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Recap

 Matlab...!
 Advanced calculator

 operator priorities, variable names, matlab functions
 Using scripts
 Example of data reductions using PCA
 Floating point numbers



  

This Lecture

 Vectors & Matrices in Matlab
 creating, indexing, using functions

 Given data: figure out how variables relate.
 E.g., given medical symptoms or measurements, what 

is the probability of some disease?
 Estimating functions from a number of data points.

 Interpolation, Least Squares Regression

NOTE: It is a lot...!



  

Matrices & Vectors



  

Motivation

 LA is the basis of many methods in science
 For us:

 Important to solve systems of linear equations

 Arise in many problems, e.g.:
 Identifying gas mixture from peaks in spectrum
 fitting a line to data.

a1 x1+a2 x2+...=c

a11 x1+a12 x2+...+a1n xn=c1

a21 x1+a22 x2+...+a2n xn=c2

...
am1 x1+am2 x2+...+amn xn=cm



  

Motivation

 LA is the basis of many methods in science
 For us:

 Important to solve systems of linear equations

 Arise in many problems, e.g.:
 Identifying gas mixture from peaks in spectrum
 fitting a line to data. 

a1 x1+a2 x2+...=c

a11 x1+a12 x2+...+a1n xn=c1

a21 x1+a22 x2+...+a2n xn=c2

...
am1 x1+am2 x2+...+amn xn=cm

● xj - the amount of gas of type j
● aij - how much a gas of type j 

      contributes to wavelength i
● ci  - the height of the peak of 

      wavelength i
    



  

Linear System of Equations

 Example

 Infinitely many, one,  
or no solution

 matrices make these easy work with

y

x

y=0.5x+1
y=2x−3

Another reason to care about 
matrices and vectors: 

they can make complex 
problems easy to write down!

    



  

Matrices

 A matrix with 
 m rows, 
 n columns

is a collection of numbers
 represented as a table

 A vector is a matrix that is
 1 row (row vector), or
 1 column (column vector)

A=[3 −2 6
5 2 −8 ]

B=[
5 54 6
75 24 81
25 5 435]
v= [3 −2 6 ]

w=[
5
75
25]



  

Matrices

 A matrix with 
 m rows, 
 n columns

is a collection of numbers
 represented as a table

 A vector is a matrix that is
 1 row (row vector), or
 1 column (column vector)

A=[3 −2 6
5 2 −8 ]

B=[
5 54 6
75 24 81
25 5 435]
v= [3 −2 6 ]

w=[
5
75
25]

octave:1> A = [3, -2, 6; 5, 2, -8]
A =

   3  -2   6
   5   2  -8

octave:2> w = [5;75;25]
w =

    5
   75
   25



  

Matrices

 A matrix with 
 m rows, 
 n columns

is a collection of numbers
 represented as a table

 A vector is a matrix that is
 1 row (row vector), or
 1 column (column vector)

A=[3 −2 6
5 2 −8 ]

B=[
5 54 6
75 24 81
25 5 435]
v= [3 −2 6 ]

w=[
5
75
25]

octave:1> A = [3, -2, 6; 5, 2, -8]
A =

   3  -2   6
   5   2  -8

octave:2> w = [5;75;25]
w =

    5
   75
   25

octave:3> a1 = [4:8]
a1 =

   4   5   6   7   8

octave:4> a2 = [4:2:8]
a2 =

   4   6   8



  

Some Special Matrices 

 Square matrix: m=n
 Identity matrix - 'eye(3)'
 Zero matrix – 'zeros(m,n)'

 Types: diagonal, triangular (upper & lower)

 '*' denotes any number

I=[
1 0 0
0 1 0
0 0 1]

D=[
∗ 0 0
0 ∗ 0
0 0 ∗ ] TU=[

∗ ∗ ∗
0 ∗ ∗
0 0 ∗] TL=[∗ 0 0

∗ ∗ 0
∗ ∗ ∗

]



  

Operations on Vectors - 1

 We can perform operations on them!
 First: vectors. Next: generalization to matrices.

 Transpose: convert row ↔ column vector 

w=[
5
75
25] wT

=[5 75 25 ]

v= [3 −2 6 ] vT
=[

3
−2
6 ]



  

Operations on Vectors - 1

 We can perform operations on them!
 First: vectors. Next: generalization to matrices.

 Transpose: convert row ↔ column vector 

w=[
5
75
25] wT

=[5 75 25 ]

v= [3 −2 6 ] vT
=[

3
−2
6 ]

octave:9> a = [1,4,-2498, 12.4]
a =

      1.0000      4.0000  -2498.0000     12.4000

octave:10> a'
ans =

      1.0000
      4.0000
  -2498.0000
     12.4000

octave:11> a''
ans =

      1.0000      4.0000  -2498.0000     12.4000



  

Operations on Vectors - 2

 Sum
 Product with scalar 

 Inner product (also: 'scalar product' or 'dot product')

[1 2 3 ]+ [10 20 30 ]=[11 22 33 ]

5∗[1 2 3 ]=[5 10 15 ]

(v ,w)=vT w=∑
k=1

n

vk wk



  

Operations on Vectors - 2

 Sum
 Product with scalar 

 Inner product (also: 'scalar product' or 'dot product')

[1 2 3 ]+ [10 20 30 ]=[11 22 33 ]

5∗[1 2 3 ]=[5 10 15 ]

[1 2 3 ] [
10
20
30]=1∗10+2∗20+3∗30=10+40+90=140

(v ,w)=vT w=∑
k=1

n

vk wk

v=[
1
2
3] ,w=[

10
20
30]



  

Operations on Vectors - 2

 Sum
 Product with scalar 

 Inner product (also: 'scalar product' or 'dot product')

[1 2 3 ]+ [10 20 30 ]=[11 22 33 ]

5∗[1 2 3 ]=[5 10 15 ]

[1 2 3 ] [
10
20
30]=1∗10+2∗20+3∗30=10+40+90=140

(v ,w)=vT w=∑
k=1

n

vk wk

v=[
1
2
3] ,w=[

10
20
30]

octave:4> a = [1;2;3]
a =

   1
   2
   3

octave:5> b = [4;5;6]
b =

   4
   5
   6

octave:6> dot(a,b)
ans =  32
octave:7> a'*b
ans =  32



  

Vector Indexing

 Retrieve parts of vectors

octave:12> a = [10, 20, 30, 40, 50, 60, 70]
a =

   10   20   30   40   50   60   70

octave:13> a(3)
ans =  30
octave:14> a([2,4])
ans =

   20   40

octave:16> a([4:end])
ans =

   40   50   60   70



  

Vector Indexing

 Retrieve parts of vectors

octave:12> a = [10, 20, 30, 40, 50, 60, 70]
a =

   10   20   30   40   50   60   70

octave:13> a(3)
ans =  30
octave:14> a([2,4])
ans =

   20   40

octave:16> a([4:end])
ans =

   40   50   60   70

indexing with 
another vector

special 'end' 
index



  

Operations on Matrices - 1

 Now matrices!
 Transpose: 

 convert each row →  column vector 
(or convert each column→  row vector)

A=[
1 2 3
10 20 30
100 200 300] AT

=[
1 10 100
2 20 200
3 30 300]



  

Operations on Matrices - 1

 Now matrices!
 Transpose: 

 convert each row →  column vector 
(or convert each column→  row vector)

A=[
1 2 3
10 20 30
100 200 300] AT

=[
1 10 100
2 20 200
3 30 300]



  

Operations on Matrices - 1

 Now matrices!
 Transpose: 

 convert each row →  column vector 
(or convert each column→  row vector)

A=[
1 2 3
10 20 30
100 200 300] AT

=[
1 10 100
2 20 200
3 30 300]

B=[ 1 2 3
10 20 30] BT

=[
1 10
2 20
3 30 ]



  

Operations on Matrices - 2

 Sum and product with scalar: pretty much the same

[1 2 3
4 5 6 ]+[10 20 30

40 50 60]=[11 22 33
44 55 66]

5∗[1 2 3
4 5 6]=[ 5 10 15

20 25 30]



  

Matrix Product

 Inner product → Matrix product

 C = m x n,      A = m x p,     B = p x n,     
 Each entry of C is an inner product:

[
... ... ...

190 ... ...
... ... .. ]=[

10 20
30 40
50 60][1 2 3

4 5 6]

C=AB

cij=r i
A c j

B



  

Matrix Product

 Inner product → Matrix product

 C = m x n,      A = m x p,     B = p x n,     
 Each entry of C is an inner product:

[
... ... ...

190 ... ...
... ... .. ]=[

10 20
30 40
50 60 ][1 2 3

4 5 6 ]

C=AB

cij=r i
A c j

B

octave:22> A = [10, 20; 30, 40; 50, 60]
A =

   10   20
   30   40
   50   60

octave:23> B = [1,2,3;4,5,6]
B =

   1   2   3
   4   5   6

octave:24> A*B
ans =

    90   120   150
   190   260   330
   290   400   510



  

Matrix Product

 Inner product → Matrix product

 C = m x n,      A = m x p,     B = p x n,     
 Each entry of C is an inner product:

[
... ... ...

190 ... ...
... ... .. ]=[

10 20
30 40
50 60 ][1 2 3

4 5 6 ]

C=AB

cij=r i
A c j

B

octave:22> A = [10, 20; 30, 40; 50, 60]
A =

   10   20
   30   40
   50   60

octave:25> Btrans =  B'
Btrans =

   1   4
   2   5
   3   6

octave:26> A*Btrans 
error: operator *: nonconformant arguments (op1 is 3x2, op2 is 3x2)

Matrix size is 
important



  

Matrix-Vector Product

 Matrix-vector product is just a (frequently occurring) 
special case:

Ab=[
a11 ... a1n

... ... ...
am1 ... amn

][
b1

...
bn

]=[
c1

...
cm

]



  

Matrix-Vector Product

 Also represents a system of equations!

Ax=[
a11 ... a1n

... ... ...
am1 ... amn

][
x1

...
xn

]=[
c1

...
cm

]
a11 x1+a12 x2+...+a1n xn=c1

a21 x1+a22 x2+...+a2n xn=c2

...
am1 x1+am2 x2+...+amn xn=cm



  

Approximation of Data and Functions



  

Approximations of Functions

 Function approximation: 
Replace a function by a simpler one

 Reasons:
 Integration: replace a complex function with one that is 

easy to integrate.
 Function may be very complex: e.g. result of simulation.
 Function may be unknown...



  

“Approximation of Data”

 'the function unknown'
 it is only known at certain points
 but we also want the know at other points
 these points are called the data → “approximation of data”

 Interpolation: 
 find a function that goes exactly through data point

 Regression:
 find a function that minimizes some error measure
 better for noisy data.

 Related terms: curve fitting, extrapolation, classification

x0, y0 ,x1, y1 , ... ,xn , y n



  

Interpolation

 In the study of Geysers, an important quantity is the 
internal energy of steam.

(from Etter, 2011, Introduction to MATLAB)

Temp. (Celsius) int. energy 
(kJ/kg)

100 2506.7

150 2582.8

200 2658.1

250 2733.7

300 2810.4

400 2967.9

500 3131.6



  

Temperature Example

 Now we want to know the temp. at 430°C... 

50 100 150 200 250 300 350 400 450 500 550
0

500

1000

1500

2000

2500

3000

3500

int. energy (kJ/kg)

Temp. 
(Celsius)

int. 
energy 
(kJ/kg)

100 2506.7

150 2582.8

200 2658.1

250 2733.7

300 2810.4

400 2967.9

500 3131.6



  

Piecewise Constant Interpolation

 Interpolation: define a function that goes through data
 Piecewise interpolation: use a piecewise function

50 100 150 200 250 300 350 400 450 500 550
0

500

1000

1500

2000

2500

3000

3500



  50 100 150 200 250 300 350 400 450 500 550
0

500

1000

1500

2000

2500

3000

3500

Piecewise Constant Interpolation

 Interpolation: define a function that goes through data
 Piecewise interpolation: use a piecewise function



  50 100 150 200 250 300 350 400 450 500 550
0

500

1000

1500

2000

2500

3000

3500

Piecewise Constant Interpolation

 Interpolation: define a function that goes through data
 Piecewise interpolation: use a piecewise function

Also: “nearest-neighbor” interpolation



  50 100 150 200 250 300 350 400 450 500 550
0

500

1000

1500
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Piecewise Constant Interpolation

 Interpolation: define a function that goes through data
 Piecewise interpolation: use a piecewise function

Also: “nearest-neighbor” interpolation

%In Matlab / Octave
%
% use the 'interp1' function
%
% X, Y are the data
% Xfull is the vector of point x 
%       for which we want to interpolate

Yfull_n = interp1(X,Y,Xfull, 'nearest');



  

Piecewise Linear Interpolation

5 10 15 20 25 30 35 40 45 50 55
15

17

19

21

23

25

27

29

31

33

Y

 Piecewise linear interpolation:
just connect the data point with lines

X Y

10 22.2

20 26.5

30 27.2

40 28.1

50 30.3



  

Piecewise Linear Interpolation

5 10 15 20 25 30 35 40 45 50 55
15

17

19

21

23

25

27

29

31

33

Y

 Piecewise linear interpolation:
just connect the data point with lines

X Y

10 22.2

20 26.5

30 27.2

40 28.1

50 30.3

%In Matlab / Octave
%
% use the 'interp1' function
%
% X, Y are the data
% Xfull is the vector of point x 
%       for which we want to interpolate

Yfull_n = interp1(X,Y,Xfull, 'linear');



  

Cubic Splines Interpolation

 cubic-spline interpolation
 connect the data point smooth curves 

(third degree polynomials) 
 still piecewise

5 10 15 20 25 30 35 40 45 50 55
15

17

19

21

23

25

27

29

31

33

Y



  

Cubic Splines Interpolation

 cubic-spline interpolation
 connect the data point smooth curves 

(third degree polynomials) 
 still piecewise

5 10 15 20 25 30 35 40 45 50 55
15

17

19

21

23

25

27

29

31

33

Y

%In Matlab / Octave
%
% use the 'interp1' function
%
% X, Y are the data
% Xfull is the vector of point x 
%       for which we want to interpolate

Yfull_n = interp1(X,Y,Xfull, 'spline');



  

Polynomial Interpolation

 So far: piecewise
 but may want to find a single (non-piecewise) function.



  

Limits of Polynomial Interpolation

 Does not work very well when N is large.
 Is not very suitable if the data is obtained from noisy 

measurements.
 “Runge's phenomenon”

 In this case, we would
perhaps want to fit a straight
line.



  

Least-Squares Method

 In cases that we made noisy measurements,
we don't want to exactly fit the data.

 That is: fit a polynomial**
of degree p < n

 can still use 'polyfit'

** or other function



  

Least-Squares Method

 Common approach: 
minimize sum of the squares of the errors

 pick the     with min. SSE

SSE( f̃ )=∑
i=0

n

[ f̃ (xi)− y i]
2

f̃ (x)=a0+a1 x

f̃



  

Extra / old slides



  

Polynomial Interpolation

 Polynomial interpolation: fit a polynomial

(Prop. 3.1)
given a set of                   data points

→ There exist a unique polynomial

 
     (of degree n or less) that goes exactly through the points!

● “The interpolating polynomial” (of the 'data' or 'function')

x0, y0 ,x1, y1 , ... ,xn , y nN=n+1

Πn(x)=a0+a1 x+a2 x
2
+...+an x

n



  

Polynomial Interpolation

 Polynomial interpolation: fit a polynomial

(Prop. 3.1)
given a set of                   data points

→ There exist a unique polynomial

 
     (of degree n or less) that goes exactly through the points!

● “The interpolating polynomial” (of the 'data' or 'function')

x0, y0 ,x1, y1 , ... ,xn , y nN=n+1

Πn(x)=a0+a1 x+a2 x
2
+...+an x

n

So this is good news -
we can always find such a function.



  

Uniqueness of the Interpolating 
polynomial

 Why is this polynomial unique?
 Suppose not unique: both

perfectly fit the data

→                                    for all the N=n+1 data points
 That is it 

 “vanishes at n+1 points”
 “has n+1 roots”

 But: a polynomial of degree n has at most n roots!

→ contradiction!

Πn(x) ,Πn ' (x)

Πn(x)−Πn ' (x)=0



  

PCA vs. Least Squares

 What would happen when switching the axes...?

x
1

x
2

u=(u1,u2)

x

y

f (x)=a0+a1 x



  

PCA vs. Least Squares

 What would happen when switching the axes...?

x
2

x
1

u=(u1,u2)

y

x

f (x)=a0+a1 x


