Scientific Computing Maastricht Science Program

Week 5

Frans Oliehoek
frans.oliehoek@maastrichtuniversity.nl

Announcements

- I will be more strict!
- Requirements updated...
- YOU are responsible that the submission satisfies the requirements!!!
- I will not email you until the rest has their mark.

Recap Last Two Week

- Supervised Learning
- find f that maps $\left\{\mathrm{x}_{1}^{()}, \ldots, \mathrm{x}_{\mathrm{D}}{ }^{(0)}\right\} \rightarrow \mathrm{y}^{())}$
- Interpolation
- f goes through the data points
- linear regression
- lossy fit, minimizes 'vertical' SSE $\boldsymbol{4}$
- Unsupervised Learning
- We just have data points $\left\{\mathrm{x}_{1}^{(0)}, \ldots, \mathrm{x}_{\mathrm{D}}{ }^{(0)}\right\}$
- PCA
- minimizes orthogonal projection

Recap: Clustering

- Clustering or Cluster Analysis has many applications
- Understanding
- Astronomy, Biology, etc.
- Data (pre)processing
- summarization of data set
- compression

- Are there questions about k-means clustering?

This Lecture

- Last week: unlabeled data (also 'unsupervised learning')
- data: just x
- Clustering
- Principle Components analysis (PCA) - what?
- This week
- Principle Components analysis (PCA) - how?
- Numerical differentiation and integration.

Part 1: Principal Component Analysis

-Recap
-How to do it?

PCA - Intuition

- How would you summarize this data using 1 dimension?
(what variable contains the most information?)

| Very important idea |
| :--- | :--- | :--- | :--- |
| The most information is |
| contained by the variable with |
| the largest spread. |
| • i.e., highest variance |

PCA - Intuition

- How would you summarize this data using 1 dimension?
(what variable contains the most information?)
Very important idea

The most information is
contained by the variable with
the largest spread.
i.e., highest variance

(Information Theory) | so if we have to chose |
| :--- |
| between x_{1} and x_{2} |
| \rightarrow remember x_{2} |
| Transform of k-th point: |
| $\left(x_{1}^{(k)}, x_{2}^{(k)}\right) \rightarrow\left(z_{1}^{(k)}\right)$ |
| where |
| $z_{1}^{(k)}=x_{2}^{(k)}$ |

PCA - Intuition

- How would you summarize this data using 1 dimension?

Transform of k-th point:

$$
\left(x_{1}^{(k)}, x_{2}^{(k)}\right) \rightarrow\left(z_{1}^{(k)}\right)
$$

where z_{1} is the orthogonal scalar projection on (unit vector) $u^{(1)}$:

$$
z_{1}^{(k)}=u_{1}^{(1)} x_{1}^{(k)}+u_{2}^{(1)} x_{2}^{(k)}=\left(u^{(1)}, x^{(k)}\right)
$$

More Principle Components

- $u^{(2)}$ is the direction with most 'remaining' variance
- orthogonal to $u^{(1)}$!

In general

- If the data is D-dimensional
- We can find D directions

$$
u^{(1)}, \ldots, u^{(D)}
$$

- Each direction itself is a D-vector:

$$
u^{(i)}=\left(u_{1,}^{(i)} \ldots, u_{D}^{(i)}\right)
$$

- Each direction is orthogonal to the others:

$$
\left(u^{(i)}, u^{(j)}\right)=0
$$

- The first direction is has most variance
- The least variance is in direction $u^{(D)}$

PCA - Goals

- All directions of high variance might be useful in itself
- Analysis of data
- In the lab you will analyze the ECG signal of a patient with a heart disease.

PCA - Goals

- All directions of high variance might be useful in itself
- But not for dimension reduction...
- Given X (N data points of D variables)
\rightarrow Convert to Z (N data points of d variables)

$$
\left.\begin{array}{c}
\left(x_{1}^{(0)}, x_{2}^{(0)}, \ldots, x_{D}^{(0)}\right) \\
\left(x_{1}^{(1)}, x_{2}^{(1)}, \ldots, x_{D}^{(0)}\right) \rightarrow\left(z_{1}^{(1)}, z_{2}^{(0)}, \ldots, z_{d}^{(0)}\right) \\
\left.z_{2}^{(1)}, \ldots, z_{d}^{(1)}\right) \\
\left(x_{1}^{(n)}, x_{2}^{(n)}, \ldots, x_{D}^{(n)}\right)
\end{array}\right)\left(z_{1}^{(n)}, z_{2}^{(n)}, \ldots, z_{d}^{(n)}\right)
$$

The vector $\left(Z_{i}^{(0)}, Z_{i}^{(1)}, \ldots, Z_{i}^{(n)}\right)$
is called the i-th principal component (of the data set)

PCA - Dimension Reduction

- Approach
- Step 1:
- find all directions (and principal components)

$$
\begin{aligned}
&\left(x_{1}^{(0)}, x_{2}^{(0)}, \ldots, x_{D}^{(0)}\right) \rightarrow\left(z_{1}^{(0)}, z_{2}^{(0)}, \ldots, z_{D}^{(0)}\right) \\
&\left(x_{1}^{(1)}, x_{2}^{(1)}, \ldots, x_{D}^{(1)}\right) \rightarrow\left(z_{1}^{(1)}, z_{2}^{(1)}, \ldots, z_{D}^{(1)}\right) \\
& \cdots \\
&\left(x_{1}^{(n)}, x_{2}^{(n)}, \ldots, x_{D}^{(n)}\right) \rightarrow\left(z_{1}^{(n)}, z_{2}^{(n)}, \ldots, z_{D}^{(n)}\right)
\end{aligned}
$$

- Step 2: ...?

PCA - Dimension Reduction

- Approach
- Step 1:
- find all directions (and principal components)

$$
\begin{aligned}
\left(x_{1}^{(0)}, x_{2}^{(0)}, \ldots, x_{D}^{(0)}\right) & \rightarrow\left(z_{1}^{(0)}, z_{2}^{(0)}, \ldots, z_{D}^{(0)}\right) \\
\left(x_{1}^{(1)}, x_{2}^{(1)}, \ldots, x_{D}^{(1)}\right) & \rightarrow\left(z_{1}^{(1)}, z_{2}^{(1)}, \ldots, z_{D}^{(1)}\right) \\
\left(x_{1}^{(n)}, x_{2}^{(n)}, \ldots, x_{D}^{(n)}\right) & \rightarrow(\underbrace{\left.z_{1}^{(n)}, z_{2}^{(n)}, \ldots, z_{D}^{(n)}\right)})
\end{aligned}
$$

- Step 2:
- keep only the directions with high variance.
\rightarrow the principal components with much information

$$
\begin{aligned}
\left(x_{1}^{(0)}, x_{2}^{(0)}, \ldots, x_{D}^{(0)}\right) & \rightarrow\left(z_{1}^{(0)}, z_{2}^{(0)}, \ldots, z_{d}^{(0)}\right) \\
\left(x_{1}^{(1)}, x_{2}^{(1)}, \ldots, x_{D}^{(1)}\right) & \rightarrow\left(z_{1}^{(1)}, z_{2}^{(1)}, \ldots, z_{d}^{(1)}\right) \\
& \cdots \\
\left(x_{1}^{(n)}, x_{2}^{(n)}, \ldots, x_{D}^{(n)}\right) & \rightarrow\left(z_{1}^{(n)}, z_{2}^{(n)}, \ldots, z_{d}^{(n)}\right)
\end{aligned}
$$

PCA - Dimension Reduction

- Approach
- Step 1:

$$
\begin{aligned}
& \left(x_{1}^{(0)}, x_{2}^{(0)}, \ldots, x_{D}^{(0)}\right) \rightarrow\left(z_{1}^{(0)}, z_{2}^{(0)}, \ldots, z_{D}^{(0)}\right) \\
& \left(x_{1}^{(1)}, x_{2}^{(1)}, \ldots, x_{D}^{(1)}\right) \rightarrow\left(z_{1}^{(1)}, z_{2}^{(1)}, \ldots, z_{D}^{(1)}\right)
\end{aligned}
$$

(and_nrincinal_onnnnnol)

PCA - More Concrete

- PCA
- finding all the directions, and
- principle components
- Data compression using PCA
- computing compressed representation
- computing reconstruction

PCA - More Concrete

- PCA
- finding all the directions, and
still to be shown
(using eigen decomposition of COV. matrix)
- principle components
- Data compression using PCA

Easy! for k-th point:

$$
z_{j}^{(k)}=\left(u^{(j)}, x^{(k)}\right)
$$

- computing compressed representation
- computing reconstruction

Easy!
For k-th point just keep
$\left(z_{1}^{(k)}, \ldots, z_{d}^{(k)}\right)$

still to be shown
(we show that data is a linear combination of the PCs)

PCA - More Concrete

- finding all the directions, and
stil to be shown
(using eigen decomposition of cov. matrix)
- principle components
- Data compression using PCA

$$
z_{j}^{(k)}=\left(u^{(j)}, x^{(k)}\right)
$$

- computing compressed representation
- computing reconstruction

Easy!
For k-th point just keep

$$
\left(z_{1}^{(k)}, \ldots, z_{d}^{(k)}\right)
$$

still to be shown (we show that data is a linear combination of the PCs)

Computing the directions U

Algorithm
Note: X is now $\mathrm{D} \times \mathrm{N}$ (before $\mathrm{N} \times \mathrm{D}$)

- X is the DxN data matrix
1)Preprocessing:
- scale the features
- make X zero mean

2) Compute the data covariance matrix
3) Perform eigen decomposition

- directions u_{i} are the eigenvectors of C
- variance of u_{i} is the corresponding eigenvalue

Computing the directions U

Algorithm

- X is the DxN data matrix
1)Preprocessing:
- scale the features
- make X zero mean

2) Compute the data covariance matrix
3) Perform eigen decomposition

- directions u_{i} are the eigenvectors of C
- variance of u_{i} is the corresponding eigenvalue

Computing the directions U

Algorithm

- X is the DxN data matrix
1)Preprocessing:
- scale the features
- make X zero mean

2) Compute the data covariance matrix
3) Perform eigen decomposition

- directions u_{i} are the eigenvectors of C
- variance of u_{i} is the corresponding eigenvalue

Computing the directions U

Algorithm

- X is the DxN data matrix
1)Preprocessing:
- scale the features
- Data covariance matrix
- make X zero mean

2) Compute the data covariance matrix

$$
C=\frac{1}{N} X X^{T}
$$

3) Perform eigen decomposition

- directions u_{i} are the eigenvectors of C
- variance of u_{i} is the corresponding eigenvalue

Computing the directions U

Algorithm

- X is the DxN data matrix
1)Preprocessing:
- scale the features
- make X zero mean

2) Compute the data covariance matrix
3) Perform eigen decomposition

- directions u_{i} are the eigenvectors of C
- variance of u_{i} is the corresponding eigenvalue

Computing the directions U

Algorithm

- X is the DxN data matrix
1)Preprocessing:
- A square matrix has eigenvectors: map to a multiple of themselves
- scale the features
- make X zero mean

2) Compute the data covariance matrix
3) Perform eigen decomposi

- directions u_{i} are the eigenvectors of C
- variance of u_{i} is the corresponding eigenvalue

PCA - More Concrete

- finding all the directions, and
- principle components
- Data compression using PCA
- computing compressed representation
- computing reconstruction

still to be shown
(using eigen decomposition of COV. matrix)

Easy! for k-th point:

$$
z_{j}^{(k)}=\left(u^{(j)}, x^{(k)}\right)
$$

Easy!
For k-th point just keep
$\left(z_{1}^{(k)}, \ldots, z_{d}^{(k)}\right)$
still to be shown
(we show that data is a linear combination of the PCs)

Data as Linear Combination of The Principal Components

- Starting from $z_{i}^{(k)}=u_{1}^{(i)} x_{1}^{(k)}+\ldots+u_{D}^{(i)} x_{D}^{(k)}$
- In matrix form $Z=U^{T} X$
- Note: X is still $\mathrm{D} \times \mathrm{N}$ (before $\mathrm{N} \times \mathrm{D}$)

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
z_{11} & \ldots & z_{1 \mathrm{n}} \\
\ldots & \ldots & \ldots \\
z_{D 1} & \ldots & z_{D n}
\end{array}\right]=\left[\begin{array}{ccc}
u_{11}^{T} & \ldots & u_{1 \mathrm{D}}^{T} \\
\ldots & \ldots & \ldots \\
u_{D 1}^{T} & \ldots & u_{D D}^{T}
\end{array}\right]\left[\begin{array}{ccc}
x_{11} & \ldots & x_{1 \mathrm{n}} \\
\ldots & \ldots & \ldots \\
x_{D 1} & \ldots & x_{D n}
\end{array}\right]} \\
& {\left[\left(\begin{array}{c}
\vdots \\
z^{(1)} \\
\vdots
\end{array}\right) \ldots\left(\begin{array}{c}
\vdots \\
z^{(n)} \\
\vdots
\end{array}\right)\right]=\left[\left(\begin{array}{ccc}
\ldots & u^{(1)} & \ldots
\end{array}\right)\right]\left[\left(\begin{array}{c}
\vdots \\
x^{(1)} \\
\\
\\
\ldots \\
\ldots \\
u^{(D)} \\
\ldots
\end{array}\right) \ldots\left(\begin{array}{c}
\vdots \\
x^{(n)} \\
\vdots
\end{array}\right)\right]}
\end{aligned}
$$

Data as Linear Combination of The Principal Components

- Starting from $z_{i}^{(k)}=u_{1}^{(i)} x_{1}^{(k)}+\ldots+u_{D}^{(i)} x_{D}^{(k)}$
- In matrix form $Z=U^{T} X$

$$
\left.\left.\begin{array}{l}
{\left[\begin{array}{ccc}
z_{11} & \ldots & Z_{1 \mathrm{n}} \\
\ldots & \ldots & \ldots \\
Z_{D 1} & \ldots & Z_{D n}
\end{array}\right]=\left[\begin{array}{ccc}
u_{11}^{T} & \ldots & u_{1 \mathrm{D}}^{T} \\
\ldots & \ldots & \ldots \\
u_{D 1}^{T} & \ldots & u_{D D}^{T}
\end{array}\right]\left[\begin{array}{ccc}
x_{11} & \ldots & x_{1 \mathrm{n}} \\
\ldots & \ldots & \ldots \\
x_{D 1} & \ldots & x_{D n}
\end{array}\right]} \\
{\left[\left(\begin{array}{c}
\vdots \\
z^{(1)} \\
\vdots
\end{array}\right) \ldots\left(\begin{array}{c}
\vdots \\
Z^{(n)} \\
\vdots
\end{array}\right)\right.}
\end{array}\right]=\left[\begin{array}{lll}
\ldots & u^{(1)} & \ldots
\end{array}\right)\left[\left(\begin{array}{c}
\vdots \\
\\
x^{(1)} \\
\vdots \\
\ldots \\
u^{(D)} \\
\vdots
\end{array}\right) \ldots\left(\begin{array}{c}
\vdots \\
x^{(n)} \\
\vdots
\end{array}\right)\right] .\right] .
$$

Data as Linear Combination of The Princjpal Components

- Starting from $z_{i}^{(k)}=u_{1}^{(i)} x_{1}^{(k)}+\ldots+u_{D}^{(i)} x_{D}^{(k)}$
- In matrix form $Z=U^{T} X$

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
Z_{11} & \ldots & Z_{1 \mathrm{n}} \\
\ldots & \ldots & \ldots \\
Z_{D 1} & \ldots & Z_{D n}
\end{array}\right]=\left[\begin{array}{ccc}
u_{11}^{T} & \ldots & u_{1 \mathrm{D}}^{T} \\
\ldots & \ldots & \ldots \\
u_{D 1}^{T} & \ldots & u_{D D}^{T}
\end{array}\right]\left[\begin{array}{ccc}
x_{11} & \ldots & x_{1 \mathrm{n}} \\
\ldots & \ldots & \ldots \\
x_{D 1} & \ldots & x_{D n}
\end{array}\right]} \\
& \left.\left[\left(\begin{array}{c}
\vdots \\
Z^{(1)} \\
\vdots
\end{array}\right) \cdots\left(\begin{array}{c}
\vdots \\
Z^{(n)} \\
\vdots
\end{array}\right)\right]=\left[\begin{array}{lll}
(\ldots & u^{(1)} & \ldots
\end{array}\right)\right]\left[\left(\begin{array}{c}
\vdots \\
\\
\\
\\
x^{(1)} \\
\ldots \\
u^{(D)} \\
\vdots
\end{array}\right) \ldots\left(\begin{array}{c}
\vdots \\
x^{(n)} \\
\vdots
\end{array}\right)\right]
\end{aligned}
$$

Linear Algebra:

$$
\begin{gathered}
Z=U^{T} X \\
\left(U^{T}\right)^{-1} Z=X
\end{gathered}
$$

$\{U$ is orthonormal $\}$
$U Z=X$

Data as Linear Combination of The Principal Components

- Starting from $z_{i}^{(k)}=u_{1}^{(i)} x_{1}^{(k)}+\ldots+u_{D}^{(i)} x_{D}^{(k)}$
- In matrix form $Z=U^{T} X$

$$
\left[\begin{array}{ccc}
\mathrm{Z}_{11} & \ldots & \mathrm{Z}_{1 \mathrm{n}} \\
\ldots & \ldots & \ldots \\
Z_{D 1} & \ldots & \mathrm{Z}_{D n}
\end{array}\right]=\left[\begin{array}{ccc}
u_{11}^{T} & \ldots & u_{1 \mathrm{D}}^{T} \\
\ldots & \ldots & \ldots \\
u_{D 1}^{T} & \ldots & u_{D D}^{T}
\end{array}\right]\left[\begin{array}{ccc}
x_{11} & \ldots & x_{1 \mathrm{n}} \\
\ldots & \ldots & \ldots \\
x_{D 1} & \ldots & x_{D n}
\end{array}\right]
$$

$$
\left.\left[\left(\begin{array}{c}
\vdots \\
z^{(1)} \\
\vdots
\end{array}\right) \cdots\left(\begin{array}{c}
\vdots \\
Z^{(n)} \\
\vdots
\end{array}\right)\right]=\left[\begin{array}{lll}
(\ldots & u^{(1)} & \ldots
\end{array}\right)\right]\left[\left(\begin{array}{c}
\vdots \\
x_{1)}^{(1)} \\
\vdots \\
\\
\ldots \\
\ldots \\
u^{(D)} \\
\ldots
\end{array}\right) \cdots\left(\begin{array}{c}
\vdots \\
x^{(n)} \\
\vdots
\end{array}\right)\right]
$$

$$
\begin{gathered}
Z=U^{T} X \\
\left(U^{T}\right)^{-1} Z=X
\end{gathered}
$$

$\{U$ is orthonormal $\}$
$U Z=X$

$$
\left[\left(\begin{array}{c}
\vdots \\
x^{(1)} \\
\vdots
\end{array}\right) \cdots\left(\begin{array}{c}
\vdots \\
X^{(n)} \\
\vdots
\end{array}\right)\right]=\left[\left(\begin{array}{c}
\vdots \\
u^{(1)} \\
\vdots
\end{array}\right) \cdots\left(\begin{array}{c}
\vdots \\
u^{(D)} \\
\vdots
\end{array}\right)\right]\left[\left(\begin{array}{c}
\vdots \\
z^{(1)} \\
\vdots
\end{array}\right) \cdots\left(\begin{array}{c}
\vdots \\
Z^{(n)} \\
\vdots
\end{array}\right)\right]
$$

Data as Linear Combination of The Principal Components

- Starting from $z_{i}^{(k)}=u_{1}^{(i)} x_{1}^{(k)}+\ldots+u_{D}^{(i)} x_{D}^{(k)}$
- In matrix form $Z=U^{T} X$

$$
\left.\left.\begin{array}{l}
{\left[\begin{array}{ccc}
Z_{11} & \ldots & Z_{1 \mathrm{n}} \\
\ldots & \ldots & \ldots \\
Z_{D 1} & \ldots & Z_{D n}
\end{array}\right]=\left[\begin{array}{ccc}
u_{11}^{T} & \ldots & u_{1 \mathrm{D}}^{T} \\
\ldots & \ldots & \ldots \\
u_{D 1}^{T} & \ldots & u_{D D}^{T}
\end{array}\right]\left[\begin{array}{ccc}
x_{11} & \ldots & x_{1 \mathrm{n}} \\
\ldots & \ldots & \ldots \\
x_{D 1} & \ldots & x_{D n}
\end{array}\right]} \\
{\left[\left(\begin{array}{c}
\vdots \\
z^{(1)} \\
\vdots
\end{array}\right) \ldots\left(\begin{array}{c}
\vdots \\
Z^{(n)} \\
\vdots
\end{array}\right)\right.}
\end{array}\right]=\left(\begin{array}{lll}
\ldots & u^{(1)} & \ldots
\end{array}\right)\left[\left(\begin{array}{c}
\vdots \\
\\
\\
\\
x^{(1)} \\
\ldots \\
u^{(D)} \\
\vdots
\end{array}\right) \ldots\left(\begin{array}{c}
\vdots \\
x^{(n)} \\
\vdots
\end{array}\right)\right] .\right] .
$$

$$
\begin{gathered}
Z=U^{T} X \\
\left(U^{T}\right)^{-1} Z=X
\end{gathered}
$$

$\{U$ is orthonormal $\}$
$U Z=X$

Data as Linear Combination of The Principal Components

Linear Algebra:

- Starting from $z_{i}^{(k)}=u_{1}^{(i)} x_{1}^{(k)}+\ldots+u_{D}^{(i)} x_{D}^{(k)}$
- In matrix form $Z=U^{T} X$

$$
\left.\left.\begin{array}{l}
{\left[\begin{array}{ccc}
Z_{11} & \ldots & Z_{1 \mathrm{n}} \\
\ldots & \ldots & \ldots \\
Z_{D 1} & \ldots & Z_{D n}
\end{array}\right]=\left[\begin{array}{ccc}
u_{11}^{T} & \ldots & u_{1 \mathrm{D}}^{T} \\
\ldots & \ldots & \ldots \\
u_{D 1}^{T} & \ldots & u_{D D}^{T}
\end{array}\right]\left[\begin{array}{ccc}
x_{11} & \ldots & x_{1 \mathrm{n}} \\
\ldots & \ldots & \ldots \\
x_{D 1} & \ldots & x_{D n}
\end{array}\right]} \\
{\left[\left(\begin{array}{c}
\vdots \\
z^{(1)} \\
\vdots
\end{array}\right) \ldots\left(\begin{array}{c}
\vdots \\
Z^{(n)} \\
\vdots
\end{array}\right)\right.}
\end{array}\right]=\left(\begin{array}{lll}
\ldots & u^{(1)} & \ldots
\end{array}\right)\left[\left(\begin{array}{c}
\vdots \\
\\
\\
x^{(1)} \\
\ldots \\
u^{(D)} \\
\vdots
\end{array}\right) \ldots\left(\begin{array}{c}
\vdots \\
x^{(n)} \\
\vdots
\end{array}\right)\right] .\right] .
$$

$$
\begin{gathered}
Z=U^{T} X \\
\left(U^{T}\right)^{-1} Z=X
\end{gathered}
$$

\{U is orthonormal\}
$U Z=X$

$$
x_{i}^{(k)}=x_{i k}
$$

$$
x_{i}^{(k)}=u_{i 1} z_{1 \mathrm{k}}+\ldots+u_{i D} z_{D k}
$$

$$
x_{i}^{(k)}=u_{i}^{(1)} z_{1}^{(k)}+\ldots+u_{i}^{(D)} z_{D}^{(k)}
$$

$$
\left[\left(\begin{array}{c}
\vdots \\
x^{(1)} \\
\vdots
\end{array}\right) \cdots\left(\begin{array}{c}
\vdots \\
x^{(n)} \\
\vdots
\end{array}\right)\right]=\left[\left(\begin{array}{c}
\vdots \\
u^{(1)} \\
\vdots
\end{array}\right) \cdots\left(\begin{array}{c}
\vdots \\
u^{(D)} \\
\vdots
\end{array}\right)\right]\left[\begin{array}{c}
{\left[\begin{array}{c}
\text { : } \\
\vdots \\
z^{(1)} \\
\vdots \\
\vdots \\
\hline \\
\cdots \\
\vdots \\
z^{(n)} \\
\vdots
\end{array}\right)}
\end{array}\right\}
$$

Reconstruction from PCs

- Compression: only keep first d PCs
- Reconstruction from those...?
- just by the previous formulas

$$
\begin{gathered}
Z=U^{T} X \\
\left(U^{T}\right)^{-1} Z=X \\
\{U \text { is orthonormal }\} \\
U Z=X
\end{gathered}
$$

Data as Linear Combination of The Principal Components

- Compression: only keep first d PCs
- Reconstruction from those...?
- just by the previous formulas

$$
\begin{gathered}
Z=U^{T} X \\
\left(U^{T}\right)^{-1} Z=X
\end{gathered}
$$

\{U is orthonormal\} $U Z=X$

$$
x_{i}^{(k)}=u_{i}^{(1)} z_{1}^{(k)}+\ldots+u_{i}^{(d)} z_{d}^{(k)}+\ldots+u_{i}^{(D)} z_{D}^{(k)}
$$

Data as Linear Combination of The Principal Components

- Compression: only keep first d PCs
- Reconstruction from those...?
- just by the previous formulas

$$
\begin{gathered}
Z=U^{T} X \\
\left(U^{T}\right)^{-1} Z=X
\end{gathered}
$$

\{U is orthonormal \} $U Z=X$

$$
x_{i}^{(k)}=u_{i}^{(1)} z_{1}^{(k)}+\ldots+u_{i}^{(d)} z_{d}^{(k)} \cap \Omega
$$

Reconstruction from PCs

- Compression: only keep first d PCs
- Reconstruction from those...?
- just by the previous formulas

$$
\begin{gathered}
Z=U^{T} X \\
\left(U^{T}\right)^{-1} Z=X
\end{gathered}
$$

$\{U$ is orthonormal $\}$

$$
U Z=X
$$

Dimension reduction

- rather than using all D directions $u^{(i)}$,
- use only the d first $u^{(1)}, \ldots, u^{(d)}$
- so now \hat{U} is a $D \times d$ matrix
$\{\hat{Z}$ is $d \times N\}$

$$
\begin{gathered}
\hat{Z}=\hat{U}^{T} X \\
\hat{U} \hat{Z} \approx X
\end{gathered}
$$

Reconstruction from PCs

- Compression: only keep first d PCs
- Reconstruction from those...?
- just by the previous formulas

$$
\begin{gathered}
Z=U^{T} X \\
\left(U^{T}\right)^{-1} Z=X \\
\{U \text { is orthonormal }\} \\
U Z=X
\end{gathered}
$$

Dimension reduction

- rather than using all D directions $u^{(i)}$,
- use only the d first $u^{(1)}, \ldots, u^{(d)}$
- so now \hat{U} is a $D \times d$ matrix
$\{\hat{Z}$ is $d \times N\}$

this is the reconstruction of the data from only the first d principal components

Finally: How many components?

- Compression: only keep first d PCs
- but how to decide how many?!

Finally: How many components?

- Compression: only keep first d PCs
- but how to decide how many?!
- eigenvector j (direction $u^{(j)}$) \leftrightarrow associated eigenvalue
- indicates the amount of variance in $u^{()}$
- sum of eigenvalues is the total variance
- typically pick d to preserve, e.g., 90% of the variance.

Numerical Differentiation and Integration

Numerical Differentiation and Integration

- Finding derivatives or primitives of a function f
- not always easy or possible....
- no closed form solution exists
- the solution is a very complex expression that is hard to evaluate
- we may not know f (as before!)
\rightarrow numerical methods

Numerical Differentiation

- If we want to know the rate of change...
- E.g.:
- [QSG] fluid in a cylinder with a hole in the bottom, measured every 5 seconds.
- High-speed camera images of animal movements, (jumping in frogs and insects, suction feeding in fish, and the strikes of mantis shrimp)
- determine speed
- and acceleration

Numerical Differentiation

- Determine the vertical speed at $\mathrm{t}=0.25$

- what would you do?

Numerical Differentiation

- Determine the vertical speed at $\mathrm{t}=0.25$...
- a few options...

Numerical Differentiation

- Determine the vertical speed at $\mathrm{t}=0.25 \ldots$
- a few options...

Numerical Differentiation

- Determine the vertical speed at $\mathrm{t}=0.25 \ldots$
- a few options...

Numerical Differentiation

- Determine the vertical speed at $\mathrm{t}=0.25$...
- a few options...

Numerical Differentiation

- Determine the vertical speed at $\mathrm{t}=0.25 \ldots$
- a few options...

Numerical Integration

- Integration: the reversed problem...
- Suppose we travel in a car with a broken odometer
- Speedometer is working...

Numerical Integration

- maintain speeds, to figure out traveled distance

t		$v(\mathrm{t}) \mathrm{km} / \mathrm{h}$		
	0	80	4	ghway ramp
	30	120		
	65	128		
	120	122		
	728	120		traffic jam
	733	0	4	
	798	20		
	836	20		
	941	70		
	970	120		
	1350	123		
	1404	90	4	

Numerical Integration

- maintain speeds, to figure out traveled distance

Numerical Integration

- maintain speeds, to figure out traveled distance

Midpoint Formula

- Approximate the integral with a finite sum

Midpoint Formula

Midpoint Formula

Trapezoid Formula

Trapezoid Formula

Trapezoid Formula

Symbolic Integration

- Finally: when faced with a difficult integral...
\rightarrow try 'symbolic' packages!

symbolic-integration.nb *

File Edit Insert Format Cell Graphics Evaluation Palettes Window Help

- An easy example :

$\ln [48]:=f\left[x_{-}\right]=3 * x_{i}$ f[4]
Out $449=12$
$\ln [50]:=$ Integrate $[f[x], x]$
Out [50] $=\frac{3 x^{2}}{2}$

- A more complex example
$\ln [51]:=g\left[x_{-}\right]=\operatorname{Exp}[x \wedge 2] * \operatorname{Cos}[x]$ Integrate $[g[x], x]$

Out[51] $=e^{x^{2}} \operatorname{Cos[x]}$
Out[52] $=\frac{1}{4} \mathrm{e}^{1 / 4} \sqrt{\pi}\left(\operatorname{Erfi}\left[\frac{1}{2}(-i+2 \mathrm{x})\right]+\operatorname{Erfi}\left[\frac{1}{2}(\mathrm{i}+2 \mathrm{x})\right]\right)$

- An example that has no closed form solution:
$\ln [53]:=h[x-]=x \wedge\{3 x\}$
Integrate $[\mathrm{h}[\mathrm{x}], \mathrm{x}]$
$\mathrm{N}[$ Integrate[h[x], $\{\mathrm{x}, 1,2\}]]$
Out[53] $=\left\{x^{3 \times}\right\}$
Out [54] $=\left\{\int x^{3 x} d x\right\}$
Out[5] $=\{13.3445\}$

```
                                    symbolic-integration.nb *
File Edit Insert Format Cell Graphics Evaluation Palettes Window Help
- An easy example :
\(\ln [48]:=\mathrm{f}\left[\mathrm{x}_{\mathrm{C}}\right]=3 * \mathrm{x}\);
f[4]
Out[49]=
12
\(\ln [50]:=\) Integrate \([f[x], x]\)
Out[50] \(=\frac{3 x^{2}}{2}\)
- A more complex example :
\(\ln [51]:=\operatorname{g}\left[x_{-}\right]=\operatorname{Exp}[\mathrm{x} \wedge 2] * \operatorname{Cos}[\mathrm{x}]\)
Integrate \([\mathrm{g}[\mathrm{x}], \mathrm{x}]\)
Out[51] \(=e^{x^{2}} \operatorname{Cos}[x]\)
Out[52] \(=\frac{1}{4} \mathrm{e}^{1 / 4} \sqrt{\pi}\left(\operatorname{Erfi}\left[\frac{1}{2}(-i+2 \mathrm{x})\right]+\operatorname{Erfi}\left[\frac{1}{2}(\mathrm{i}+2 \mathrm{x})\right]\right)\)
- An example that has no closed form solution:
\(\ln [53]:=\mathrm{h}[\mathrm{x}-]=\mathrm{x} \wedge\{3 \mathrm{x}\}\)
Integrate[h[x], x\(]\)
N[Integrate[h[x], \{x, 1, 2\}]]
Out \([53]=\left\{x^{3} x\right\}\)
Out[54] \(=\left\{\int x^{3 x} d x\right\}\)
Out [55] \(=\{13.3445\}\)
```

```
\(+\)
```


Reading

- PCA - Not in book
- but: computation of eigenvalues - Ch. 6
- Numerical differentiation / integration
- Ch. 4 up to 4.4

