Scientific Computing 2013 Maastricht Science Program

Week 3

Frans Oliehoek <frans.oliehoek@maastrichtuniversity.nl>

- Matlab...!
- Advanced calculator
 - operator priorities, variable names, matlab functions
- Using scripts
- Example of data reductions using PCA
- Floating point numbers

This Lecture

- Vectors & Matrices in Matlab
 - creating, indexing, using functions
- Given data: figure out how variables relate.
 - E.g., given medical symptoms or measurements, what is the probability of some disease?
- Estimating functions from a number of data points.
 - Interpolation, Least Squares Regression

NOTE: It is a lot...!

Matrices & Vectors

Motivation

- LA is the basis of many methods in science
- For us:
 - Important to solve systems of linear equations

$$a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1n}x_{n} = c_{1}$$

$$a_{21}x_{1} + a_{22}x_{2} + \dots + a_{2n}x_{n} = c_{2}$$

$$\dots$$

$$a_{m1}x_{1} + a_{m2}x_{2} + \dots + a_{mn}x_{n} = c_{m}$$

 $\sim mn \sim m$

- Arise in many problems, e.g.:
 - Identifying gas mixture from peaks in spectrum
 - fitting a line to data.

Motivation

LA is the basis of many methods in science

- x_i the amount of gas of type j
- a_{ij} how much a gas of type j contributes to wavelength i
- c_i the height of the peak of wavelength i

ems of linear equations

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = c_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = c_2$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = c_m$$

. . .

- Arise in many problems, e.g.:
 - Identifying gas mixture from peaks in spectrum
 - fitting a line to data.

Linear System of Equations

Example

y=0.5x+1y=2x-3

 Infinitely many, one, or no solution

matrices make these easy work with

Another reason to care about matrices and vectors:

they can make complex problems easy to write down!

Matrices

- A matrix with
 - m rows,
 - n columns
 - is a collection of numbers
 - represented as a table
- A vector is a matrix that is
 - 1 row (row vector), or
 - 1 column (column vector)

$$A = \begin{bmatrix} 3 & -2 & 6 \\ 5 & 2 & -8 \end{bmatrix}$$
$$B = \begin{bmatrix} 5 & 54 & 6 \\ 75 & 24 & 81 \\ 25 & 5 & 435 \end{bmatrix}$$

$$v = \begin{bmatrix} 3 & -2 & 6 \end{bmatrix}$$

 $w = \begin{bmatrix} 5 \\ 75 \\ 25 \end{bmatrix}$

Matrices

Matrices

 A matrix with 	$A = \begin{bmatrix} 3 & -2 & 6 \\ 5 & 2 & -8 \end{bmatrix}$
 m rows, 	octave:1> A = [3, -2, 6; 5, 2, -8] A =
 n columns 	5 54 6 3 -2 6 55 54 6
is a collection of numb	ers ⁵ 2 $\frac{F_8}{125} = \frac{75}{125} \frac{24}{125} \frac{81}{125}$
 represented as a table 	octave:2> w = [5;75;25] 400 w =
 A vector is a matrix th 	5 75 octave:3> a1 = [4:8] at 25 a1 =
 1 row (row vector), or 	r 4 5 6 7 8
 1 column (column ve 	octave:4>/a2 =5[4:2:8] a2 =
	4 6 8 20

Some Special Matrices

 $I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

- Square matrix: m=n
- Identity matrix 'eye(3)'
- Zero matrix 'zeros(m,n)'
- Types: diagonal, triangular (upper & lower)

$$D = \begin{bmatrix} * & 0 & 0 \\ 0 & * & 0 \\ 0 & 0 & * \end{bmatrix} \quad TU = \begin{bmatrix} * & * & * \\ 0 & * & * \\ 0 & 0 & * \end{bmatrix} TL = \begin{bmatrix} * & 0 & 0 \\ * & * & 0 \\ * & * & * \end{bmatrix}$$

'*' denotes any number

- We can perform operations on them!
 - First: vectors. Next: generalization to matrices.
- Transpose: convert row ↔ column vector

$$v = \begin{bmatrix} 3 & -2 & 6 \end{bmatrix} \qquad v^{T} = \begin{bmatrix} 3 \\ -2 \\ 6 \end{bmatrix}$$
$$w = \begin{bmatrix} 5 \\ 75 \\ 25 \end{bmatrix} \qquad w^{T} = \begin{bmatrix} 5 & 75 & 25 \end{bmatrix}$$

We can perform operations on them!

- Sum $\begin{bmatrix} 1 & 2 & 3 \end{bmatrix} + \begin{bmatrix} 10 & 20 & 30 \end{bmatrix} = \begin{bmatrix} 11 & 22 & 33 \end{bmatrix}$ • Product with scalar $5 * \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} = \begin{bmatrix} 5 & 10 & 15 \end{bmatrix}$
- Inner product (also: 'scalar product' or 'dot product') $(v, w) = v^T w = \sum_{k=1}^n v_k w_k$

- Sum $\begin{bmatrix} 1 & 2 & 3 \end{bmatrix} + \begin{bmatrix} 10 & 20 & 30 \end{bmatrix} = \begin{bmatrix} 11 & 22 & 33 \end{bmatrix}$ • Product with scalar $5 * \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} = \begin{bmatrix} 5 & 10 & 15 \end{bmatrix}$
- Inner product (also: 'scalar product' or 'dot product')

$$(v, w) = v^{T} w = \sum_{k=1}^{n} v_{k} w_{k}$$
$$v = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, w = \begin{bmatrix} 10 \\ 20 \\ 30 \end{bmatrix}$$
$$[1 \ 2 \ 3] \begin{bmatrix} 10 \\ 20 \\ 30 \end{bmatrix} = 1 * 10 + 2 * 20 + 3 * 30 = 10 + 40 + 90 = 140$$

 $\begin{bmatrix} 1 & 2 & 3 \end{bmatrix} + \begin{bmatrix} 10 & 20 & 30 \end{bmatrix} = \begin{bmatrix} 11 & 22 & 33 \end{bmatrix}$ Sum Product with scalar octave: 4> a = [1;2;3] 10 15 a = Inner product (also: 'scala² product' or 'dot product') $(v,w) = v^{T}w = \sum_{k=1}^{n} v_{k}w_{k}^{octave:5>b} = \begin{bmatrix} 4;5;6 \end{bmatrix} \begin{bmatrix} 10\\ 2\\ 3 \end{bmatrix}, w = \begin{bmatrix} 10\\ 20\\ 30 \end{bmatrix}$ $\begin{bmatrix} 10\\ 20\\ 30 \end{bmatrix} = 1*10 + \begin{array}{c} \text{octave:6>} & \text{dot}(a,b) + 40 + 90 = 140\\ \text{ans} = 32\\ \text{octave:7>} & a'*b\\ \text{ans} = 32 \end{array}$ 32 ans =

Vector Indexing

Retrieve parts of vectors

```
octave: 12 > a = [10, 20, 30, 40, 50, 60, 70]
a =
  10 20 30 40 50
                          60 70
octave:13> a(3)
ans = 30
octave:14> a([2,4])
ans =
  20 40
octave:16> a([4:end])
ans =
  40 50 60 70
```

Vector Indexing

Retrieve parts of vectors

```
octave: 12 > a = [10, 20, 30, 40, 50, 60, 70]
a =
   10 20 30 40 50
                             60 70
                                                     indexing with
                                                     another vector
octave:13> a(3)
ans = 30
octave:14> a([2,4])
ans =
     40
   20
                                                     special 'end'
octave:16> a([4:end]) <--</pre>
                                                     index
ans =
        50 60
   40
                  70
```

- Now matrices!
- Transpose:
 - convert each row → column vector (or convert each column→ row vector)

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 10 & 20 & 30 \\ 100 & 200 & 300 \end{bmatrix} \qquad A^{T} = \begin{bmatrix} 1 & 10 & 100 \\ 2 & 20 & 200 \\ 3 & 30 & 300 \end{bmatrix}$$

- Now matrices!
- Transpose:
 - convert each row → column vector (or convert each column→ row vector)

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 10 & 20 & 30 \\ 100 & 200 & 300 \end{bmatrix} \qquad A^{T} = \begin{bmatrix} 1 & 10 & 100 \\ 2 & 20 & 200 \\ 3 & 30 & 300 \end{bmatrix}$$

- Now matrices!
- Transpose:
 - convert each row → column vector (or convert each column→ row vector)

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 10 & 20 & 30 \\ 100 & 200 & 300 \end{bmatrix} \qquad A^{T} = \begin{bmatrix} 1 & 10 & 100 \\ 2 & 20 & 200 \\ 3 & 30 & 300 \end{bmatrix}$$
$$B = \begin{bmatrix} 1 & 2 & 3 \\ 10 & 20 & 30 \end{bmatrix} \qquad B^{T} = \begin{bmatrix} 1 & 10 \\ 2 & 20 \\ 3 & 30 \end{bmatrix}$$

Sum and product with scalar: pretty much the same

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} + \begin{bmatrix} 10 & 20 & 30 \\ 40 & 50 & 60 \end{bmatrix} = \begin{bmatrix} 11 & 22 & 33 \\ 44 & 55 & 66 \end{bmatrix}$$
$$5*\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} = \begin{bmatrix} 5 & 10 & 15 \\ 20 & 25 & 30 \end{bmatrix}$$

Matrix Product

Inner product → Matrix product

C = AB

- $C = m \times n$, $A = m \times p$, $B = p \times n$,
- Each entry of C is an inner product: $c_{ij} = r_i^A c_j^B$

$$\begin{bmatrix} \dots & \dots & \dots \\ \mathbf{190} & \dots & \dots \\ \dots & \dots & \dots \end{bmatrix} = \begin{bmatrix} 10 & 20 \\ \mathbf{30} & \mathbf{40} \\ 50 & 60 \end{bmatrix} \begin{bmatrix} \mathbf{1} & 2 & 3 \\ \mathbf{4} & 5 & 6 \end{bmatrix}$$

Matrix Product

- Inner product → Matrix product
 - C = AB• C = m x n, A = m x p, $B = p \times n$,
 - Each entry of C is an in Ber product: $C_{ij} = r_i^{0,2,3;4,5,6]_B}$

Matrix Product

Inner product → Matrix product

```
octave:22> A = [10, 20; 30, 40; 50, 60]
A = C = AB
   10 20
   30 40
 C 50 m 60 n, A = m \times p, B = p \times n,
octave:25> Btrans = B'an inner pro<mark>Matrix size is</mark>
Btrans = important
error: operator *: nonconformant arguments (op1 is 3x2, op2 is 3x2)
```

Matrix-Vector Product

 Matrix-vector product is just a (frequently occurring) special case:

$$Ab = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \dots & \dots & \dots \\ a_{m1} & \dots & a_{mn} \end{bmatrix} \begin{bmatrix} b_1 \\ \dots \\ b_n \end{bmatrix} = \begin{bmatrix} c_1 \\ \dots \\ c_m \end{bmatrix}$$

Matrix-Vector Product

Also represents a system of equations!

$$Ax = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \dots & \dots & \dots \\ a_{m1} & \dots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ \dots \\ x_n \end{bmatrix} = \begin{bmatrix} c_1 \\ \dots \\ c_m \end{bmatrix}$$

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = c_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = c_2$$

 $a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = c_m$

. . .

Approximation of Data and Functions

Approximations of Functions

- Function approximation: Replace a function by a simpler one
- Reasons:
 - Integration: replace a complex function with one that is easy to integrate.
 - Function may be very complex: e.g. result of simulation.
 - Function may be unknown...

"Approximation of Data"

'the function unknown'

- it is only known at certain points $(x_{0,}y_{0}), (x_{1,}y_{1}), \dots, (x_{n},y_{n})$
- but we also want the know at other points
- these points are called the data → "approximation of data"

Interpolation:

find a function that goes exactly through data point

Regression:

- find a function that minimizes some error measure
- better for noisy data.
- Related terms: curve fitting, extrapolation, classification

Interpolation

 In the study of Geysers, an important quantity is the internal energy of steam.

Temp. (Celsius)	int. energy (kJ/kg)
100	2506.7
150	2582.8
200	2658.1
250	2733.7
300	2810.4
400	2967.9
500	3131.6

(from Etter, 2011, Introduction to MATLAB)

Temperature Example

Now we want to know the temp. at 430°C...

- Interpolation: define a function that goes through data
- Piecewise interpolation: use a piecewise function

- Interpolation: define a function that goes through data
- Piecewise interpolation: use a piecewise function

- Interpolation: define a function that goes through data
- Piecewise interpolation: use a piecewise function

- Interpolation: define a function that goes through data
- Piecewise interpolation: use a piecewise function

Piecewise Linear Interpolation

 Piecewise linear interpolation: just connect the data point with lines

Χ		Υ
	10	22.2
	20	26.5
	30	27.2
	40	28.1
	50	30.3

Piecewise Linear Interpolation

 Piecewise linear interpolation: just connect the data point with lines

Cubic Splines Interpolation

cubic-spline interpolation

- connect the data point smooth curves (third degree polynomials)
- still piecewise

Cubic Splines Interpolation

cubic-spline interpolation

 connect the data point smooth curves (third degree polynomials)

Polynomial Interpolation

- So far: piecewise
- but may want to find a single (non-piecewise) function.

Limits of Polynomial Interpolation

- Does not work very well when N is large.
- Is not very suitable if the data is obtained from noisy measurements.
- "Runge's phenomenon"

 In this case, we would perhaps want to fit a straight line.

Least-Squares Method

 In cases that we made noisy measurements, we don't want to exactly fit the data.

- That is: fit a polynomial** of degree p < n
 - can still use 'polyfit'

Least-Squares Method

 Common approach: minimize sum of the squares of the errors

$$SSE(\tilde{f}) = \sum_{i=0}^{n} [\tilde{f}(x_i) - y_i]^2$$

 $\tilde{f}(\mathbf{v}) - \mathbf{a} + \mathbf{a} \mathbf{v}$

• pick the \tilde{f} with min. SSE

Extra / old slides

Polynomial Interpolation

Polynomial interpolation: fit a polynomial

(Prop. 3.1) given a set of N=n+1 data points $(x_{0}, y_{0}), (x_{1}, y_{1}), \dots, (x_{n}, y_{n})$ \rightarrow There exist a unique polynomial $\Pi_{n}(x)=a_{0}+a_{1}x+a_{2}x^{2}+\dots+a_{n}x^{n}$ (of degree n or less) that goes exactly through the points!

• "The interpolating polynomial" (of the 'data' or 'function')

Polynomial Interpolation

Polynomial interpolation: fit a polynomial

(Prop. 3.1) given a set of N=n+1 data points $(x_{0}, y_{0}), (x_{1}, y_{1}), \dots, (x_{n}, y_{n})$ \rightarrow There exist a unique polynomial $\Pi_{n}(x)=a_{0}+a_{1}x+a_{2}x^{2}+\dots+a_{n}x^{n}$ (of degree n or less) that goes exactly through the points!

• "The interpolating polynomial" (of the 'data' or 'function')

So this is good news we can always find such a function.

Uniqueness of the Interpolating polynomial

- Why is this polynomial unique?
- Suppose not unique: both $\Pi_n(x), \Pi_n'(x)$ perfectly fit the data
 - $\rightarrow \Pi_n(x) \Pi_n'(x) = 0$ for all the N=n+1 data points
- That is it
 - "vanishes at n+1 points"
 - "has n+1 roots"
- But: a polynomial of degree n has at most n roots!
 → contradiction!

PCA vs. Least Squares

What would happen when switching the axes...?

PCA vs. Least Squares

What would happen when switching the axes...?

