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Recap

 Matlab...!
 Advanced calculator

 operator priorities, variable names, matlab functions
 Using scripts
 Example of data reductions using PCA
 Floating point numbers



  

This Lecture

 Vectors & Matrices in Matlab
 creating, indexing, using functions

 Given data: figure out how variables relate.
 E.g., given medical symptoms or measurements, what 

is the probability of some disease?
 Estimating functions from a number of data points.

 Interpolation, Least Squares Regression

NOTE: It is a lot...!



  

Matrices & Vectors



  

Motivation

 LA is the basis of many methods in science
 For us:

 Important to solve systems of linear equations

 Arise in many problems, e.g.:
 Identifying gas mixture from peaks in spectrum
 fitting a line to data.

a1 x1+a2 x2+...=c

a11 x1+a12 x2+...+a1n xn=c1

a21 x1+a22 x2+...+a2n xn=c2

...
am1 x1+am2 x2+...+amn xn=cm



  

Motivation

 LA is the basis of many methods in science
 For us:

 Important to solve systems of linear equations

 Arise in many problems, e.g.:
 Identifying gas mixture from peaks in spectrum
 fitting a line to data. 

a1 x1+a2 x2+...=c

a11 x1+a12 x2+...+a1n xn=c1

a21 x1+a22 x2+...+a2n xn=c2

...
am1 x1+am2 x2+...+amn xn=cm

● xj - the amount of gas of type j
● aij - how much a gas of type j 

      contributes to wavelength i
● ci  - the height of the peak of 

      wavelength i
    



  

Linear System of Equations

 Example

 Infinitely many, one,  
or no solution

 matrices make these easy work with

y

x

y=0.5x+1
y=2x−3

Another reason to care about 
matrices and vectors: 

they can make complex 
problems easy to write down!

    



  

Matrices

 A matrix with 
 m rows, 
 n columns

is a collection of numbers
 represented as a table

 A vector is a matrix that is
 1 row (row vector), or
 1 column (column vector)

A=[3 −2 6
5 2 −8 ]

B=[
5 54 6
75 24 81
25 5 435]
v= [3 −2 6 ]

w=[
5
75
25]



  

Matrices

 A matrix with 
 m rows, 
 n columns

is a collection of numbers
 represented as a table

 A vector is a matrix that is
 1 row (row vector), or
 1 column (column vector)

A=[3 −2 6
5 2 −8 ]

B=[
5 54 6
75 24 81
25 5 435]
v= [3 −2 6 ]

w=[
5
75
25]

octave:1> A = [3, -2, 6; 5, 2, -8]
A =

   3  -2   6
   5   2  -8

octave:2> w = [5;75;25]
w =

    5
   75
   25



  

Matrices

 A matrix with 
 m rows, 
 n columns

is a collection of numbers
 represented as a table

 A vector is a matrix that is
 1 row (row vector), or
 1 column (column vector)

A=[3 −2 6
5 2 −8 ]

B=[
5 54 6
75 24 81
25 5 435]
v= [3 −2 6 ]

w=[
5
75
25]

octave:1> A = [3, -2, 6; 5, 2, -8]
A =

   3  -2   6
   5   2  -8

octave:2> w = [5;75;25]
w =

    5
   75
   25

octave:3> a1 = [4:8]
a1 =

   4   5   6   7   8

octave:4> a2 = [4:2:8]
a2 =

   4   6   8



  

Some Special Matrices 

 Square matrix: m=n
 Identity matrix - 'eye(3)'
 Zero matrix – 'zeros(m,n)'

 Types: diagonal, triangular (upper & lower)

 '*' denotes any number

I=[
1 0 0
0 1 0
0 0 1]

D=[
∗ 0 0
0 ∗ 0
0 0 ∗ ] TU=[

∗ ∗ ∗
0 ∗ ∗
0 0 ∗] TL=[∗ 0 0

∗ ∗ 0
∗ ∗ ∗

]



  

Operations on Vectors - 1

 We can perform operations on them!
 First: vectors. Next: generalization to matrices.

 Transpose: convert row ↔ column vector 

w=[
5
75
25] wT

=[5 75 25 ]

v= [3 −2 6 ] vT
=[

3
−2
6 ]



  

Operations on Vectors - 1

 We can perform operations on them!
 First: vectors. Next: generalization to matrices.

 Transpose: convert row ↔ column vector 

w=[
5
75
25] wT

=[5 75 25 ]

v= [3 −2 6 ] vT
=[

3
−2
6 ]

octave:9> a = [1,4,-2498, 12.4]
a =

      1.0000      4.0000  -2498.0000     12.4000

octave:10> a'
ans =

      1.0000
      4.0000
  -2498.0000
     12.4000

octave:11> a''
ans =

      1.0000      4.0000  -2498.0000     12.4000



  

Operations on Vectors - 2

 Sum
 Product with scalar 

 Inner product (also: 'scalar product' or 'dot product')

[1 2 3 ]+ [10 20 30 ]=[11 22 33 ]

5∗[1 2 3 ]=[5 10 15 ]

(v ,w)=vT w=∑
k=1

n

vk wk



  

Operations on Vectors - 2

 Sum
 Product with scalar 

 Inner product (also: 'scalar product' or 'dot product')

[1 2 3 ]+ [10 20 30 ]=[11 22 33 ]

5∗[1 2 3 ]=[5 10 15 ]

[1 2 3 ] [
10
20
30]=1∗10+2∗20+3∗30=10+40+90=140

(v ,w)=vT w=∑
k=1

n

vk wk

v=[
1
2
3] ,w=[

10
20
30]



  

Operations on Vectors - 2

 Sum
 Product with scalar 

 Inner product (also: 'scalar product' or 'dot product')

[1 2 3 ]+ [10 20 30 ]=[11 22 33 ]

5∗[1 2 3 ]=[5 10 15 ]

[1 2 3 ] [
10
20
30]=1∗10+2∗20+3∗30=10+40+90=140

(v ,w)=vT w=∑
k=1

n

vk wk

v=[
1
2
3] ,w=[

10
20
30]

octave:4> a = [1;2;3]
a =

   1
   2
   3

octave:5> b = [4;5;6]
b =

   4
   5
   6

octave:6> dot(a,b)
ans =  32
octave:7> a'*b
ans =  32



  

Vector Indexing

 Retrieve parts of vectors

octave:12> a = [10, 20, 30, 40, 50, 60, 70]
a =

   10   20   30   40   50   60   70

octave:13> a(3)
ans =  30
octave:14> a([2,4])
ans =

   20   40

octave:16> a([4:end])
ans =

   40   50   60   70



  

Vector Indexing

 Retrieve parts of vectors

octave:12> a = [10, 20, 30, 40, 50, 60, 70]
a =

   10   20   30   40   50   60   70

octave:13> a(3)
ans =  30
octave:14> a([2,4])
ans =

   20   40

octave:16> a([4:end])
ans =

   40   50   60   70

indexing with 
another vector

special 'end' 
index



  

Operations on Matrices - 1

 Now matrices!
 Transpose: 

 convert each row →  column vector 
(or convert each column→  row vector)

A=[
1 2 3
10 20 30
100 200 300] AT

=[
1 10 100
2 20 200
3 30 300]



  

Operations on Matrices - 1

 Now matrices!
 Transpose: 

 convert each row →  column vector 
(or convert each column→  row vector)

A=[
1 2 3
10 20 30
100 200 300] AT

=[
1 10 100
2 20 200
3 30 300]



  

Operations on Matrices - 1

 Now matrices!
 Transpose: 

 convert each row →  column vector 
(or convert each column→  row vector)

A=[
1 2 3
10 20 30
100 200 300] AT

=[
1 10 100
2 20 200
3 30 300]

B=[ 1 2 3
10 20 30] BT

=[
1 10
2 20
3 30 ]



  

Operations on Matrices - 2

 Sum and product with scalar: pretty much the same

[1 2 3
4 5 6 ]+[10 20 30

40 50 60]=[11 22 33
44 55 66]

5∗[1 2 3
4 5 6]=[ 5 10 15

20 25 30]



  

Matrix Product

 Inner product → Matrix product

 C = m x n,      A = m x p,     B = p x n,     
 Each entry of C is an inner product:

[
... ... ...

190 ... ...
... ... .. ]=[

10 20
30 40
50 60][1 2 3

4 5 6]

C=AB

cij=r i
A c j

B



  

Matrix Product

 Inner product → Matrix product

 C = m x n,      A = m x p,     B = p x n,     
 Each entry of C is an inner product:

[
... ... ...

190 ... ...
... ... .. ]=[

10 20
30 40
50 60 ][1 2 3

4 5 6 ]

C=AB

cij=r i
A c j

B

octave:22> A = [10, 20; 30, 40; 50, 60]
A =

   10   20
   30   40
   50   60

octave:23> B = [1,2,3;4,5,6]
B =

   1   2   3
   4   5   6

octave:24> A*B
ans =

    90   120   150
   190   260   330
   290   400   510



  

Matrix Product

 Inner product → Matrix product

 C = m x n,      A = m x p,     B = p x n,     
 Each entry of C is an inner product:

[
... ... ...

190 ... ...
... ... .. ]=[

10 20
30 40
50 60 ][1 2 3

4 5 6 ]

C=AB

cij=r i
A c j

B

octave:22> A = [10, 20; 30, 40; 50, 60]
A =

   10   20
   30   40
   50   60

octave:25> Btrans =  B'
Btrans =

   1   4
   2   5
   3   6

octave:26> A*Btrans 
error: operator *: nonconformant arguments (op1 is 3x2, op2 is 3x2)

Matrix size is 
important



  

Matrix-Vector Product

 Matrix-vector product is just a (frequently occurring) 
special case:

Ab=[
a11 ... a1n

... ... ...
am1 ... amn

][
b1

...
bn

]=[
c1

...
cm

]



  

Matrix-Vector Product

 Also represents a system of equations!

Ax=[
a11 ... a1n

... ... ...
am1 ... amn

][
x1

...
xn

]=[
c1

...
cm

]
a11 x1+a12 x2+...+a1n xn=c1

a21 x1+a22 x2+...+a2n xn=c2

...
am1 x1+am2 x2+...+amn xn=cm



  

Approximation of Data and Functions



  

Approximations of Functions

 Function approximation: 
Replace a function by a simpler one

 Reasons:
 Integration: replace a complex function with one that is 

easy to integrate.
 Function may be very complex: e.g. result of simulation.
 Function may be unknown...



  

“Approximation of Data”

 'the function unknown'
 it is only known at certain points
 but we also want the know at other points
 these points are called the data → “approximation of data”

 Interpolation: 
 find a function that goes exactly through data point

 Regression:
 find a function that minimizes some error measure
 better for noisy data.

 Related terms: curve fitting, extrapolation, classification

x0, y0 ,x1, y1 , ... ,xn , y n



  

Interpolation

 In the study of Geysers, an important quantity is the 
internal energy of steam.

(from Etter, 2011, Introduction to MATLAB)

Temp. (Celsius) int. energy 
(kJ/kg)

100 2506.7

150 2582.8

200 2658.1

250 2733.7

300 2810.4

400 2967.9

500 3131.6



  

Temperature Example

 Now we want to know the temp. at 430°C... 

50 100 150 200 250 300 350 400 450 500 550
0

500

1000

1500

2000

2500

3000

3500

int. energy (kJ/kg)

Temp. 
(Celsius)

int. 
energy 
(kJ/kg)

100 2506.7

150 2582.8

200 2658.1

250 2733.7

300 2810.4

400 2967.9

500 3131.6



  

Piecewise Constant Interpolation

 Interpolation: define a function that goes through data
 Piecewise interpolation: use a piecewise function

50 100 150 200 250 300 350 400 450 500 550
0

500

1000

1500

2000

2500

3000

3500



  50 100 150 200 250 300 350 400 450 500 550
0

500

1000

1500

2000

2500

3000

3500

Piecewise Constant Interpolation

 Interpolation: define a function that goes through data
 Piecewise interpolation: use a piecewise function



  50 100 150 200 250 300 350 400 450 500 550
0

500

1000

1500

2000
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3000

3500

Piecewise Constant Interpolation

 Interpolation: define a function that goes through data
 Piecewise interpolation: use a piecewise function

Also: “nearest-neighbor” interpolation
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0
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Piecewise Constant Interpolation

 Interpolation: define a function that goes through data
 Piecewise interpolation: use a piecewise function

Also: “nearest-neighbor” interpolation

%In Matlab / Octave
%
% use the 'interp1' function
%
% X, Y are the data
% Xfull is the vector of point x 
%       for which we want to interpolate

Yfull_n = interp1(X,Y,Xfull, 'nearest');



  

Piecewise Linear Interpolation

5 10 15 20 25 30 35 40 45 50 55
15

17

19

21

23

25

27

29

31

33

Y

 Piecewise linear interpolation:
just connect the data point with lines

X Y

10 22.2

20 26.5

30 27.2

40 28.1

50 30.3



  

Piecewise Linear Interpolation

5 10 15 20 25 30 35 40 45 50 55
15

17

19

21

23

25

27

29

31

33

Y

 Piecewise linear interpolation:
just connect the data point with lines

X Y

10 22.2

20 26.5

30 27.2

40 28.1

50 30.3

%In Matlab / Octave
%
% use the 'interp1' function
%
% X, Y are the data
% Xfull is the vector of point x 
%       for which we want to interpolate

Yfull_n = interp1(X,Y,Xfull, 'linear');



  

Cubic Splines Interpolation

 cubic-spline interpolation
 connect the data point smooth curves 

(third degree polynomials) 
 still piecewise

5 10 15 20 25 30 35 40 45 50 55
15

17

19

21

23

25

27

29

31

33

Y



  

Cubic Splines Interpolation

 cubic-spline interpolation
 connect the data point smooth curves 

(third degree polynomials) 
 still piecewise

5 10 15 20 25 30 35 40 45 50 55
15

17

19

21

23

25

27

29

31

33

Y

%In Matlab / Octave
%
% use the 'interp1' function
%
% X, Y are the data
% Xfull is the vector of point x 
%       for which we want to interpolate

Yfull_n = interp1(X,Y,Xfull, 'spline');



  

Polynomial Interpolation

 So far: piecewise
 but may want to find a single (non-piecewise) function.



  

Limits of Polynomial Interpolation

 Does not work very well when N is large.
 Is not very suitable if the data is obtained from noisy 

measurements.
 “Runge's phenomenon”

 In this case, we would
perhaps want to fit a straight
line.



  

Least-Squares Method

 In cases that we made noisy measurements,
we don't want to exactly fit the data.

 That is: fit a polynomial**
of degree p < n

 can still use 'polyfit'

** or other function



  

Least-Squares Method

 Common approach: 
minimize sum of the squares of the errors

 pick the     with min. SSE

SSE( f̃ )=∑
i=0

n

[ f̃ (xi)− y i]
2

f̃ (x)=a0+a1 x

f̃



  

Extra / old slides



  

Polynomial Interpolation

 Polynomial interpolation: fit a polynomial

(Prop. 3.1)
given a set of                   data points

→ There exist a unique polynomial

 
     (of degree n or less) that goes exactly through the points!

● “The interpolating polynomial” (of the 'data' or 'function')

x0, y0 ,x1, y1 , ... ,xn , y nN=n+1

Πn(x)=a0+a1 x+a2 x
2
+...+an x

n



  

Polynomial Interpolation

 Polynomial interpolation: fit a polynomial

(Prop. 3.1)
given a set of                   data points

→ There exist a unique polynomial

 
     (of degree n or less) that goes exactly through the points!

● “The interpolating polynomial” (of the 'data' or 'function')

x0, y0 ,x1, y1 , ... ,xn , y nN=n+1

Πn(x)=a0+a1 x+a2 x
2
+...+an x

n

So this is good news -
we can always find such a function.



  

Uniqueness of the Interpolating 
polynomial

 Why is this polynomial unique?
 Suppose not unique: both

perfectly fit the data

→                                    for all the N=n+1 data points
 That is it 

 “vanishes at n+1 points”
 “has n+1 roots”

 But: a polynomial of degree n has at most n roots!

→ contradiction!

Πn(x) ,Πn ' (x)

Πn(x)−Πn ' (x)=0



  

PCA vs. Least Squares

 What would happen when switching the axes...?

x
1

x
2

u=(u1,u2)

x

y

f (x)=a0+a1 x



  

PCA vs. Least Squares

 What would happen when switching the axes...?

x
2

x
1

u=(u1,u2)

y

x

f (x)=a0+a1 x


