Scientific Computing Maastricht Science Program

Week 5

Frans Oliehoek <frans.oliehoek@maastrichtuniversity.nl>

Announcements

I will be more strict!

- Requirements updated...
- YOU are responsible that the submission satisfies the requirements!!!
 - I will not email you until the rest has their mark.

Recap Last Two Week

Recap: Clustering

- Clustering or Cluster Analysis has many applications
- Understanding
 - Astronomy, Biology, etc.
- Data (pre)processing
 - summarization of data set
 - compression

Are there questions about k-means clustering?

This Lecture

- Last week: unlabeled data (also 'unsupervised learning')
 - data: just x
 - Clustering
 - Principle Components analysis (PCA) what?
- This week
 - Principle Components analysis (PCA) how?
 - Numerical differentiation and integration.

Part 1: Principal Component Analysis

RecapHow to do it?

PCA – Intuition

How would you summarize this data using 1 dimension?

(what variable contains the most information?)

PCA – Intuition

How would you summarize this data using 1 dimension?

(what variable contains the most information?)

PCA – Intuition

How would you summarize this data using 1 dimension?

Transform of *k*-th point: X_2 $(x_1^{(k)}, x_2^{(k)}) \rightarrow (z_1^{(k)})$ where z_1 is the orthogonal scalar projection on (unit vector) u⁽¹⁾: $z_1^{(k)} = u_1^{(1)} x_1^{(k)} + u_2^{(1)} x_2^{(k)} = (u^{(1)}, x^{(k)})$ **X**₁

More Principle Components

u⁽²⁾ is the direction with most 'remaining' variance

orthogonal to u⁽¹⁾ !

In general

- If the data is D-dimensional
- We can find D directions $u^{(1)}, \dots, u^{(D)}$
- Each direction itself is a D-vector: $u^{(i)} = (u_{1,}^{(i)} \dots , u_{D}^{(i)})$
- Each direction is orthogonal to the others: $(u^{(i)}, u^{(j)}) = 0$
- The first direction is has most variance
- The least variance is in direction $u^{(D)}$

PCA – Goals

- All directions of high variance might be useful in itself
 - Analysis of data
 - In the lab you will analyze the ECG signal of a patient with a heart disease.

PCA – Goals

- All directions of high variance might be useful in itself
- But not for dimension reduction...
 - Given X (N data points of D variables)
 - \rightarrow Convert to Z (N data points of d variables)

$$\begin{array}{c} (x_1^{(0)}, x_2^{(0)}, \dots, x_D^{(0)}) \rightarrow (z_1^{(0)}, z_2^{(0)}, \dots, z_d^{(0)}) \\ (x_1^{(1)}, x_2^{(1)}, \dots, x_D^{(1)}) \rightarrow (z_1^{(1)}, z_2^{(1)}, \dots, z_d^{(1)}) \\ & \cdots \\ (x_1^{(n)}, x_2^{(n)}, \dots, x_D^{(n)}) \rightarrow (z_1^{(n)}, z_2^{(n)}, \dots, z_d^{(n)}) \end{array}$$

The vector
$$(Z_i^{(0)}, Z_i^{(1)}, ..., Z_i^{(n)})$$

is called the *i*-th **principal component** (of the data set)

PCA – Dimension Reduction

- Approach
- Step 1:
 - find all directions (and principal components)

$$(x_1^{(0)}, x_2^{(0)}, \dots, x_D^{(0)}) \rightarrow (z_1^{(0)}, z_2^{(0)}, \dots, z_D^{(0)}) (x_1^{(1)}, x_2^{(1)}, \dots, x_D^{(1)}) \rightarrow (z_1^{(1)}, z_2^{(1)}, \dots, z_D^{(1)}) \dots (x_1^{(n)}, x_2^{(n)}, \dots, x_D^{(n)}) \rightarrow (z_1^{(n)}, z_2^{(n)}, \dots, z_D^{(n)})$$

• Step 2: ...?

PCA – Dimension Reduction

- Approach
- Step 1:
 - find all directions (and principal components)

$$(x_{1}^{(0)}, x_{2}^{(0)}, \dots, x_{D}^{(0)}) \rightarrow (z_{1}^{(0)}, z_{2}^{(0)}, \dots, z_{D}^{(0)}) (x_{1}^{(1)}, x_{2}^{(1)}, \dots, x_{D}^{(1)}) \rightarrow (z_{1}^{(1)}, z_{2}^{(1)}, \dots, z_{D}^{(1)}) \cdots (x_{1}^{(n)}, x_{2}^{(n)}, \dots, x_{D}^{(n)}) \rightarrow (z_{1}^{(n)}, z_{2}^{(n)}, \dots, z_{D}^{(n)})$$

Step 2:

 keep only the directions with high variance.

 \rightarrow the principal components with much information

first *d*<*D* PCs contain most information!

$$(x_1^{(0)}, x_2^{(0)}, \dots, x_D^{(0)}) \rightarrow (z_1^{(0)}, z_2^{(0)}, \dots, z_d^{(0)}) (x_1^{(1)}, x_2^{(1)}, \dots, x_D^{(1)}) \rightarrow (z_1^{(1)}, z_2^{(1)}, \dots, z_d^{(1)})$$

 $(x_1^{(n)}, x_2^{(n)}, \dots, x_D^{(n)}) \to (z_1^{(n)}, z_2^{(n)}, \dots, z_d^{(n)})$

PCA – Dimension Reduction

- Approach
- Step 1:
 - find all directions

 (and principal components)

$$(x_{2}^{(n)}, \dots, x_{D}^{(n)}) \rightarrow (z_{1}^{(n)}, z_{2}^{(n)}, \dots, z_{D}^{(n)})$$

first *d*<*D* PCs contain most information!

 $\begin{aligned} & x_1^{(0)}, x_2^{(0)}, \dots, x_D^{(0)} \end{pmatrix} \to (z_1^{(0)}, z_2^{(0)}, \dots, z_d^{(0)}) \\ & x_1^{(1)}, x_2^{(1)}, \dots, x_D^{(1)} \end{pmatrix} \to (z_1^{(1)}, z_2^{(1)}, \dots, z_d^{(1)}) \end{aligned}$

PCA

- finding all the directions, and
- principle components
- Data compression using PCA
 - computing compressed representation
 - computing reconstruction

PCA

- finding all the directions, and
- principle components

still to be shown (using eigen decomposition of cov. matrix)

> Easy! for *k*-th point: $z_{i}^{(k)} = (u^{(j)}, x^{(k)})$

- Data compression using PCA
 - computing compressed representation
 - computing reconstruction

Easy! For *k*-th point just keep $(z_1^{(k)}, \dots, z_d^{(k)})$

still to be shown (we show that data is a linear combination of the PCs)

PCA

- finding all the directions, and
- principle components

still to be shown (using eigen decomposition of cov. matrix)

> Easy! for *k*-th point: $z_j^{(k)} = (u^{(j)}, x^{(k)})$

- Data compression using PCA
 - computing compressed representation
 - computing reconstruction

Easy! For *k*-th point just keep $(z_1^{(k)}, \dots, z_d^{(k)})$

still to be shown (we show that data is a linear combination of the PCs)

Algorithm

- X is the DxN data matrix
- 1) Preprocessing:
 - scale the features
 - make X zero mean
- 2) Compute the data covariance matrix
- 3) Perform eigen decomposition
 - directions u_i are the eigenvectors of C
 - variance of u_i is the corresponding eigenvalue

Note: X is now D x N (before N x D)

Algorithm

- X is the DxN data matrix
- 1) Preprocessing:
 - scale the features
 - make X zero mean
- 2) Compute the data covariance matrix
- 3) Perform eigen decomposition
 - directions u_i are the eigenvectors of C
 - variance of u_i is the corresponding eigenvalue

$$x_{i}^{(k)} = \frac{2 x_{i}^{(k)}}{max_{l} x_{i}^{(l)} - min_{m} x_{i}^{(l)}}$$

Algorithm

- X is the DxN data matrix
- 1) Preprocessing:
 - **scale** the features
 - make X **zero mean**
- 2) Compute the data covariance matrix
- 3) Perform eigen decomposition
 - directions *u_i* are the eigenvectors of C
 - variance of u_i is the corresponding eigenvalue

Compute μ

subtract the mean from each point

Compute μ (the mean data point) $\mu_i = \frac{1}{N} \sum_{k=1}^{N-1} x_i^{(k)}$

$$x^{(k)} = x^{(k)} - \mu$$

Algorithm

- X is the DxN data matrix
- 1) Preprocessing:
 - scale the features
 - make X zero mean

2) Compute the data covariance matrix

- 3) Perform eigen decomposition
 - directions u_i are the eigenvectors of C
 - variance of u_i is the corresponding eigenvalue

$$C = \frac{1}{N} X X^{T}$$

Algorithm

- X is the DxN data matrix
- 1) Preprocessing:
 - scale the features
 - make X zero mean
- 2) Compute the data covariance matrix

3) Perform eigen decomposition

- directions u_i are the eigenvectors of C
- variance of u_i is the corresponding eigenvalue

Algorithm

- X is the DxN data matrix
- 1) Preprocessing:
 - scale the features
 - make X zero mean
- 2) Compute the data covariance matrix

3) Perform eigen decomposition

- directions u_i are the eigenvectors of C
- variance of u_i is the corresponding eigenvalue

```
• A square matrix has eigenvectors:
map to a multiple of themselves
```

```
[eigenvectors, eigenvals] = eig(C)
% 'eig' delivers eigenvectors with
% the wrong order
% so we flip the matrix
U = fliplr(eigenvectors)
```

```
(scalar) eigenvalue (% U(i, :) now is the i-th direction
```

PCA

- finding all the directions, and
- principle components

still to be shown (using eigen decomposition of cov. matrix)

> Easy! for *k*-th point: $z_{j}^{(k)} = (u^{(j)}, x^{(k)})$

- Data compression using PCA
 - computing compressed representation
 - computing reconstruction

Easy! For *k*-th point just keep $(z_1^{(k)}, \dots, z_d^{(k)})$

still to be shown (we show that data is a linear combination of the PCs)

- Starting from $z_i^{(k)} = u_1^{(i)} x_1^{(k)} + ... + u_D^{(i)} x_D^{(k)}$
- In matrix form $Z = U^T X$
 - Note: X is still D x N (before N x D)

$$\begin{bmatrix} z_{11} & \dots & z_{1n} \\ \dots & \dots & \dots \\ z_{D1} & \dots & z_{Dn} \end{bmatrix} = \begin{bmatrix} u_{11}^T & \dots & u_{1D}^T \\ \dots & \dots & \dots \\ u_{D1}^T & \dots & u_{DD}^T \end{bmatrix} \begin{bmatrix} x_{11} & \dots & x_{1n} \\ \dots & \dots & \dots \\ x_{D1} & \dots & x_{Dn} \end{bmatrix}$$
$$\begin{bmatrix} \left(\vdots \\ z_{11}^{(1)} \\ \vdots \\ z_{11}^{(1)} \\ \vdots \\ \vdots \\ z_{11}^{(1)} \\ z_{11}$$

Starting from z_i^(k)=u₁⁽ⁱ⁾x₁^(k)+...+u_D⁽ⁱ⁾x_D^(k)
 In matrix form Z=U^TX

Starting from z_i^(k)=u₁⁽ⁱ⁾x₁^(k)+...+u_D⁽ⁱ⁾x_D^(k)
 In matrix form Z=U^TX

 $\begin{bmatrix} z_{11} & \dots & z_{1n} \\ \dots & \dots & \dots \\ z_{D1} & \dots & z_{Dn} \end{bmatrix} = \begin{bmatrix} u_{11}^T & \dots & u_{1D}^T \\ \dots & \dots & \dots \\ u_{D1}^T & \dots & u_{DD}^T \end{bmatrix} \begin{bmatrix} x_{11} & \dots & x_{1n} \\ \dots & \dots & \dots \\ x_{D1} & \dots & x_{Dn} \end{bmatrix}$ $\begin{bmatrix} \left(\vdots \\ z_{11}^{(1)} \\ \vdots \\ z_{D1}^{(1)} \\ \vdots \\ \vdots \\ z_{D1}^{(1)} \\ \vdots \\ z_{D1}^{(1)} \\ \vdots \\ z_{D1}^{(1)} \\$

Linear Algebra: $Z = U^T X$ $(U^T)^{-1} Z = X$ $\{U \text{ is orthonormal}\}$ U Z = X

Starting from $z_i^{(k)} = u_1^{(i)} x_1^{(k)} + ... + u_D^{(i)} x_D^{(k)}$ In matrix form $Z = U^T X$

 $\begin{bmatrix} z_{11} & \dots & z_{1n} \\ \dots & \dots & \dots \\ z_{D1} & \dots & z_{Dn} \end{bmatrix} = \begin{bmatrix} u_{11}^T & \dots & u_{1D}^T \\ \dots & \dots & \dots \\ u_{D1}^T & \dots & u_{DD}^T \end{bmatrix} \begin{bmatrix} x_{11} & \dots & x_{1n} \\ \dots & \dots & \dots \\ x_{D1} & \dots & x_{Dn} \end{bmatrix}$ $\begin{bmatrix} \left(\vdots \\ z_{11}^{(1)} \\ \vdots \end{pmatrix} \cdots \begin{pmatrix} \vdots \\ z_{D1}^{(n)} \\ \vdots \end{pmatrix} \end{bmatrix} = \begin{bmatrix} \left(\dots & u^{(1)} & \dots \right) \\ \dots & \dots \\ \left(\dots & u^{(D)} & \dots \right) \end{bmatrix} \begin{bmatrix} \left(\vdots \\ x_{11}^{(1)} \\ \dots \\ x_{D1}^{(n)} \\ \vdots \end{pmatrix} \cdots \begin{pmatrix} \vdots \\ x_{D1}^{(n)} \\ \vdots \end{pmatrix} \end{bmatrix}$

Linear Algebra:

Starting from $z_i^{(k)} = u_1^{(i)} x_1^{(k)} + ... + u_D^{(i)} x_D^{(k)}$ In matrix form $Z = U^T X$

 $\begin{bmatrix} z_{11} & \dots & z_{1n} \\ \dots & \dots & \dots \\ z_{D1} & \dots & z_{Dn} \end{bmatrix} = \begin{bmatrix} u_{11}^T & \dots & u_{1D}^T \\ \dots & \dots & \dots \\ u_{D1}^T & \dots & u_{DD}^T \end{bmatrix} \begin{bmatrix} x_{11} & \dots & x_{1n} \\ \dots & \dots & \dots \\ x_{D1} & \dots & x_{Dn} \end{bmatrix}$ $\begin{bmatrix} \left(\vdots \\ z_{11}^{(1)} \\ \vdots \\ \end{bmatrix} = \begin{bmatrix} \dots & u^{(1)} & \dots \\ \dots & u^{(D)} \\ \dots & u^{(D)} \\ \vdots \\ \end{bmatrix} \begin{bmatrix} \left(\vdots \\ x_{11}^{(1)} \\ \dots \\ x_{Dn} \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ \end{bmatrix}$

Linear Algebra:

Starting from z_i^(k)=u₁⁽ⁱ⁾x₁^(k)+...+u_D⁽ⁱ⁾x_D^(k)
 In matrix form Z=U^TX

 $\begin{bmatrix} z_{11} & \dots & z_{1n} \\ \dots & \dots & \dots \\ z_{D1} & \dots & z_{Dn} \end{bmatrix} = \begin{bmatrix} u_{11}^T & \dots & u_{1D}^T \\ \dots & \dots & \dots \\ u_{D1}^T & \dots & u_{DD}^T \end{bmatrix} \begin{bmatrix} x_{11} & \dots & x_{1n} \\ \dots & \dots & \dots \\ x_{D1} & \dots & x_{Dn} \end{bmatrix}$ $\begin{bmatrix} \left(\vdots \\ z_{11}^{(1)} \\ \vdots \\ z_{11}^{(1)} \\ \dots \\ z_{D1}^{(n)} \end{bmatrix} = \begin{bmatrix} (\dots & u^{(1)} & \dots) \\ \dots & \vdots \\ \dots & u^{(D)} \\ \dots \\ \dots \\ u^{(D)} \\ \dots \end{bmatrix} \begin{bmatrix} \left(\vdots \\ x_{11}^{(1)} \\ \dots \\ x_{D1}^{(n)} \\ \dots \\ x_{Dn}^{(n)} \\ \vdots \\ \end{bmatrix}$

Linear Algebra:

 $x_i^{(k)} = x_{ik}$ $x_{i}^{(k)} = u_{i1} Z_{1k} + \dots + u_{iD} Z_{Dk}$ $x_{i}^{(k)} = u_{i}^{(1)} z_{1}^{(k)} + \dots + u_{i}^{(D)} z_{D}^{(k)}$

$$\begin{bmatrix} \begin{pmatrix} \vdots \\ x^{(1)} \\ \vdots \end{pmatrix} \cdots \begin{pmatrix} \vdots \\ x^{(n)} \\ \vdots \end{pmatrix} = \begin{bmatrix} \begin{pmatrix} \vdots \\ u^{(1)} \\ \vdots \end{pmatrix} \cdots \begin{pmatrix} \vdots \\ u^{(D)} \\ \vdots \end{pmatrix} \end{bmatrix} \begin{bmatrix} \begin{bmatrix} \vdots \\ z^{(1)} \\ \vdots \end{bmatrix} \cdots \begin{bmatrix} z^{(n)} \\ \vdots \end{bmatrix} = \begin{bmatrix} D^{\text{th}} \text{ PC} \end{bmatrix}$$

Reconstruction from PCs

- Compression: only keep first d PCs
- Reconstruction from those...?
 - just by the previous formulas

 $Z = U^T X$ $(\boldsymbol{U}^T)^{-1}\boldsymbol{Z} = \boldsymbol{X}$ {U is orthonormal} UZ = X

- Compression: only keep first d PCs
- Reconstruction from those...?
 - just by the previous formulas

- Compression: only keep first d PCs
- Reconstruction from those...?
 - just by the previous formulas

Reconstruction from PCs

- Compression: only keep first d PCs
- Reconstruction from those...?
 - just by the previous formulas

Dimension reduction

- rather than using all D directions *u*^(*i*),
- use only the *d* first $u^{(1)}, \dots, u^{(d)}$
- so now \hat{U} is a $D \times d$ matrix

$$\{\hat{Z} \text{ is } d \times N\} \longrightarrow \hat{Z} = \hat{U}^T X$$

$$\hat{U} \hat{Z} \approx X$$

Reconstruction from PCs

- Compression: only keep first d PCs
- Reconstruction from those...?
 - just by the previous formulas

Dimension reduction

- rather than using all D directions *u*^(*i*),
- use only the *d* first $u^{(1)}, \dots, u^{(d)}$
- so now \hat{U} is a $D \times d$ matrix

$$\{\hat{Z} \text{ is } d \times N\} \longrightarrow \hat{Z} = \hat{U}^T X$$
$$\hat{U} \hat{Z} \approx X$$

this is the reconstruction of the data from only the first *d* principal components

Finally: How many components?

- Compression: only keep first d PCs
 - but how to decide how many?!

Finally: How many components?

- Compression: only keep first d PCs
 - but how to decide how many?!

- eigenvector j (direction $u^{(j)}$) \leftrightarrow associated eigenvalue
 - indicates the amount of variance in $u^{(j)}$
 - sum of eigenvalues is the total variance
 - typically pick d to preserve, e.g., 90% of the variance.

Numerical Differentiation and Integration

Numerical Differentiation and Integration

- Finding derivatives or primitives of a function f
- not always easy or possible....
 - no closed form solution exists
 - the solution is a very complex expression that is hard to evaluate
 - we may not know f (as before!)
 - \rightarrow numerical methods

- If we want to know the rate of change...
- E.g.:
 - [QSG] fluid in a cylinder with a hole in the bottom, measured every 5 seconds.
 - High-speed camera images of animal movements, (jumping in frogs and insects, suction feeding in fish, and the strikes of mantis shrimp)
 - determine speed
 - and acceleration

Determine the vertical speed at t=0.25

what would you do?

- Determine the vertical speed at t=0.25...
 - a few options...

- Determine the vertical speed at t=0.25...
 - a few options...

- Determine the vertical speed at t=0.25...
 - a few options...

Determine the vertical speed at t=0.25...

a few options...

- Determine the vertical speed at t=0.25...
 - a few options...

- Integration: the reversed problem...
- Suppose we travel in a car with a broken odometer
- Speedometer is working...

maintain speeds, to figure out traveled distance

maintain speeds, to figure out traveled distance

maintain speeds, to figure out traveled distance

Midpoint Formula

Approximate the integral with a finite sum

Midpoint Formula

Midpoint Formula

Trapezoid Formula

Trapezoid Formula

Trapezoid Formula

Symbolic Integration

- Finally: when faced with a difficult integral...
 - → try 'symbolic' packages!

		symbolic-integration.nb *								
ile <u>E</u>	dit	Insert	Format	<u>C</u> ell	Graphics	E <u>v</u> aluation	Palettes	Window	<u>H</u> elp	
	- A	n easy ex	xample :							
In[48]:	= f	[x_] =	3 * x;							
	f	[4]								
Out[49]	= 1:	2								
In[50]:	= I	ntegrat	te[f[x]	, x]						
Out[50]	3	x ²								
		2								
	- A	more co	mplex exa	ample	:					
In[51]:	= g	$g[x_] = Exp[x \wedge 2] * Cos[x]$								
	I	ntegrat	te[g[x]	, x]						
Out[51]	= e	× ² Cos	[x]							
Out[52]	= 1/4	e ^{1/4} V	$\sqrt{\pi}$ (Erf	$i\left[\frac{1}{2}\right]$	(-i+2x)	+ Erfi $\left[\frac{1}{2}\right]$	(i + 2 x)])		
	- A	n examp	le that ha	s no cl	osed form	solution:				
In[53]:	= h	$h[x_] = x \wedge \{3 x\}$								
	I	<pre>Integrate[h[x], x]</pre>								
	N	[Integ	rate[h[x], {	x, 1, 2}	11				
Out[53]	= {:	x ^{3 x} }								
Out[54]	= {	$\int \mathbf{x}^{3 \mathbf{x}} d\mathbf{x}$	d x }							
Out[55]	= {	13.3445	5}							
+										

```
symbolic-integration.nb *
                                                                                                                              - + X
-
File Edit Insert Format Cell Graphics Evaluation Palettes Window Help
                                                                                                                                      *
                                                                                                                                 1
        An easy example :
  \ln[48]:= f[x_] = 3 * x;
          f[4]
                                                                                                                               7
  Out[49] = 12
                                                                                                                                ]
  In[50]:= Integrate[f[x], x]
                                                                                                                                Ζ
 Out[50] = \frac{3 x^2}{2}
        · A more complex example :
  \ln[51]:= g[x_] = Exp[x \wedge 2] * Cos[x]
          Integrate[g[x], x]
                                                                                                                                Ζ
  Out[51] = e^{x^2} Cos[x]
                                                                                                                                Ζ
 Out[52] = \frac{1}{4} e^{1/4} \sqrt{\pi} \left( Erfi\left[\frac{1}{2} (-i+2x)\right] + Erfi\left[\frac{1}{2} (i+2x)\right] \right)
                                                                                                                                 ]
        · An example that has no closed form solution:
  \ln[53] = h[x_] = x \wedge \{3 x\}
          Integrate[h[x], x]
          N[Integrate[h[x], {x, 1, 2}]]
                                                                                                                                7
 Out[53] = \{x^3 \times\}
                                                                                                                                Ζ
 Out[54]= \left\{ \mathbf{x}^3 \times \mathbf{d} \mathbf{x} \right\}
                                                                                                                                7
 Out[55]= {13.3445}
 1+5
```

Reading

- PCA Not in book
 - but: computation of eigenvalues Ch. 6
- Numerical differentiation / integration
 - Ch. 4 up to 4.4