge' ?

$$
\text { does error } \rightarrow 0 \text { ? }
$$

- What is the order p of convergence?
- forward Euler method converges with order 1
- roughly: "h twice as small \rightarrow error twice as small"
- the book discusses many methods with higher order.

Do we have
$|e r r|<C(h)=O\left(h^{p}\right)$

- Matlab implements many:
ode23, ode45, ode113, ode15s, ode23s, ode23t, ode23tb
- "doc ode23"

Computational Issues

- Do they matter?
" yes...
- what to use? Matlab's doc:
"ode45 should be first you try"

