

Scientific Computing 2013
Maastricht Science Program

Week 3

Frans Oliehoek
<frans.oliehoek@maastrichtuniversity.nl>

Recap

 Matlab...!
 Advanced calculator

 operator priorities, variable names, matlab functions
 Using scripts
 Example of data reductions using PCA
 Floating point numbers

This Lecture

 Vectors & Matrices in Matlab
 creating, indexing, using functions

 Given data: figure out how variables relate.
 E.g., given medical symptoms or measurements, what

is the probability of some disease?
 Estimating functions from a number of data points.

 Interpolation, Least Squares Regression

NOTE: It is a lot...!

Matrices & Vectors

Motivation

 LA is the basis of many methods in science
 For us:

 Important to solve systems of linear equations

 Arise in many problems, e.g.:
 Identifying gas mixture from peaks in spectrum
 fitting a line to data.

a1 x1+a2 x2+...=c

a11 x1+a12 x2+...+a1n xn=c1

a21 x1+a22 x2+...+a2n xn=c2

...
am1 x1+am2 x2+...+amn xn=cm

Motivation

 LA is the basis of many methods in science
 For us:

 Important to solve systems of linear equations

 Arise in many problems, e.g.:
 Identifying gas mixture from peaks in spectrum
 fitting a line to data.

a1 x1+a2 x2+...=c

a11 x1+a12 x2+...+a1n xn=c1

a21 x1+a22 x2+...+a2n xn=c2

...
am1 x1+am2 x2+...+amn xn=cm

● xj - the amount of gas of type j
● aij - how much a gas of type j

 contributes to wavelength i
● ci - the height of the peak of

 wavelength i

Linear System of Equations

 Example

 Infinitely many, one,
or no solution

 matrices make these easy work with

y

x

y=0.5x+1
y=2x−3

Another reason to care about
matrices and vectors:

they can make complex
problems easy to write down!

Matrices

 A matrix with
 m rows,
 n columns

is a collection of numbers
 represented as a table

 A vector is a matrix that is
 1 row (row vector), or
 1 column (column vector)

A=[3 −2 6
5 2 −8]

B=[
5 54 6
75 24 81
25 5 435]
v= [3 −2 6]

w=[
5
75
25]

Matrices

 A matrix with
 m rows,
 n columns

is a collection of numbers
 represented as a table

 A vector is a matrix that is
 1 row (row vector), or
 1 column (column vector)

A=[3 −2 6
5 2 −8]

B=[
5 54 6
75 24 81
25 5 435]
v= [3 −2 6]

w=[
5
75
25]

octave:1> A = [3, -2, 6; 5, 2, -8]
A =

 3 -2 6
 5 2 -8

octave:2> w = [5;75;25]
w =

 5
 75
 25

Matrices

 A matrix with
 m rows,
 n columns

is a collection of numbers
 represented as a table

 A vector is a matrix that is
 1 row (row vector), or
 1 column (column vector)

A=[3 −2 6
5 2 −8]

B=[
5 54 6
75 24 81
25 5 435]
v= [3 −2 6]

w=[
5
75
25]

octave:1> A = [3, -2, 6; 5, 2, -8]
A =

 3 -2 6
 5 2 -8

octave:2> w = [5;75;25]
w =

 5
 75
 25

octave:3> a1 = [4:8]
a1 =

 4 5 6 7 8

octave:4> a2 = [4:2:8]
a2 =

 4 6 8

Some Special Matrices

 Square matrix: m=n
 Identity matrix - 'eye(3)'
 Zero matrix – 'zeros(m,n)'

 Types: diagonal, triangular (upper & lower)

 '*' denotes any number

I=[
1 0 0
0 1 0
0 0 1]

D=[
∗ 0 0
0 ∗ 0
0 0 ∗] TU=[

∗ ∗ ∗
0 ∗ ∗
0 0 ∗] TL=[∗ 0 0

∗ ∗ 0
∗ ∗ ∗

]

Operations on Vectors - 1

 We can perform operations on them!
 First: vectors. Next: generalization to matrices.

 Transpose: convert row ↔ column vector

w=[
5
75
25] wT

=[5 75 25]

v= [3 −2 6] vT
=[

3
−2
6]

Operations on Vectors - 1

 We can perform operations on them!
 First: vectors. Next: generalization to matrices.

 Transpose: convert row ↔ column vector

w=[
5
75
25] wT

=[5 75 25]

v= [3 −2 6] vT
=[

3
−2
6]

octave:9> a = [1,4,-2498, 12.4]
a =

 1.0000 4.0000 -2498.0000 12.4000

octave:10> a'
ans =

 1.0000
 4.0000
 -2498.0000
 12.4000

octave:11> a''
ans =

 1.0000 4.0000 -2498.0000 12.4000

Operations on Vectors - 2

 Sum
 Product with scalar

 Inner product (also: 'scalar product' or 'dot product')

[1 2 3]+ [10 20 30]=[11 22 33]

5∗[1 2 3]=[5 10 15]

(v ,w)=vT w=∑
k=1

n

vk wk

Operations on Vectors - 2

 Sum
 Product with scalar

 Inner product (also: 'scalar product' or 'dot product')

[1 2 3]+ [10 20 30]=[11 22 33]

5∗[1 2 3]=[5 10 15]

[1 2 3] [
10
20
30]=1∗10+2∗20+3∗30=10+40+90=140

(v ,w)=vT w=∑
k=1

n

vk wk

v=[
1
2
3] ,w=[

10
20
30]

Operations on Vectors - 2

 Sum
 Product with scalar

 Inner product (also: 'scalar product' or 'dot product')

[1 2 3]+ [10 20 30]=[11 22 33]

5∗[1 2 3]=[5 10 15]

[1 2 3] [
10
20
30]=1∗10+2∗20+3∗30=10+40+90=140

(v ,w)=vT w=∑
k=1

n

vk wk

v=[
1
2
3] ,w=[

10
20
30]

octave:4> a = [1;2;3]
a =

 1
 2
 3

octave:5> b = [4;5;6]
b =

 4
 5
 6

octave:6> dot(a,b)
ans = 32
octave:7> a'*b
ans = 32

Vector Indexing

 Retrieve parts of vectors

octave:12> a = [10, 20, 30, 40, 50, 60, 70]
a =

 10 20 30 40 50 60 70

octave:13> a(3)
ans = 30
octave:14> a([2,4])
ans =

 20 40

octave:16> a([4:end])
ans =

 40 50 60 70

Vector Indexing

 Retrieve parts of vectors

octave:12> a = [10, 20, 30, 40, 50, 60, 70]
a =

 10 20 30 40 50 60 70

octave:13> a(3)
ans = 30
octave:14> a([2,4])
ans =

 20 40

octave:16> a([4:end])
ans =

 40 50 60 70

indexing with
another vector

special 'end'
index

Operations on Matrices - 1

 Now matrices!
 Transpose:

 convert each row → column vector
(or convert each column→ row vector)

A=[
1 2 3
10 20 30
100 200 300] AT

=[
1 10 100
2 20 200
3 30 300]

Operations on Matrices - 1

 Now matrices!
 Transpose:

 convert each row → column vector
(or convert each column→ row vector)

A=[
1 2 3
10 20 30
100 200 300] AT

=[
1 10 100
2 20 200
3 30 300]

Operations on Matrices - 1

 Now matrices!
 Transpose:

 convert each row → column vector
(or convert each column→ row vector)

A=[
1 2 3
10 20 30
100 200 300] AT

=[
1 10 100
2 20 200
3 30 300]

B=[1 2 3
10 20 30] BT

=[
1 10
2 20
3 30]

Operations on Matrices - 2

 Sum and product with scalar: pretty much the same

[1 2 3
4 5 6]+[10 20 30

40 50 60]=[11 22 33
44 55 66]

5∗[1 2 3
4 5 6]=[5 10 15

20 25 30]

Matrix Product

 Inner product → Matrix product

 C = m x n, A = m x p, B = p x n,
 Each entry of C is an inner product:

[
...

190
...]=[

10 20
30 40
50 60][1 2 3

4 5 6]

C=AB

cij=r i
A c j

B

Matrix Product

 Inner product → Matrix product

 C = m x n, A = m x p, B = p x n,
 Each entry of C is an inner product:

[
...

190
...]=[

10 20
30 40
50 60][1 2 3

4 5 6]

C=AB

cij=r i
A c j

B

octave:22> A = [10, 20; 30, 40; 50, 60]
A =

 10 20
 30 40
 50 60

octave:23> B = [1,2,3;4,5,6]
B =

 1 2 3
 4 5 6

octave:24> A*B
ans =

 90 120 150
 190 260 330
 290 400 510

Matrix Product

 Inner product → Matrix product

 C = m x n, A = m x p, B = p x n,
 Each entry of C is an inner product:

[
...

190
...]=[

10 20
30 40
50 60][1 2 3

4 5 6]

C=AB

cij=r i
A c j

B

octave:22> A = [10, 20; 30, 40; 50, 60]
A =

 10 20
 30 40
 50 60

octave:25> Btrans = B'
Btrans =

 1 4
 2 5
 3 6

octave:26> A*Btrans
error: operator *: nonconformant arguments (op1 is 3x2, op2 is 3x2)

Matrix size is
important

Matrix-Vector Product

 Matrix-vector product is just a (frequently occurring)
special case:

Ab=[
a11 ... a1n

...
am1 ... amn

][
b1

...
bn

]=[
c1

...
cm

]

Matrix-Vector Product

 Also represents a system of equations!

Ax=[
a11 ... a1n

...
am1 ... amn

][
x1

...
xn

]=[
c1

...
cm

]
a11 x1+a12 x2+...+a1n xn=c1

a21 x1+a22 x2+...+a2n xn=c2

...
am1 x1+am2 x2+...+amn xn=cm

Approximation of Data and Functions

Approximations of Functions

 Function approximation:
Replace a function by a simpler one

 Reasons:
 Integration: replace a complex function with one that is

easy to integrate.
 Function may be very complex: e.g. result of simulation.
 Function may be unknown...

“Approximation of Data”

 'the function unknown'
 it is only known at certain points
 but we also want the know at other points
 these points are called the data → “approximation of data”

 Interpolation:
 find a function that goes exactly through data point

 Regression:
 find a function that minimizes some error measure
 better for noisy data.

 Related terms: curve fitting, extrapolation, classification

x0, y0 ,x1, y1 , ... ,xn , y n

Interpolation

 In the study of Geysers, an important quantity is the
internal energy of steam.

(from Etter, 2011, Introduction to MATLAB)

Temp. (Celsius) int. energy
(kJ/kg)

100 2506.7

150 2582.8

200 2658.1

250 2733.7

300 2810.4

400 2967.9

500 3131.6

Temperature Example

 Now we want to know the temp. at 430°C...

50 100 150 200 250 300 350 400 450 500 550
0

500

1000

1500

2000

2500

3000

3500

int. energy (kJ/kg)

Temp.
(Celsius)

int.
energy
(kJ/kg)

100 2506.7

150 2582.8

200 2658.1

250 2733.7

300 2810.4

400 2967.9

500 3131.6

Piecewise Constant Interpolation

 Interpolation: define a function that goes through data
 Piecewise interpolation: use a piecewise function

50 100 150 200 250 300 350 400 450 500 550
0

500

1000

1500

2000

2500

3000

3500

 50 100 150 200 250 300 350 400 450 500 550
0

500

1000

1500

2000

2500

3000

3500

Piecewise Constant Interpolation

 Interpolation: define a function that goes through data
 Piecewise interpolation: use a piecewise function

 50 100 150 200 250 300 350 400 450 500 550
0

500

1000

1500

2000

2500

3000

3500

Piecewise Constant Interpolation

 Interpolation: define a function that goes through data
 Piecewise interpolation: use a piecewise function

Also: “nearest-neighbor” interpolation

 50 100 150 200 250 300 350 400 450 500 550
0

500

1000

1500

2000

2500

3000

3500

Piecewise Constant Interpolation

 Interpolation: define a function that goes through data
 Piecewise interpolation: use a piecewise function

Also: “nearest-neighbor” interpolation

%In Matlab / Octave
%
% use the 'interp1' function
%
% X, Y are the data
% Xfull is the vector of point x
% for which we want to interpolate

Yfull_n = interp1(X,Y,Xfull, 'nearest');

Piecewise Linear Interpolation

5 10 15 20 25 30 35 40 45 50 55
15

17

19

21

23

25

27

29

31

33

Y

 Piecewise linear interpolation:
just connect the data point with lines

X Y

10 22.2

20 26.5

30 27.2

40 28.1

50 30.3

Piecewise Linear Interpolation

5 10 15 20 25 30 35 40 45 50 55
15

17

19

21

23

25

27

29

31

33

Y

 Piecewise linear interpolation:
just connect the data point with lines

X Y

10 22.2

20 26.5

30 27.2

40 28.1

50 30.3

%In Matlab / Octave
%
% use the 'interp1' function
%
% X, Y are the data
% Xfull is the vector of point x
% for which we want to interpolate

Yfull_n = interp1(X,Y,Xfull, 'linear');

Cubic Splines Interpolation

 cubic-spline interpolation
 connect the data point smooth curves

(third degree polynomials)
 still piecewise

5 10 15 20 25 30 35 40 45 50 55
15

17

19

21

23

25

27

29

31

33

Y

Cubic Splines Interpolation

 cubic-spline interpolation
 connect the data point smooth curves

(third degree polynomials)
 still piecewise

5 10 15 20 25 30 35 40 45 50 55
15

17

19

21

23

25

27

29

31

33

Y

%In Matlab / Octave
%
% use the 'interp1' function
%
% X, Y are the data
% Xfull is the vector of point x
% for which we want to interpolate

Yfull_n = interp1(X,Y,Xfull, 'spline');

Polynomial Interpolation

 So far: piecewise
 but may want to find a single (non-piecewise) function.

Limits of Polynomial Interpolation

 Does not work very well when N is large.
 Is not very suitable if the data is obtained from noisy

measurements.
 “Runge's phenomenon”

 In this case, we would
perhaps want to fit a straight
line.

Least-Squares Method

 In cases that we made noisy measurements,
we don't want to exactly fit the data.

 That is: fit a polynomial**
of degree p < n

 can still use 'polyfit'

** or other function

Least-Squares Method

 Common approach:
minimize sum of the squares of the errors

 pick the with min. SSE

SSE(f̃)=∑
i=0

n

[f̃ (xi)− y i]
2

f̃ (x)=a0+a1 x

f̃

Extra / old slides

Polynomial Interpolation

 Polynomial interpolation: fit a polynomial

(Prop. 3.1)
given a set of data points

→ There exist a unique polynomial

 (of degree n or less) that goes exactly through the points!

● “The interpolating polynomial” (of the 'data' or 'function')

x0, y0 ,x1, y1 , ... ,xn , y nN=n+1

Πn(x)=a0+a1 x+a2 x
2
+...+an x

n

Polynomial Interpolation

 Polynomial interpolation: fit a polynomial

(Prop. 3.1)
given a set of data points

→ There exist a unique polynomial

 (of degree n or less) that goes exactly through the points!

● “The interpolating polynomial” (of the 'data' or 'function')

x0, y0 ,x1, y1 , ... ,xn , y nN=n+1

Πn(x)=a0+a1 x+a2 x
2
+...+an x

n

So this is good news -
we can always find such a function.

Uniqueness of the Interpolating
polynomial

 Why is this polynomial unique?
 Suppose not unique: both

perfectly fit the data

→ for all the N=n+1 data points
 That is it

 “vanishes at n+1 points”
 “has n+1 roots”

 But: a polynomial of degree n has at most n roots!

→ contradiction!

Πn(x) ,Πn ' (x)

Πn(x)−Πn ' (x)=0

PCA vs. Least Squares

 What would happen when switching the axes...?

x
1

x
2

u=(u1,u2)

x

y

f (x)=a0+a1 x

PCA vs. Least Squares

 What would happen when switching the axes...?

x
2

x
1

u=(u1,u2)

y

x

f (x)=a0+a1 x

