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Announcements

 I will be more strict!

 Requirements updated...
 YOU are responsible that the submission 

satisfies the requirements!!!
 I will not email you until the rest has their mark.



  

Recap Last Two Week

 Supervised Learning

 find f  that maps {x
1

(j),...,x
D

(j)} → y(j) 

 Interpolation 
 f goes through the data points

 linear regression
 lossy fit, minimizes 'vertical' SSE

 Unsupervised Learning

 We just have data points {x
1

(j),...,x
D

(j)}

 PCA
 minimizes orthogonal projection

x
2

x
1

u=(u1, u2)



  

Recap: Clustering

 Clustering or Cluster Analysis has many applications
 Understanding

 Astronomy, Biology, etc.

 Data (pre)processing
 summarization of data set
 compression

 Are there questions about k-means clustering?



  

This Lecture

 Last week: unlabeled data (also 'unsupervised learning')

 data: just x
 Clustering
 Principle Components analysis (PCA) – what?

 This week
 Principle Components analysis (PCA) – how?
 Numerical differentiation and integration.



  

Part 1: Principal Component Analysis

●Recap
●How to do it?



  

PCA – Intuition

 How would you summarize this data using 1 dimension?

(what variable contains the most information?)

x
1

x
2

Very important idea

The most information is 
contained by the variable with 
the largest spread.

● i.e., highest variance

(Information Theory)



  

PCA – Intuition

 How would you summarize this data using 1 dimension?

(what variable contains the most information?)

x
1

x
2

Very important idea

The most information is 
contained by the variable with 
the largest spread.

● i.e., highest variance

(Information Theory)

so if we have to chose 
between x

1
 and x

2

→ remember x
2 

Transform of k-th point:

where

(x1
(k) , x2

(k ))→(z1
(k))

z1
(k )=x2

(k )



  

PCA – Intuition

 How would you summarize this data using 1 dimension?

x
1

x
2

u

Transform of k-th point:

where z
1
 is the 

orthogonal scalar projection 
on (unit vector) u(1):

(x1
(k) , x2

(k ))→(z1
(k))

z1
(k )=u1

(1) x1
(k)+u2

(1) x2
(k)=(u(1) , x(k ))



  

More Principle Components

 u(2) is the direction with most 'remaining' variance
 orthogonal to u(1) !

x
1

x
2

In general

● If the data is D-dimensional

● We can find D directions                        

● Each direction itself is a D-vector:

● Each direction is orthogonal to the others:

● The first direction is has most variance

● The least variance is in direction 

u(1) , ... , u(D)

(u(i) , u( j)
)=0

u(D)

u(i)
=(u1,

(i) ... ,uD
(i)
)



  

PCA – Goals

 All directions of high variance might be useful in itself
 Analysis of data
 In the lab you will analyze the ECG signal of a patient 

with a heart disease.



  

PCA – Goals

 All directions of high variance might be useful in itself
 But not for dimension reduction...

 Given X  (N data points of D variables)
→ Convert to Z (N data points of d variables)

(x1
(0) , x2

(0) , ... , xD
(0))→(z1

(0) , z2
(0) , ... , zd

(0))

(x1
(1) , x2

(1) , ... , xD
(1))→(z1

(1) , z2
(1) , ... , zd

(1))

...
(x1

(n) , x2
(n) , ... , xD

(n))→(z1
(n) , z2

(n) , ... , zd
(n))

The vector 

is called the i-th principal component (of the data set) 

(z i
(0) , zi

(1) , ... , z i
(n))



  

PCA – Dimension Reduction

 Approach
 Step 1:

 find all directions
(and principal components)

 Step 2: …?

(x1
(0) , x2

(0) , ... , xD
(0))→(z1

(0) , z2
(0) , ... , zD

(0))

(x1
(1) , x2

(1) , ... , xD
(1))→(z1

(1) , z2
(1) , ... , zD

(1))

...
(x1

(n) , x2
(n) , ... , xD

(n))→(z1
(n) , z2

(n) , ... , zD
(n))



  

PCA – Dimension Reduction

 Approach
 Step 1:

 find all directions
(and principal components)

 Step 2: 
 keep only the directions with 

high variance.

→  the principal components 
with much information

(x1
(0) , x2

(0) , ... , xD
(0))→(z1

(0) , z2
(0) , ... , zD

(0))

(x1
(1) , x2

(1) , ... , xD
(1))→(z1

(1) , z2
(1) , ... , zD

(1))

...
(x1

(n) , x2
(n) , ... , xD

(n))→(z1
(n) , z2

(n) , ... , zD
(n))

(x1
(0), x2

(0) , ... , xD
(0))→( z1

(0) , z2
(0) , ... , zd

(0))

(x1
(1) , x2

(1) , ... , xD
(1))→( z1

(1) , z2
(1) , ... , zd

(1))

...
(x1

(n), x2
(n) , ... , xD

(n))→( z1
(n) , z2

(n) , ... , zd
(n))

first d<D PCs contain 
most information!



  

PCA – Dimension Reduction

 Approach
 Step 1:

 find all directions
(and principal components)

 Step 2: 
 keep only the directions with 

high variance.

→  the principal components 
with much information

(x1
(0) , x2

(0) , ... , xD
(0))→(z1

(0) , z2
(0) , ... , zD

(0))

(x1
(1) , x2

(1) , ... , xD
(1))→(z1

(1) , z2
(1) , ... , zD

(1))

...
(x1

(n) , x2
(n) , ... , xD

(n))→(z1
(n) , z2

(n) , ... , zD
(n))

(x1
(0), x2

(0) , ... , xD
(0))→( z1

(0) , z2
(0) , ... , zd

(0))

(x1
(1) , x2

(1) , ... , xD
(1))→( z1

(1) , z2
(1) , ... , zd

(1))

...
(x1

(n), x2
(n) , ... , xD

(n))→( z1
(n) , z2

(n) , ... , zd
(n))

first d<D PCs contain 
most information!



  

PCA – More Concrete 

 PCA
 finding all the directions, and 
 principle components

 Data compression using PCA
 computing compressed representation
 computing reconstruction



  

PCA – More Concrete 

 PCA
 finding all the directions, and 
 principle components

 Data compression using PCA
 computing compressed representation
 computing reconstruction

Easy! for k-th point:

z j
(k )=(u( j) , x(k ))

still to be shown
(using eigen decomposition 

of cov. matrix)

Easy! 
For k-th point just keep 

(z1
(k ) , ... , zd

(k))

still to be shown
(we show that data is a linear 

combination of the PCs)
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 computing compressed representation
 computing reconstruction

Easy! for k-th point:

z j
(k )=(u( j) , x(k ))

Easy! 
For k-th point just keep 

(z1
(k ) , ... , zd

(k))

still to be shown
(we show that data is a linear 

combination of the PCs)

still to be shown
(using eigen decomposition 

of cov. matrix)



  

Computing the directions U

Algorithm
 X is the DxN data matrix

1)Preprocessing:
● scale the features 

● make X zero mean

2)Compute the 
data covariance matrix 

3) Perform eigen decomposition

 directions u
i
 are the eigenvectors of C

 variance of  u
i
  is the corresponding eigenvalue

Note: X is now D x N (before N x D)



  

Computing the directions U

Algorithm
 X is the DxN data matrix

1)Preprocessing:
● scale the features 

● make X zero mean

2)Compute the 
data covariance matrix 

3) Perform eigen decomposition

 directions u
i
 are the eigenvectors of C

 variance of  u
i
  is the corresponding eigenvalue

x i
(k )=

2 x i
(k )

max l xi
(l)−minm xi

(l)



  

Computing the directions U

Algorithm
 X is the DxN data matrix

1)Preprocessing:
● scale the features 

● make X zero mean

2)Compute the 
data covariance matrix 

3) Perform eigen decomposition

 directions u
i
 are the eigenvectors of C

 variance of  u
i
  is the corresponding eigenvalue

● Compute 
(the mean data point)

● subtract the mean
from each point

μ i=
1
N ∑

k=1

N−1

xi
(k )

x(k )
=x(k)

−μ

μ



  

Computing the directions U

Algorithm
 X is the DxN data matrix

1)Preprocessing:
● scale the features 

● make X zero mean

2)Compute the 
data covariance matrix 

3) Perform eigen decomposition

 directions u
i
 are the eigenvectors of C

 variance of  u
i
  is the corresponding eigenvalue

● Data covariance matrix

C=
1
N

XXT



  

Computing the directions U

Algorithm
 X is the DxN data matrix

1)Preprocessing:
● scale the features 

● make X zero mean

2)Compute the 
data covariance matrix 

3) Perform eigen decomposition

 directions u
i
 are the eigenvectors of C

 variance of  u
i
  is the corresponding eigenvalue

● A square matrix has eigenvectors: 

map to a multiple of themselves

C x=λ x

eigenvector
(scalar) eigenvalue



  

Computing the directions U

Algorithm
 X is the DxN data matrix

1)Preprocessing:
● scale the features 

● make X zero mean

2)Compute the 
data covariance matrix 

3) Perform eigen decomposition

 directions u
i
 are the eigenvectors of C

 variance of  u
i
  is the corresponding eigenvalue

● A square matrix has eigenvectors: 

map to a multiple of themselves

C x=λ x

eigenvector
(scalar) eigenvalue

[eigenvectors, eigenvals] = eig(C)
% 'eig' delivers eigenvectors with 
% the wrong order
% so we flip the matrix 
U = fliplr(eigenvectors)

% U(i, :) now is the i-th direction



  

PCA – More Concrete 

 PCA
 finding all the directions, and 
 principle components

 Data compression using PCA
 computing compressed representation
 computing reconstruction

Easy! for k-th point:

z j
(k )=(u( j) , x(k ))

still to be shown
(using eigen decomposition 

of cov. matrix)

Easy! 
For k-th point just keep 

(z1
(k ) , ... , zd

(k))

still to be shown
(we show that data is a linear 

combination of the PCs)



  

Data as Linear Combination of 
The Principal Components

 Starting from
 In matrix form

 Note: X is still D x N (before N x D)

[
z11 ... z1n

... ... ...
zD1 ... zDn

]=[
u11

T ... u1D
T

... ... ...
uD1

T ... uDD
T ][ x11 ... x1n

... ... ...
xD1 ... xDn

]
[(

⋮

z(1)

⋮ ). ..(
⋮

z(n)

⋮ )]=[
(... u(1) ...)

. ..

(... u(D) ...)][(
⋮

x(1)

⋮ ) . ..(
⋮

x(n)

⋮ )]

Z=U T X

z i
(k )=u1

(i) x1
(k )+...+uD

(i) xD
(k)



  

Data as Linear Combination of 
The Principal Components

 Starting from
 In matrix form

[
z11 ... z1n

... ... ...
z D1 ... z Dn

]=[
u11

T ... u1D
T

... ... ...
uD1

T ... uDD
T ] [

x11 ... x1n

... ... ...
xD1 ... xDn

]
[(

⋮

z(1)

⋮
) . ..(

⋮

z(n)

⋮
)]=[ ( ... u(1) ... )

. ..

( ... u(D ) ...) ][(
⋮

x (1)

⋮
) . ..(

⋮

x(n)

⋮
)]

Z=U T X

z i
(k )=u1

(i) x1
(k )+...+uD

(i) xD
(k)



  

Data as Linear Combination of 
The Principal Components

[
z11 ... z1n

... ... ...
z D1 ... z Dn

]=[
u11

T ... u1D
T

... ... ...
uD1

T ... uDD
T ] [

x11 ... x1n

... ... ...
xD1 ... xDn

]
[(

⋮

z(1)

⋮
) . ..(

⋮

z(n)

⋮
)]=[ ( ... u(1) ... )

. ..

( ... u(D ) ...) ][(
⋮

x (1)

⋮
) . ..(

⋮

x(n)

⋮
)]

Z=U T X

Linear Algebra:
Z=U T X

(U T )−1 Z=X
{U is orthonormal}

U Z=X

z i
(k )=u1

(i) x1
(k )+...+uD

(i) xD
(k) Starting from

 In matrix form



  

Data as Linear Combination of 
The Principal Components
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Data as Linear Combination of 
The Principal Components

[
z11 ... z1n

... ... ...
z D1 ... z Dn

]=[
u11

T ... u1D
T

... ... ...
uD1

T ... uDD
T ] [

x11 ... x1n

... ... ...
xD1 ... xDn

]
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⋮
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) . ..(
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⋮
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⋮ )]=[(
⋮
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⋮ )…(
⋮

u(D)

⋮ )][(
⋮
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⋮ )…(
⋮

z(n)

⋮ )]

Z=U T X

Linear Algebra:

1st PC

Dth  PC

z i
(k )=u1

(i) x1
(k )+...+uD

(i) xD
(k) Starting from

 In matrix form

Z=U T X
(U T )−1 Z=X

{U is orthonormal}
U Z=X



  

Data as Linear Combination of 
The Principal Components

[
z11 ... z1n

... ... ...
z D1 ... z Dn

]=[
u11

T ... u1D
T

... ... ...
uD1

T ... uDD
T ] [

x11 ... x1n

... ... ...
xD1 ... xDn

]
[(

⋮

z(1)

⋮
) . ..(

⋮

z(n)

⋮
)]=[ ( ... u(1) ... )

. ..

( ... u(D ) ...) ][(
⋮

x (1)

⋮
) . ..(

⋮

x(n)

⋮
)]

[(
⋮

x(1)

⋮ )…(
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x(n)

⋮ )]=[(
⋮

u(1)

⋮ )…(
⋮

u(D)

⋮ )][(
⋮

z(1)

⋮ )…(
⋮

z(n)

⋮ )]

Z=U T X

Linear Algebra:

xi
(k)=xik

xi
(k)=ui

(1) z1
(k)+...+ui

(D) zD
(k )

xi
(k)=ui1 z1k+...+uiD zDk

1st PC

Dth  PC

z i
(k )=u1

(i) x1
(k )+...+uD

(i) xD
(k) Starting from

 In matrix form

Z=U T X
(U T )−1 Z=X

{U is orthonormal}
U Z=X



  

Reconstruction from PCs

 Compression: only keep first d PCs
 Reconstruction from those...?

 just by the previous formulas

Z=U T X
(U T )−1 Z=X

{U is orthonormal}
U Z=X



  

Data as Linear Combination of 
The Principal Components

[(
⋮

x(1)

⋮ )…(
⋮

x(n)

⋮ )]=[(
⋮

u(1)

⋮ )…(
⋮
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⋮
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⋮ )…(
⋮

z(n)

⋮ )]
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(k)=ui

(1) z1
(k)+...+ui

(d) zd
(k )+...+ui

(D) zD
(k )

1st PC
dth  PC

Z=U T X
(U T )−1 Z=X

{U is orthonormal}
U Z=X

 Compression: only keep first d PCs
 Reconstruction from those...?

 just by the previous formulas
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Reconstruction from PCs

 Compression: only keep first d PCs
 Reconstruction from those...?

 just by the previous formulas

Z=U T X
(U T )−1 Z=X

{U is orthonormal}
U Z=X

Dimension reduction

● rather than using all D directions u(i), 

● use only the d first u(1),...,u(d)

● so now        is  a                 matrix

Ẑ=Û T X
Û Ẑ≈X

Û D×d

{Ẑ is d×N }



  

Reconstruction from PCs

 Compression: only keep first d PCs
 Reconstruction from those...?

 just by the previous formulas

Z=U T X
(U T )−1 Z=X

{U is orthonormal}
U Z=X

Dimension reduction

● rather than using all D directions u(i), 

● use only the d first u(1),...,u(d)

● so now        is  a                 matrix

Ẑ=Û T X
Û Ẑ≈X

Û D×d

{Ẑ is d×N } Ẑ=Û T X
Û Ẑ≈X

this is the reconstruction 
of the data from only the 

first d principal 
components



  

Finally: How many components?

 Compression: only keep first d PCs
 but how to decide how many?!



  

Finally: How many components?

 Compression: only keep first d PCs
 but how to decide how many?!

 eigenvector j (direction u(j)) ↔ associated eigenvalue
 indicates the amount of variance in u(j)

 sum of eigenvalues is the total variance
 typically pick d to preserve, e.g., 90% of the variance.



  

Numerical Differentiation and Integration



  

Numerical Differentiation and 
Integration

 Finding derivatives or primitives of a function f 
 not always easy or possible....

 no closed form solution exists
 the solution is a very complex expression that is hard to 

evaluate
 we may not know f (as before!)

→ numerical methods



  

Numerical Differentiation

 If we want to know the rate of change...

 E.g.:
 [QSG] fluid in a cylinder with a hole in the bottom, 

measured every 5 seconds.
 High-speed camera images of animal movements, 

(jumping in frogs and insects, suction feeding in fish, and the strikes of 
mantis shrimp)

 determine speed 
 and acceleration



  

Numerical Differentiation

 Determine the vertical speed at t=0.25

 what would you do?

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

frog height(t)



  

Numerical Differentiation

 Determine the vertical speed at t=0.25...
 a few options...

0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36
0.35

0.36

0.36

0.37

0.37

0.38

0.38

0.39

0.39

frog height(t)   



  

Numerical Differentiation
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Numerical Differentiation

 Determine the vertical speed at t=0.25...
 a few options...

0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36
0.35
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0.36
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0.37
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frog height(t)   

forward finite 
difference

backward finite 
difference



  

Numerical Differentiation

 Determine the vertical speed at t=0.25...
 a few options...

0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36
0.35

0.36

0.36

0.37

0.37

0.38

0.38

0.39

0.39

frog height(t)   

forward finite 
difference

backward finite 
difference

Other Ideas?



  

Numerical Differentiation

 Determine the vertical speed at t=0.25...
 a few options...

0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36
0.35

0.36

0.36

0.37

0.37

0.38

0.38

0.39

0.39

frog height(t)   

Centered finite 
difference



  

Numerical Integration

 Integration: the reversed problem...
 Suppose we travel in a car with a broken odometer
 Speedometer is working...



  

Numerical Integration

 maintain speeds, to figure out traveled distance
t v(t) km/h

0 80

30 120

65 128

120 122

728 120

733 0

798 20

836 20

941 70

970 120

1350 123

1404 90

enter highway ramp

exit highway ramp

traffic jam



  

Numerical Integration
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Numerical Integration

 maintain speeds, to figure out traveled distance
t v(t) km/h

0 80

30 120

65 128

120 122

728 120

733 0

798 20

836 20

941 70

970 120

1350 123

1404 90

enter highway ramp

exit highway ramp

traffic jam

0 200 400 600 800 1000 1200 1400 1600
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v(t) km/h

How far did we travel?



  

Midpoint Formula

 Approximate the integral with a finite sum
integration interval

y

xx̄1 x̄M

x0 x1 xM



  

Midpoint Formula

integration interval
y

xx̄1 x̄M

x0 x1 xM
H size of interval



  

Midpoint Formula

integration interval
y

xx̄1 x̄M

x0 x1 xM

x̄ k=
xk−1+xk

2

Approximation of the integral:

I MP (f )=H∑
k=1

M

f ( x̄k)



  

Trapezoid Formula

integration interval
y

xI1 I M

x0 x1 xM



  

Trapezoid Formula

integration interval
y

xI1 I M

x0 x1 xM

I k=H
f (x k−1)+f (xk)

2

Approximation of the integral:

I MP (f )=∑
k=1

M

I k



  

Trapezoid Formula

integration interval
y

xI1 I M

x0 x1 xM

I k=H
f (x k−1)+f (xk)

2

Approximation of the integral:

I MP (f )=∑
k=1

M

I k

Possible to avoid some 
work by using different 

formula [QSG]



  

Symbolic Integration

 Finally: when faced with 
a difficult integral...

→ try 'symbolic' packages!



  

Symbolic Integration

 Finally: when faced with 
a difficult integral...

→ try 'symbolic' packages!



  

Reading

 PCA – Not in book
 but: computation of eigenvalues – Ch. 6

 Numerical differentiation / integration
 Ch. 4 up to 4.4
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