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This Lecture

 Last week: 
 PCA – how?
 numerical methods for differentiation and integration

 This week
 Differential Equations
 Questions 



  

Part 1: Differential Equations



  

The World is Dynamic

 Many problems studied in science are 'dynamic'
 change over time

 Examples:
 change of temperature

 trajectory of a baseball

 populations of animals

 changes of price in stocks or options

 Commonly modeled with differential equations
 (Not to be confused with difference equations)



  

Example (wikipedia)

Visualization of heat transfer in a pump casing
● created by solving the “heat equation”. 
● Heat is generated internally 
● cooled at the boundary

→ steady state temperature distribution.



  

Differential Equations

 Simple growth of bacteria model:

 r – rate of growth
 p – population size

r (t )=C p(t )



  

Differential Equations

 Simple growth of bacteria model:

 r – rate of growth
 p – population size

r (t )=C p(t )

Question to solve: 
● How many bacteria are there at some time t
● given p(t

0 
) = 41

?

● More general: find p(t) for some range a<t<b



  

Differential Equations

 Simple growth of bacteria model:

 r – rate of growth
 p – population size

dp(t )
dt

=C p(t )

This is the derivative of p!



  

Differential Equations

 Simple growth of bacteria model:

 r – rate of growth
 p – population size

dp(t )
dt

=C p(t )

Also:

ṗ(t )=C p(t )

ṗ=C p

p' (t )=C p(t )



  

Differential Equations

 Simple growth of bacteria model:

 r – rate of growth
 p – population size

 Different types
 ordinary (ODEs) : all derivatives w.r.t. 1 'independent variable'

(vs. 'partial DE' with multiple variables)

 Order of a DE: maximum order of differentiation.

dp(t )
dt

=C p(t ) p' (t )=C p(t )



  

Problem 

 Given an ODE

 find a function y(t) that satisfies it.

y ' (t )=f (t , y (t )) , ∀ t∈I
some time 
interval



  

Problem 

 Given an ODE

 find a function y(t) that satisfies it.

y ' (t )=f (t , y (t )) , ∀ t∈I

f (t , y (t ))=C y (t )



  

Problem 

 Given an ODE

 find a function y(t) that satisfies it.
 But: there are 

infinitely many solutions!

y ' (t )=f (t , y (t )) , ∀ t∈I

f (t , y (t ))=C y (t )

t

y(t)



  

Direction Fields

y ' (t )=f (t , y (t )) , ∀ t∈I

t

y(t)

1

f (t , y (t ))=1 y (t )

 Given an ODE

 Many functions satisfy it...
 Let's plot the derivatives...

f (t , y (t ))=C y (t )

?



  

Direction Fields

y ' (t )=f (t , y (t )) , ∀ t∈I

t

y(t)

1

f (t , y (t ))=1 y (t )

 Given an ODE

 Many functions satisfy it...
 Let's plot the derivatives...

f (t , y (t ))=C y (t )



  

Direction Fields

y ' (t )=f (t , y (t )) , ∀ t∈I
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Direction Fields
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Direction Fields

y ' (t )=f (t , y (t )) , ∀ t∈I

t

y(t)

1

f (t , y (t ))=1 y (t )

 Given an ODE

 Many functions satisfy it...
 Let's plot the derivatives...

f (t , y (t ))=C y (t )



  

Initial Value problem

 Given an ODE

 find a function y(t) that satisfies it.
 Initial Value Problem

(also: 'Cauchy Problem')

 specifies y(t
0
)

→ unique solution

y ' (t )=f (t , y (t )) , ∀ t∈I

t

y(t)

y (t 0)=17



  

Initial Value problem

 Initial value problem:

 find a function y(t) that satisfies it

y ' (t )=f (t , y (t )) , ∀ t∈I

t

y(t)

y (t 0)=17

y (t0)= y0



  

Initial Value problem

 Initial value problem:

 find a function y(t) that satisfies it

y ' (t )=f (t , y (t )) , ∀ t∈I

t

y(t)

y (t 0)=17

y (t0)= y0

However...

● closed-form solutions y(t) only available for very special cases.

→ Need for numerical solutions!

Approach

● Discretization: divide interval I in short steps of length h

● At each node t
n 
compute 

● Numerical solution: 

un≈ y (tn)

{u0,u1, ... ,uN }



  

Initial Value problem

 Initial value problem:

 find a function y(t) that satisfies it

y ' (t )=f (t , y (t )) , ∀ t∈I

t

y(t)

y (t 0)=17

y (t0)= y0

However...

● closed-form solutions y(t) only available for very special cases.

→ Need for numerical solutions!

Approach

● Discretization: divide interval I in short steps of length h

● At each node t
n 
compute 

● Numerical solution: 

un≈ y (tn)

{u0,u1, ... ,uN }

Effectively we 
perform a 
simulation!



  

Forward Euler Method

 The forward Euler method
 just perform the 'simulation'
 shorthand f n=f (tn , un)

un+1=un+h f n



  

Forward Euler Method

 The forward Euler method
 just perform the 'simulation'
 shorthand f n=f (tn , un)

un+1=un+h f n

Example

t = (0,19)
h = 1
p(0) = 12740
r(p) = 0.1 * p

u0=12740



  

Forward Euler Method

 The forward Euler method
 just perform the 'simulation'
 shorthand f n=f (tn , un)

un+1=un+h f n

Example

t = (0,19)
h = 1
p(0) = 12740
r(p) = 0.1 * p

u0=12740

u1=u0+h∗r(u0)=12740+1∗1274.0=14014



  

Forward Euler Method

 The forward Euler method
 just perform the 'simulation'
 shorthand f n=f (tn , un)

un+1=un+h f n

Example

t = (0,19)
h = 1
p(0) = 12740
r(p) = 0.1 * p

u0=12740

u2=u1+h∗r (u1)=14014+1∗1401.4=15415.40

u1=u0+h∗r(u0)=12740+1∗1274.0=14014



  

Computational Issues

 How accurate is this?

 Does it 'converge' ?

 What is the order p of convergence?



  

Computational Issues

 How accurate is this?

 Does it 'converge' ?

 What is the order p of convergence?

Can we deriver an 
expression for the error?

Do we have

if h → 0, 
does error → 0 ?

∣err∣<C (h)=O (h p
)



  

Computational Issues

 How accurate is this?

 Does it 'converge' ?

 What is the order p of convergence?

Can we deriver an 
expression for the error?

Do we have

if h → 0, 
does error → 0 ?

∣err∣<C (h)=O (h p
)

● forward Euler method converges with order 1

● roughly: “h twice as small → error twice as small”

● the book discusses many methods with higher order.

● Matlab implements many:

ode23, ode45, ode113, ode15s, ode23s, ode23t, 

ode23tb

● “doc ode23”



  

Computational Issues

 Do they matter?
 yes...

 what to use?
Matlab's doc:

“ode45 should be 
first you try”



  

Reading

 ODEs: chap. 7 (7.1-7.3)
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