PRA1004 Scientific Computing — Example
report 1

Your names and email

April 19, 2012

Note: this is an example report showing what I would like to see based on the
new guidelines. As such, the filenames for the scripts are different from the ones
indicates in the document with assignments.

This lab session gives an introduction to Matlab, a high level programming
environment.
Assignment 1

We familiarized ourselves with Matlab, no questions need to be answered.

Assignment 2

Parts (1)—(3). We created script2.m in an appropriate directory.’ It is
important to change to the directory (using the cd command) the script is in,
otherwise Matlab can’t find it. (Actually, it would also be possible to edit the
so-called ‘path’ but this is not required.)

Part (4). We implemented the script to perform the required computations.
The important parts are the following:

% script2.m

% the following are in meters

length = 5;
heigth = 2;
depth = 7;

volume = length * heigth * depth %<- m~3

INote that this is called ‘scriptl’ in the assignment. However, to keep things clear. From
now on, the script for assignment X will be called scriptX.



n = 23; Y%<- number of people
app = volume / 23; 7% air per person

% Note: app is still in m"3, convert to liters
app_1 = app * 1000
minutes = app_l / 8

Part (6). We implemented the required tasks (still in scripti.m) . The
important parts are as follows:

(a) print 1-25.

for i = [1:25]
disp(i)
end

(b) print the powers of 2.

n=2;

while (n<100)
disp(n);
n=mn%*2;

end

(c) print numbers divisible by 3 or 7.

for n = [1:50]
divisible_by_3 = mod(n,3) == 0;
divisible_by_7 = mod(n,7) == 0;
divisible_by_3_or_7 = divisible_by_3 | divisible_by_7;
if divisible_by_3_or_7 %<- of course we could have done all the testing here!
disp(n)

end
end

(d) print prime numbers.

for n = [1:50]

f = factor(n);

if numel(f) == 1 %<- ’numel’ gives number of elements
%(could also have used ’size’)
n_is_prime = 1; J%<- n is prime if it has 1 factor

else
n_is_prime = 0;

end



if n_is_prime
disp(n)
end
end

Assignment 3

3.1 Functions in an M-file

We created script3.m. It demonstrates the use of the ‘print_primes’ function.
The latter function is itself based on a new function that we called ‘is_prime’.
This is the ‘print_primes’ function:

function print_primes(a, b)
% function print_primes(a, b) - NOTE: no output argument!
)
% this function print all primes between a and b
for n = [a:b]

if is_prime(n)

disp(n)

end

end

This is the is_prime function:

function bool = is_prime(n)

%function bool = is_prime(n) - NOTE: ’bool’ is the output argument!
h

% this function tests if n is a prime by making use of the

% matlab ’factor’ command

f = factor(n);

if numel(f) == 1 %<- ’numel’ gives number of elements
bool = 1;

else
bool = 0;

end

% return from the function (this is not crucial when putting each function
% in a seperate file)
return;

3.2 Anonymous Functions

Parts (1-3) The following was also implemented in script3:

% 3.2.1 defining the functions



sub = @(a,b) a-b;
mul = @(a,b) ax*b;

% 3.2.2 copying
copy = sub;

% 3.2.3. swapping:
sub = mul;
mul = copy;

sub_test = sub(3,3)
mul_test = mul(3,3)

(4) The feval function can be used to call a anonymous function. This is
especially useful when you are calling a anomous function of which you do not
know in advance what it is going to be. For instance, in the Newton method
algorithm described in the text book, two anonymous functions is given as an
argument (for both f and f’). In this case feval can be used to evaluate the
functions.

Assignment 4 (BONUS)

’ Omitted from example report, since it is part of the new assignment.




