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Annhouncements

[N\

(@academia o e :
This is the page for the course 'Scientific Computing'.

Description

= | will be more strict!

PhD Thesis This course serves two goals:

1. To make students familiar with the concepts of programming
and the get them accustomed with high-level languages like
Matlab en Mathematica.

2. To provide an overview of some of the issues and problems
that arise in scientific computing, such as (non-)linear systems,

puting '12 numerical and symbolic integration, differential equations and

simulation.

Afurther description can be found in the course manual:

U SLIETITNC- L-ompuUting. parl.

Lab Submission Requirements
Y.oMIT.edu LIS

i Dec-POMDP ( --> NOTE: The requirements document has been updated! <-- )
MO Here is a document with requirements for lab submissions. Also, |
created an example submission. h

* (Updated) Reguirements.

* example lab submission.

= Requirements updated...!

= YOU are responsible that the submission
satisfies the requirements!!!

= | will not emall you until the rest has their mark.



Recap Last Two Week

= Supervised Learning
« find f that maps {x,9,...,x 0} - y0

= |nterpolation - |-

= f goes through the data points
= |inear regression

. . . . ' . ' / e
= lossy fit, minimizes 'vertical' SSE
= Unsupervised Learning X, K
= We just have data points {x.9,...,x_0} L
= PCA < py“b
o
= minimizes orthogonal projection ’ —uluu)




Recap: Clustering

Clustering or Cluster Analysis has many applications

Understanding
= Astronomy, Biology, etc.

Data (pre)processing

= summarization of data set

= compression

Are there questions about k-means clustering?



This Lecture

= Last week: unlabeled data (also 'unsupervised learning’)
= data: just X
= Clustering
= Principle Components analysis (PCA) — what?

= This week
= Principle Components analysis (PCA) — how?
= Numerical differentiation and integration.



Part 1: Principal Component Analysis

*Recap
*How to do it?



PCA - Intuition

= How would you summarize this data using 1 dimension?

(what variable contains the most information?)

|
o) %
@)
© @)
Very important idea °
O
. . . ©e
The most information is ® o
contained by the variable with o
the largest spread.
* |.e., highest variance ®
o @
(Information Theory) o
O¢ X
@)
@)




PCA - Intuition

= How would you summarize this data using 1 dimension?

(what variable contains the most information?)

Very important idea

The most  information

IS

contained by the variable with

the largest spread.
* |.e., highest variance

(Information Theory)

so if we have to chose
between X, and X,

— remember X,

Transform of k-th point:
(k) (k) (k)
(X1 » Xy )_>(Z1 )
where
Z(1)=X2




PCA - Intuition

= How would you summarize this data using 1 dimension?

Transform of k-th point: X,
(k) (k) (k)
(%", %)= (2)")
where z_ is the . "o
; . RS
orthogonal scalar projection O
on (unit vector) u®: %.j,s’b
o
(k) _ (1) (k) (1) (k) _ (1) (K] g
Z; =U; ' X;{ TU, X, —(u , X ) oy "
Q
%’"‘9\0 X,
Ky




More Principle Components

= y@ is the direction with most 'remaining' variance

= orthogonal to u®! y

2

In general e

e |f the data is D-dimensional

We can find D directions  u'",..., u'®

Each direction itself is a D-vector:
u(i):( (i) (i))

1 o-o,LlD

Each direction is orthogonal to the others:
(u(i), u(j)):O

. O ,\’
. 0 . . . O:: o~
* The first direction is has most variance :"«:‘5“9 ° ..
. . . . . D ~,~"‘ ~-.......--""‘
 The least variance is in direction u( ) &0




PCA - Goals

= All directions of high variance might be useful in itself

= Analysis of data

= |In the lab you will analyze the ECG signal of a patient
with a heart disease.

signal
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PCA - Goals

= All directions of high variance might be useful in itself
= But not for dimension reduction...

= Given X (N data points of D variables)

— Convert to Z (N data points of d variables)

(x§°>,x<20>,...,x§3))—>(zl Zy'\...,Z, )

(Y, )= (220 ), 2))

(X %) a0 — (220 2

The vector (ZE'O) ) Zgl), cee Zg'n))

Is called the /-th principal component (of the data set)




PCA - Dimension Reduction

= Approach
= Step 1:

= find all directions

(and principal components)

= Step 2:...7?

(
(

(

%9 X0

MOV

(n) (n)

X1 5 Xy yees

), 28]
) ), 2)

xp) (2,2, .. 25)



PCA - Dimension Reduction

= Approach

= Step 1: (x(l),x(z), ,X(I?)) (Z(l),z(z): ZE)))
(

- find all directions (3, X x) - (2,2 2))
(and principal components)

(x(ln), x(zn), s x(g))—>(z(1"), Z(Z"), s zg))

= Step 2: !

first d<D PCs contain
= keep only the directions with most information!
high variance.

(X(O) (0) (0) (0) (0) (0)

- the principal components 12Xy seensXp )22 52y 52y )
(1) (1) (1) (1) (1)

with much information (X, %, (2, 20, 2 )

(x(lr'), x(zn), s x(['})) —>(z(1"), z(zn), e zgﬁ)



PCA - Dimension Reduction

= Approach
= Step 1: (x(lo),x(zo),...,x(lg))—>(z(10),z(20),...,zg))
(

= find all directions

first d<D PCs contain
most information!

o (29,29, 29

)-(2",2,, ., 20)

=2, 2,2



PCA - More Concrete

= PCA

= finding all the directions, and
= principle components

= Data compression using PCA
= computing compressed representation
= computing reconstruction



PCA - More Concrete

still to be shown
= PCA (using eigen decomposition
of cov. matrix)

= finding all the directions, and

o prlnCIpIe ComponentS T Easy! for k-th point:

| | 2= (D ¢
= Data compression using PCA : ’

= computing compressed representation
T Easy!

For k-th point just keep
(k) (k)
(2%, ..., 2%)

= computing reconstruction

still to be shown

(we show that data is a linear
combination of the PCs)




PCA - More Concrete

still to be shown
= PCA (using eigen decomposition
of cov. matrix)

= finding all the directions, and

3 prlnCIpIe ComponentS T Easy! for k-th point:

| | 20— (D)
= Data compression using PCA f :

= computing compressed representation
T Easy!

For k-th point just keep
(k) (k)
(2%, ..., 2%

= computing reconstruction

still to be shown

(we show that data is a linear
combination of the PCs)




Computing the directions U

Algorithm

Note: X is now D x N (before N x D)

= X Is the DxN data matrix
1)Preprocessing:

» scale the features

* make X zero mean

2) Compute the
data covariance matrix

3) Perform eigen decomposition

= directions u, are the eigenvectors of C

= variance of u. Is the corresponding eigenvalue




Computing the directions U

Algorithm
= X is the DxN data matrix 7 k)

(1)

I

1)Preprocessing: P (1)

max,x; '—min, X
—

» scale the features

« make X zero mean

2) Compute the
data covariance matrix

3) Perform eigen decomposition

= directions u, are the eigenvectors of C

= variance of u. Is the corresponding eigenvalue



Computing the directions U

Algorithm
= X Is the DxN data matrix | . compute W 1 e
(the mean data poi = — Z (k)
. point) W.= X;
1)Preprocessing: N —
- scale the features . subtract the mean
- ' k k
. make X zero mean oM eachpoint X = ! )_M
2) Compute the
data covariance matrix

3) Perform eigen decomposition

= directions u, are the eigenvectors of C

= variance of u. Is the corresponding eigenvalue



Computing the directions U

Algorithm
= X Is the DxN data matrix
1)Preprocessing:

» scale the features « Data covariance matrix

1 T
2) Compute the C:NXX
data covariance matrix |

« make X zero mean

3) Perform eigen decomposition

= directions u, are the eigenvectors of C

= variance of u. Is the corresponding eigenvalue



Computing the directions U

Algorithm
= X Is the DxN data matrix
1)Preprocessing:

» scale the features

* make X zero mean

2) Compute the
data covariance matrix

3) Perform eigen decomposition

« A square matrix has eigenvectors:

map to a multiple of themselves

Cx A X

elgenvector \

(scalar) eigenvalue

= directions u, are the eigenvectors of C

= variance of u. Is the corresponding eigenvalue




Computing the directions U

Algorithm
= X Is the DxN data matrix
1)Preprocessing:

» scale the features

« make X zero mean

2) Compute the
data covariance matrix

3) Perform eigen decompos

= directions u. are the eigen

= Vvariance of u. IS the corre

[eigenvectors, eigenvals] = eig((C)
% 'eig' delivers eigenvectors with
% the wrong order

% so we flip the matrix

U = fliplr(eigenvectors)

U(i, :) now is the i-th direction




PCA - More Concrete

still to be shown
= PCA (using eigen decomposition
of cov. matrix)

= finding all the directions, and

3 prlnCIpIe ComponentS T Easy! for k-th point:

| | 20— (D)
= Data compression using PCA f :

= computing compressed representation
T Easy!

For k-th point just keep
(k) (k)
(2%, ..., 2%

= computing reconstruction

still to be shown

(we show that data is a linear
combination of the PCs)




Data as Linear Combination of

The Principal Components

= Starting from 2=y xW4 44l xW

= In matrix form z=U"Xx
= Note: X is still D x N (before N x D)




Data as Linear Combination of

The Principal Components

= Starting from 2=y xW4 44l xW

I

= |In matrix form z=U'Xx

000000000000000000000000000




Data as Linear Combination of

The Principal Components

Linear Algebra:

| | T
= Starting from zM=uVxM 4+ +4l x!¥ ( UZT;‘?Zi(X
- T
* Inmatrixform  zZ=U" X {U is orthonormal |
Z Z, | Ui uier lxll xln. UZ=X
ZDl ZD ugl UgD XDI XD




Data as Linear Combination of

The Principal Components

Linear Algebra: .

= Starting from z\V=u'"x" 4+ 44l x¥ ( UZTT‘EJZXX

. T —
= Inmatrix form ZzZ=U X (Uis orthonormal
.zn Zm. Uy, ... Up .xll xln. UZ=X
.ZDl ” ZDn. .Ugl l,lgD Xpiq Xp
] [l ™ ) e
Z%l) Z(.n) _ X.(1> an>
AR I u® :
LU =] 0] u(D)) (z(l))---(z("))




Data as Linear Combination of

The Principal Components

Linear Algebra: .
= Starting from z\V=u'"x" 4+ 44l x¥ ( UZTT‘EJZXX
. T —
= Inmatrix form ZzZ=U X (Uis orthonormal
.zn zln- Uy, ... Up .xll xln. UZ=X
.ZDl ” ZDn. .uTDl UED Xpiq Xp
] [l ™ ) e
Z%l) Z(.n) _ X.(1> an>
AR I u® :
AE (s FET A5 ——rrc
L0 =l 401 @ 0.0
; ; E \= =)« D" PC




Data as Linear Combination of

The Principal Components

Linear Algebra: .
= Starting from z\V=u'"x" 4+ 44l x¥ ( UZTT‘EJZXX
. T —
° Inmatrix form  Z=U" X {U is orthonormal |
le Zln ufl ufD .Xll Xln UZZX
Zpr e Zpn Uy, .. Upp Xp; o Xpp Y
; : i — ik
. . (1) . e\ ]
( (1)) ( (n)) — ( . ) (1> (n) ng):uilzlk_l_..._'_uiDZDk
Z s Z — X X
A S (T AR : x=yt Wy | Pl
' A /
: T 4= ———u1pc
VY N Y | ) 1 311 G
: Z = ). ot pC




Reconstruction from PCs

. . . Z=U X
Compression: only keep first d PCs (U z=X

= Reconstruction from those...? / sl
= just by the previous formulas UZ=X



Data as Linear Combination of

The Principal Components

. . Z=U'"X
= Compression: only keep first d PCs (U z=x
= Reconstruction from those...? (U is orthonormal|
= just by the previous formulas U L=

xM=uM 2+ 2 P 2

I




Data as Linear Combination of

The Principal Components

. . Z=U'"X
= Compression: only keep first d PCs (U z=x
= Reconstruction from those...? (U is orthonormal|

= just by the previous formulas UZ=X




Reconstruction from PCs

. . Z=U'"X
= Compression: only keep first d PCs U z=x
= Reconstruction from those...? (U is orthonormal|
= just by the previous formulas U L=

Dimension reduction
« rather than using all D directions u®,
 use only the d first u®,...,u@

esonow Uis a DXd matrix

{ZiSdXN}\Z:UT




Reconstruction from PCs

. . Z=U'"X
= Compression: only keep first d PCs (U z=x
= Reconstruction from those...? (U is orthonormal|
= just by the previous formulas U L=

Dimension reduction
« rather than using all D directions u®,

 use only the d first u®,...,u@

esonow Uis a DXd matrix this is the reconstruction

of the data from only the
first d principal
components




Finally: How many components?

= Compression: only keep first d PCs
= pbut how to decide how many?!



Finally: How many components?

= Compression: only keep first d PCs
= pbut how to decide how many?!

= eigenvector j (direction u%) - associated eigenvalue
= indicates the amount of variance in u?
= sum of eigenvalues is the total variance
= typically pick d to preserve, e.qg., 90% of the variance.



Numerical Differentiation and Integration



Numerical Differentiation and

Integration

= Finding derivatives or primitives of a function f

= not always easy or possible....

= no closed form solution exists

= the solution is a very complex expression that is hard to
evaluate

= we may not know f (as before!)

— numerical methods



Numerical Differentiation

= If we want to know the rate of change...

= E.Q.:

= [QSG] fluid in a cylinder with a hole in the bottom,
measured every 5 seconds.

= High-speed camera images of animal movements,
(Jumping in frogs and insects, suction feeding in fish, and the strikes of
mantis shrimp)

= determine speed
= and acceleration



Numerical Differentiation

= Determine the vertical speed at t=0.25

0.45
0.4
0.35 u e
0.3 |
0.25 |
u W frog height(t)
0.2
0.15 [ |
0.1

0.05

om |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

= what would you do?



Numerical Differentiation

= Determine the vertical speed at t=0.25...
= afew options...

0.39
0.39
0.38
0.38
0.37 —— frog height(t)
0.37

0.36

0.36

0.35
0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36



Numerical Differentiation

= Determine the vertical speed at t=0.25...
= afew options...

0.39
0.39
0.38
0.38
0.37 —— frog height(t)
0.37
0.36
0.36

0.35
0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36



Numerical Differentiation

= Determine the vertical speed at t=0.25...

= afew options...

backward finife
039 difference

forward finite
difference
0.39

0.38
0.38
0.37 —— frog height(t)
0.37
0.36

0.36

0.35
0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36



Numerical Differentiation

= Determine the vertical speed at t=0.25...
= afew options...

backward finite
difference /

forward finite
ce

0.39

Other Ideas?

— frog height(t)

0.35
0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36



Numerical Differentiation

= Determine the vertical speed at t=0.25...
- a few options...

0.39 .
0.39 |
0.38
0.38 =

0.37 —— frog height(t)

Centered finite

0.37 N
difference

g
g
g
g
g
g
g
g
g
K
"
o
5
O 36 “
. B
o
5
)

0.36

0.35
0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36



Numerical Integration

= Integration: the reversed problem...
= Suppose we travel in a car with a broken odometer
= Speedometer is working...




Numerical Integration

= maintain speeds, to figure out traveled distance

t

30
65
120
728
733
798
836
941
970
1350
1404

v(t) km/h

80
120
128
122
120

20
20
70
120
123
90

-+

<

<

enter highway ramp

traffic jam

exit highway ramp



Numerical Integration

= maintain speeds, to figure out traveled distance

t v(t) km/h
0 80 =< —
30 120
65 128
120
728 140
733 120 —l
798 100 r
836 %0
941

970
1350

enter highway ramp

—8— v(t) km/h
60

40

20

0
1404 0 200 400 600 800 1000 1200 1400 1600



Numerical Integration

= maintain speeds, to figure out traveled distance

t v(t) km/h

U 80
120
128

-+

How far did we travel? r

40

970
1350
1404 %0 200

20

400

600

800 1000 1200 1400 1600

enter highway ramp

—8— v(t) km/h



Midpoint Formula

= Approximate the integral with a finite sum

. integration interval .

’ -~




Midpoint Formula

. integration interval .

f'i

H size of interval



Midpoint Formula

. integration interval .

r.i i
_ X TX
: Xk=
: 2
Approximation of the integral:




Trapezoid Formula

. integration interval .

)




Trapezoid Formula

. integration interval .

R
I _Hf(xk—1>+f(xk)
' k—
: 2
Approximation of the integral:

w\ IMP(f):kilIk




Trapezoid Formula

Possible to avoid some
work by using different

. integration interval . formula [QSG]

)

f(xk—1>+f(xk)

I.=H
k 2

| Approximation of the integral:

\ IMP(f):kilIk




Symbolic Integration

b symbolic-integration.nb *
File Edit Insert Format Cell Graphics Evaluation Palettes Window Help

= Finally: when faced with

a difficult integral... Ronidsagiore

Ins0):= Integrate[f[=x], x]

3mSR
2

Out]50}=

— try 'symbolic' packages!

A more complex example :

5= glx_]1 = ExXp[x A 2] * cos[x]
Integrate[g[x]., x]

Oust= e*" Cos[x]

= i X ) 1 Ik 1
Out]52)= eVt |Brils (ci+2x)|+BrEi|Z (i+2x)
5 ! 15 !

R ]

= An example that has no closed form solution:

mge= h[x ] =xa{3x}
Integrate[h[x], x]
N[Integrate[h[x], {x, 1, 2}]]

ousg= {x3*}
oufsdl= | | 23 * daxl

oussl= {13.34435)




-~

-

File Edit Insert Format Cell Graphics Evaluation

symbolic-integration.nb *

Palettes Window Help

Inf51]:=

Cut{51]=

Out{52)=

Inf53]:=

Oul{53]=

Out{54]=

Out{55]=

An easy example :
E[x_]=3=x;
£[4]

12

Integrate [f[=x]., x]
FoxA

2

A more complex example :

glx_] =Exp[xn 2] *Cos[x]
Integrate[g[x]. x]

e* Cos[x]
i | s i - " 1 o
el o :Erfz - (- +2x)| + Erfa

4 ' T 7 3

An example that has no closed form solution:
hfx ]=xa{23 x}

Integrate[h[=x], x]
N[Integrate[h[=x], {x, 1. 2}]11

- - 5
-\._':l:'_-:.:l-

-~ Yy -
L Il B o

.
-

(13.3445)

[+




= PCA — Not in book
= put: computation of eigenvalues — Ch. 6

= Numerical differentiation / integration
= Ch.4uptod.4
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