

Scientific Computing
Maastricht Science Program

Week 5

Frans Oliehoek
<frans.oliehoek@maastrichtuniversity.nl>

Announcements

 I will be more strict!

 Requirements updated...
 YOU are responsible that the submission

satisfies the requirements!!!
 I will not email you until the rest has their mark.

Recap Last Two Week

 Supervised Learning

 find f that maps {x
1

(j),...,x
D

(j)} → y(j)

 Interpolation
 f goes through the data points

 linear regression
 lossy fit, minimizes 'vertical' SSE

 Unsupervised Learning

 We just have data points {x
1

(j),...,x
D

(j)}

 PCA
 minimizes orthogonal projection

x
2

x
1

u=(u1, u2)

Recap: Clustering

 Clustering or Cluster Analysis has many applications
 Understanding

 Astronomy, Biology, etc.

 Data (pre)processing
 summarization of data set
 compression

 Are there questions about k-means clustering?

This Lecture

 Last week: unlabeled data (also 'unsupervised learning')

 data: just x
 Clustering
 Principle Components analysis (PCA) – what?

 This week
 Principle Components analysis (PCA) – how?
 Numerical differentiation and integration.

Part 1: Principal Component Analysis

●Recap
●How to do it?

PCA – Intuition

 How would you summarize this data using 1 dimension?

(what variable contains the most information?)

x
1

x
2

Very important idea

The most information is
contained by the variable with
the largest spread.

● i.e., highest variance

(Information Theory)

PCA – Intuition

 How would you summarize this data using 1 dimension?

(what variable contains the most information?)

x
1

x
2

Very important idea

The most information is
contained by the variable with
the largest spread.

● i.e., highest variance

(Information Theory)

so if we have to chose
between x

1
 and x

2

→ remember x
2

Transform of k-th point:

where

(x1
(k) , x2

(k))→(z1
(k))

z1
(k)=x2

(k)

PCA – Intuition

 How would you summarize this data using 1 dimension?

x
1

x
2

u

Transform of k-th point:

where z
1
 is the

orthogonal scalar projection
on (unit vector) u(1):

(x1
(k) , x2

(k))→(z1
(k))

z1
(k)=u1

(1) x1
(k)+u2

(1) x2
(k)=(u(1) , x(k))

More Principle Components

 u(2) is the direction with most 'remaining' variance
 orthogonal to u(1) !

x
1

x
2

In general

● If the data is D-dimensional

● We can find D directions

● Each direction itself is a D-vector:

● Each direction is orthogonal to the others:

● The first direction is has most variance

● The least variance is in direction

u(1) , ... , u(D)

(u(i) , u(j)
)=0

u(D)

u(i)
=(u1,

(i) ... ,uD
(i)
)

PCA – Goals

 All directions of high variance might be useful in itself
 Analysis of data
 In the lab you will analyze the ECG signal of a patient

with a heart disease.

PCA – Goals

 All directions of high variance might be useful in itself
 But not for dimension reduction...

 Given X (N data points of D variables)
→ Convert to Z (N data points of d variables)

(x1
(0) , x2

(0) , ... , xD
(0))→(z1

(0) , z2
(0) , ... , zd

(0))

(x1
(1) , x2

(1) , ... , xD
(1))→(z1

(1) , z2
(1) , ... , zd

(1))

...
(x1

(n) , x2
(n) , ... , xD

(n))→(z1
(n) , z2

(n) , ... , zd
(n))

The vector

is called the i-th principal component (of the data set)

(z i
(0) , zi

(1) , ... , z i
(n))

PCA – Dimension Reduction

 Approach
 Step 1:

 find all directions
(and principal components)

 Step 2: …?

(x1
(0) , x2

(0) , ... , xD
(0))→(z1

(0) , z2
(0) , ... , zD

(0))

(x1
(1) , x2

(1) , ... , xD
(1))→(z1

(1) , z2
(1) , ... , zD

(1))

...
(x1

(n) , x2
(n) , ... , xD

(n))→(z1
(n) , z2

(n) , ... , zD
(n))

PCA – Dimension Reduction

 Approach
 Step 1:

 find all directions
(and principal components)

 Step 2:
 keep only the directions with

high variance.

→ the principal components
with much information

(x1
(0) , x2

(0) , ... , xD
(0))→(z1

(0) , z2
(0) , ... , zD

(0))

(x1
(1) , x2

(1) , ... , xD
(1))→(z1

(1) , z2
(1) , ... , zD

(1))

...
(x1

(n) , x2
(n) , ... , xD

(n))→(z1
(n) , z2

(n) , ... , zD
(n))

(x1
(0), x2

(0) , ... , xD
(0))→(z1

(0) , z2
(0) , ... , zd

(0))

(x1
(1) , x2

(1) , ... , xD
(1))→(z1

(1) , z2
(1) , ... , zd

(1))

...
(x1

(n), x2
(n) , ... , xD

(n))→(z1
(n) , z2

(n) , ... , zd
(n))

first d<D PCs contain
most information!

PCA – Dimension Reduction

 Approach
 Step 1:

 find all directions
(and principal components)

 Step 2:
 keep only the directions with

high variance.

→ the principal components
with much information

(x1
(0) , x2

(0) , ... , xD
(0))→(z1

(0) , z2
(0) , ... , zD

(0))

(x1
(1) , x2

(1) , ... , xD
(1))→(z1

(1) , z2
(1) , ... , zD

(1))

...
(x1

(n) , x2
(n) , ... , xD

(n))→(z1
(n) , z2

(n) , ... , zD
(n))

(x1
(0), x2

(0) , ... , xD
(0))→(z1

(0) , z2
(0) , ... , zd

(0))

(x1
(1) , x2

(1) , ... , xD
(1))→(z1

(1) , z2
(1) , ... , zd

(1))

...
(x1

(n), x2
(n) , ... , xD

(n))→(z1
(n) , z2

(n) , ... , zd
(n))

first d<D PCs contain
most information!

PCA – More Concrete

 PCA
 finding all the directions, and
 principle components

 Data compression using PCA
 computing compressed representation
 computing reconstruction

PCA – More Concrete

 PCA
 finding all the directions, and
 principle components

 Data compression using PCA
 computing compressed representation
 computing reconstruction

Easy! for k-th point:

z j
(k)=(u(j) , x(k))

still to be shown
(using eigen decomposition

of cov. matrix)

Easy!
For k-th point just keep

(z1
(k) , ... , zd

(k))

still to be shown
(we show that data is a linear

combination of the PCs)

PCA – More Concrete

 PCA
 finding all the directions, and
 principle components

 Data compression using PCA
 computing compressed representation
 computing reconstruction

Easy! for k-th point:

z j
(k)=(u(j) , x(k))

Easy!
For k-th point just keep

(z1
(k) , ... , zd

(k))

still to be shown
(we show that data is a linear

combination of the PCs)

still to be shown
(using eigen decomposition

of cov. matrix)

Computing the directions U

Algorithm
 X is the DxN data matrix

1)Preprocessing:
● scale the features

● make X zero mean

2)Compute the
data covariance matrix

3) Perform eigen decomposition

 directions u
i
 are the eigenvectors of C

 variance of u
i
 is the corresponding eigenvalue

Note: X is now D x N (before N x D)

Computing the directions U

Algorithm
 X is the DxN data matrix

1)Preprocessing:
● scale the features

● make X zero mean

2)Compute the
data covariance matrix

3) Perform eigen decomposition

 directions u
i
 are the eigenvectors of C

 variance of u
i
 is the corresponding eigenvalue

x i
(k)=

2 x i
(k)

max l xi
(l)−minm xi

(l)

Computing the directions U

Algorithm
 X is the DxN data matrix

1)Preprocessing:
● scale the features

● make X zero mean

2)Compute the
data covariance matrix

3) Perform eigen decomposition

 directions u
i
 are the eigenvectors of C

 variance of u
i
 is the corresponding eigenvalue

● Compute
(the mean data point)

● subtract the mean
from each point

μ i=
1
N ∑

k=1

N−1

xi
(k)

x(k)
=x(k)

−μ

μ

Computing the directions U

Algorithm
 X is the DxN data matrix

1)Preprocessing:
● scale the features

● make X zero mean

2)Compute the
data covariance matrix

3) Perform eigen decomposition

 directions u
i
 are the eigenvectors of C

 variance of u
i
 is the corresponding eigenvalue

● Data covariance matrix

C=
1
N

XXT

Computing the directions U

Algorithm
 X is the DxN data matrix

1)Preprocessing:
● scale the features

● make X zero mean

2)Compute the
data covariance matrix

3) Perform eigen decomposition

 directions u
i
 are the eigenvectors of C

 variance of u
i
 is the corresponding eigenvalue

● A square matrix has eigenvectors:

map to a multiple of themselves

C x=λ x

eigenvector
(scalar) eigenvalue

Computing the directions U

Algorithm
 X is the DxN data matrix

1)Preprocessing:
● scale the features

● make X zero mean

2)Compute the
data covariance matrix

3) Perform eigen decomposition

 directions u
i
 are the eigenvectors of C

 variance of u
i
 is the corresponding eigenvalue

● A square matrix has eigenvectors:

map to a multiple of themselves

C x=λ x

eigenvector
(scalar) eigenvalue

[eigenvectors, eigenvals] = eig(C)
% 'eig' delivers eigenvectors with
% the wrong order
% so we flip the matrix
U = fliplr(eigenvectors)

% U(i, :) now is the i-th direction

PCA – More Concrete

 PCA
 finding all the directions, and
 principle components

 Data compression using PCA
 computing compressed representation
 computing reconstruction

Easy! for k-th point:

z j
(k)=(u(j) , x(k))

still to be shown
(using eigen decomposition

of cov. matrix)

Easy!
For k-th point just keep

(z1
(k) , ... , zd

(k))

still to be shown
(we show that data is a linear

combination of the PCs)

Data as Linear Combination of
The Principal Components

 Starting from
 In matrix form

 Note: X is still D x N (before N x D)

[
z11 ... z1n

...
zD1 ... zDn

]=[
u11

T ... u1D
T

...
uD1

T ... uDD
T][x11 ... x1n

...
xD1 ... xDn

]
[(

⋮

z(1)

⋮). ..(
⋮

z(n)

⋮)]=[
(... u(1) ...)

. ..

(... u(D) ...)][(
⋮

x(1)

⋮) . ..(
⋮

x(n)

⋮)]

Z=U T X

z i
(k)=u1

(i) x1
(k)+...+uD

(i) xD
(k)

Data as Linear Combination of
The Principal Components

 Starting from
 In matrix form

[
z11 ... z1n

...
z D1 ... z Dn

]=[
u11

T ... u1D
T

...
uD1

T ... uDD
T] [

x11 ... x1n

...
xD1 ... xDn

]
[(

⋮

z(1)

⋮
) . ..(

⋮

z(n)

⋮
)]=[(... u(1) ...)

. ..

(... u(D) ...)][(
⋮

x (1)

⋮
) . ..(

⋮

x(n)

⋮
)]

Z=U T X

z i
(k)=u1

(i) x1
(k)+...+uD

(i) xD
(k)

Data as Linear Combination of
The Principal Components

[
z11 ... z1n

...
z D1 ... z Dn

]=[
u11

T ... u1D
T

...
uD1

T ... uDD
T] [

x11 ... x1n

...
xD1 ... xDn

]
[(

⋮

z(1)

⋮
) . ..(

⋮

z(n)

⋮
)]=[(... u(1) ...)

. ..

(... u(D) ...)][(
⋮

x (1)

⋮
) . ..(

⋮

x(n)

⋮
)]

Z=U T X

Linear Algebra:
Z=U T X

(U T)−1 Z=X
{U is orthonormal}

U Z=X

z i
(k)=u1

(i) x1
(k)+...+uD

(i) xD
(k) Starting from

 In matrix form

Data as Linear Combination of
The Principal Components

[
z11 ... z1n

...
z D1 ... z Dn

]=[
u11

T ... u1D
T

...
uD1

T ... uDD
T] [

x11 ... x1n

...
xD1 ... xDn

]
[(

⋮

z(1)

⋮
) . ..(

⋮

z(n)

⋮
)]=[(... u(1) ...)

. ..

(... u(D) ...)][(
⋮

x (1)

⋮
) . ..(

⋮

x(n)

⋮
)]

[(
⋮

x(1)

⋮)…(
⋮

x(n)

⋮)]=[(
⋮

u(1)

⋮)…(
⋮

u(D)

⋮)][(
⋮

z(1)

⋮)…(
⋮

z(n)

⋮)]

Z=U T X

Linear Algebra:

z i
(k)=u1

(i) x1
(k)+...+uD

(i) xD
(k) Starting from

 In matrix form

Z=U T X
(U T)−1 Z=X

{U is orthonormal}
U Z=X

Data as Linear Combination of
The Principal Components

[
z11 ... z1n

...
z D1 ... z Dn

]=[
u11

T ... u1D
T

...
uD1

T ... uDD
T] [

x11 ... x1n

...
xD1 ... xDn

]
[(

⋮

z(1)

⋮
) . ..(

⋮

z(n)

⋮
)]=[(... u(1) ...)

. ..

(... u(D) ...)][(
⋮

x (1)

⋮
) . ..(

⋮

x(n)

⋮
)]

[(
⋮

x(1)

⋮)…(
⋮

x(n)

⋮)]=[(
⋮

u(1)

⋮)…(
⋮

u(D)

⋮)][(
⋮

z(1)

⋮)…(
⋮

z(n)

⋮)]

Z=U T X

Linear Algebra:

1st PC

Dth PC

z i
(k)=u1

(i) x1
(k)+...+uD

(i) xD
(k) Starting from

 In matrix form

Z=U T X
(U T)−1 Z=X

{U is orthonormal}
U Z=X

Data as Linear Combination of
The Principal Components

[
z11 ... z1n

...
z D1 ... z Dn

]=[
u11

T ... u1D
T

...
uD1

T ... uDD
T] [

x11 ... x1n

...
xD1 ... xDn

]
[(

⋮

z(1)

⋮
) . ..(

⋮

z(n)

⋮
)]=[(... u(1) ...)

. ..

(... u(D) ...)][(
⋮

x (1)

⋮
) . ..(

⋮

x(n)

⋮
)]

[(
⋮

x(1)

⋮)…(
⋮

x(n)

⋮)]=[(
⋮

u(1)

⋮)…(
⋮

u(D)

⋮)][(
⋮

z(1)

⋮)…(
⋮

z(n)

⋮)]

Z=U T X

Linear Algebra:

xi
(k)=xik

xi
(k)=ui

(1) z1
(k)+...+ui

(D) zD
(k)

xi
(k)=ui1 z1k+...+uiD zDk

1st PC

Dth PC

z i
(k)=u1

(i) x1
(k)+...+uD

(i) xD
(k) Starting from

 In matrix form

Z=U T X
(U T)−1 Z=X

{U is orthonormal}
U Z=X

Reconstruction from PCs

 Compression: only keep first d PCs
 Reconstruction from those...?

 just by the previous formulas

Z=U T X
(U T)−1 Z=X

{U is orthonormal}
U Z=X

Data as Linear Combination of
The Principal Components

[(
⋮

x(1)

⋮)…(
⋮

x(n)

⋮)]=[(
⋮

u(1)

⋮)…(
⋮

u(D)

⋮)][(
⋮

z(1)

⋮)…(
⋮

z(n)

⋮)]

xi
(k)=ui

(1) z1
(k)+...+ui

(d) zd
(k)+...+ui

(D) zD
(k)

1st PC
dth PC

Z=U T X
(U T)−1 Z=X

{U is orthonormal}
U Z=X

 Compression: only keep first d PCs
 Reconstruction from those...?

 just by the previous formulas

Data as Linear Combination of
The Principal Components

[(
⋮

x(1)

⋮)…(
⋮

x(n)

⋮)]=[(
⋮

u(1)

⋮)…(
⋮

u(D)

⋮)][(
⋮

z(1)

⋮)…(
⋮

z(n)

⋮)]

xi
(k)=ui

(1) z1
(k)+...+ui

(d) zd
(k)+...+ui

(D) zD
(k)

1st PC
dth PC

Z=U T X
(U T)−1 Z=X

{U is orthonormal}
U Z=X

 Compression: only keep first d PCs
 Reconstruction from those...?

 just by the previous formulas

Reconstruction from PCs

 Compression: only keep first d PCs
 Reconstruction from those...?

 just by the previous formulas

Z=U T X
(U T)−1 Z=X

{U is orthonormal}
U Z=X

Dimension reduction

● rather than using all D directions u(i),

● use only the d first u(1),...,u(d)

● so now is a matrix

Ẑ=Û T X
Û Ẑ≈X

Û D×d

{Ẑ is d×N }

Reconstruction from PCs

 Compression: only keep first d PCs
 Reconstruction from those...?

 just by the previous formulas

Z=U T X
(U T)−1 Z=X

{U is orthonormal}
U Z=X

Dimension reduction

● rather than using all D directions u(i),

● use only the d first u(1),...,u(d)

● so now is a matrix

Ẑ=Û T X
Û Ẑ≈X

Û D×d

{Ẑ is d×N } Ẑ=Û T X
Û Ẑ≈X

this is the reconstruction
of the data from only the

first d principal
components

Finally: How many components?

 Compression: only keep first d PCs
 but how to decide how many?!

Finally: How many components?

 Compression: only keep first d PCs
 but how to decide how many?!

 eigenvector j (direction u(j)) ↔ associated eigenvalue
 indicates the amount of variance in u(j)

 sum of eigenvalues is the total variance
 typically pick d to preserve, e.g., 90% of the variance.

Numerical Differentiation and Integration

Numerical Differentiation and
Integration

 Finding derivatives or primitives of a function f
 not always easy or possible....

 no closed form solution exists
 the solution is a very complex expression that is hard to

evaluate
 we may not know f (as before!)

→ numerical methods

Numerical Differentiation

 If we want to know the rate of change...

 E.g.:
 [QSG] fluid in a cylinder with a hole in the bottom,

measured every 5 seconds.
 High-speed camera images of animal movements,

(jumping in frogs and insects, suction feeding in fish, and the strikes of
mantis shrimp)

 determine speed
 and acceleration

Numerical Differentiation

 Determine the vertical speed at t=0.25

 what would you do?

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

frog height(t)

Numerical Differentiation

 Determine the vertical speed at t=0.25...
 a few options...

0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36
0.35

0.36

0.36

0.37

0.37

0.38

0.38

0.39

0.39

frog height(t)

Numerical Differentiation

 Determine the vertical speed at t=0.25...
 a few options...

0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36
0.35

0.36

0.36

0.37

0.37

0.38

0.38

0.39

0.39

frog height(t)

Numerical Differentiation

 Determine the vertical speed at t=0.25...
 a few options...

0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36
0.35

0.36

0.36

0.37

0.37

0.38

0.38

0.39

0.39

frog height(t)

forward finite
difference

backward finite
difference

Numerical Differentiation

 Determine the vertical speed at t=0.25...
 a few options...

0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36
0.35

0.36

0.36

0.37

0.37

0.38

0.38

0.39

0.39

frog height(t)

forward finite
difference

backward finite
difference

Other Ideas?

Numerical Differentiation

 Determine the vertical speed at t=0.25...
 a few options...

0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36
0.35

0.36

0.36

0.37

0.37

0.38

0.38

0.39

0.39

frog height(t)

Centered finite
difference

Numerical Integration

 Integration: the reversed problem...
 Suppose we travel in a car with a broken odometer
 Speedometer is working...

Numerical Integration

 maintain speeds, to figure out traveled distance
t v(t) km/h

0 80

30 120

65 128

120 122

728 120

733 0

798 20

836 20

941 70

970 120

1350 123

1404 90

enter highway ramp

exit highway ramp

traffic jam

Numerical Integration

 maintain speeds, to figure out traveled distance
t v(t) km/h

0 80

30 120

65 128

120 122

728 120

733 0

798 20

836 20

941 70

970 120

1350 123

1404 90

enter highway ramp

exit highway ramp

traffic jam

0 200 400 600 800 1000 1200 1400 1600
0

20

40

60

80

100

120

140

v(t) km/h

Numerical Integration

 maintain speeds, to figure out traveled distance
t v(t) km/h

0 80

30 120

65 128

120 122

728 120

733 0

798 20

836 20

941 70

970 120

1350 123

1404 90

enter highway ramp

exit highway ramp

traffic jam

0 200 400 600 800 1000 1200 1400 1600
0

20

40

60

80

100

120

140

v(t) km/h

How far did we travel?

Midpoint Formula

 Approximate the integral with a finite sum
integration interval

y

xx̄1 x̄M

x0 x1 xM

Midpoint Formula

integration interval
y

xx̄1 x̄M

x0 x1 xM
H size of interval

Midpoint Formula

integration interval
y

xx̄1 x̄M

x0 x1 xM

x̄ k=
xk−1+xk

2

Approximation of the integral:

I MP (f)=H∑
k=1

M

f (x̄k)

Trapezoid Formula

integration interval
y

xI1 I M

x0 x1 xM

Trapezoid Formula

integration interval
y

xI1 I M

x0 x1 xM

I k=H
f (x k−1)+f (xk)

2

Approximation of the integral:

I MP (f)=∑
k=1

M

I k

Trapezoid Formula

integration interval
y

xI1 I M

x0 x1 xM

I k=H
f (x k−1)+f (xk)

2

Approximation of the integral:

I MP (f)=∑
k=1

M

I k

Possible to avoid some
work by using different

formula [QSG]

Symbolic Integration

 Finally: when faced with
a difficult integral...

→ try 'symbolic' packages!

Symbolic Integration

 Finally: when faced with
a difficult integral...

→ try 'symbolic' packages!

Reading

 PCA – Not in book
 but: computation of eigenvalues – Ch. 6

 Numerical differentiation / integration
 Ch. 4 up to 4.4

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60

