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Recap Last Week

 Approximation of Data and Functions
 find a function f mapping x → y 
 Interpolation 

 f goes through the data points
 piecewise or not

 linear regression
 lossy fit 
 minimizes SSE

 Linear Algebra
 Solving systems of linear equations

 GEM, LU factorization



  

Recap Least-Squares Method

x0, y0 ,x1, y1 , ... ,xn , y n

 'the function unknown'
 it is only known at certain points
 want to predict y given x

 Least Squares Regression:
 find a function that minimizes the prediction error 
 better for noisy data.

number of data points:

N=n1



  

Recap Least-Squares Method

 Minimize sum of the squares of the errors

 pick the     with min. SSE
(that means: pick          )

SSE( f̃ )=∑
i=0

n

[ f̃ (xi)− y i]
2

ỹ= f̃ (x)=a0+a1 x

f̃
a0,a1



  

This Lecture

 Last week: labeled data (also 'supervised learning')

 data: (x,y)-pairs
 This week: unlabeled data (also 'unsupervised learning')

 data: just x

 Finding structure in data
 2 Main methods:

 Clustering
 Principle Components analysis (PCA)



  

Part 1: Clustering



  

Clustering

 data set

 but now: unlabeled

 now what?
 structure?
 summarize

this data?

{(x1
(0) , x2

(0)) , ... ,(x1
(n) , x2

(n))}

{(x(0) , y(0)) , ... ,(x(n) , y(n))}



  

Clustering

 data set

 but now: unlabeled

 now what?
 structure?
 summarize

this data?

{(x1
(0) , x2

(0)) , ... ,(x1
(n) , x2

(n))}

{(x(0) , y(0)) , ... ,(x(n) , y(n))}



  

Clustering

 data set

 try to find the 
different clusters!

 How?

{(x1
(0) , x2

(0)) , ... ,(x1
(n) , x2

(n))}



  

Clustering

 data set

 try to find the 
different clusters!

 One way:
 find centroids

{(x1
(0) , x2

(0)) , ... ,(x1
(n) , x2

(n))}



  

Clustering – Applications

 Clustering or Cluster Analysis has many applications

 Understanding
 Astronomy: new types of stars

 Biology: 

 create taxonomies of living things
 clustering based on genetic information

 Climate: find patterns in the atmospheric 
pressure

 etc.

 Data (pre)processing

 summarization of data set

 compression



  

Cluster Methods

 Many types of clustering!
 We will treat one method: k-Means clustering

 the standard text-book method
 not necessarily the best
 but the simplest

 You will implement k-Means
 Use it to compress an image



  

k-Means Clustering

 The main idea 
 clusters are represented by 'centroids'
 start with random centroids
 then repeatedly

 find all data points that are nearest to a centroid
 update each centroid based on its data points



  

k-Means Clustering: Example



  

k-Means Clustering: Example



  

k-Means Clustering: Example



  

k-Means Clustering: Example



  

k-Means Clustering: Example



  

k-Means Clustering: Example



  

k-Means Algorithm

%% k-means PSEUDO CODE
%
% X - the data
% centroids - initial centroids 
%   (given by random initialization on data points)

iterations = 1
done = 0
while (~done && iterations < max_iters)

    labels = NearestCentroids(X, centroids);
    centroids = UpdateCentroids(X, labels);

iterations = iterations + 1;
if centroids did not change

done = 1
end

end



  

Part 2: Principal Component Analysis



  

Dimension Reduction

 Clustering allows us to summarize data using 
centroids

 summary of a point: what cluster is belongs to.

 Different idea: 
 reduce the number of variables
 i.e., reduce the number of dimensions from D to d

d<D

(x1, x2, ... , xD)→(z1, z2, ... , zd)



  

Dimension Reduction

 Clustering allows us to summarize data using 
centroids

 summary of a point: what cluster is belongs to.

 Different idea: 
 reduce the number of variables
 i.e., reduce the number of dimensions from D to d

d<D

(x1, x2, ... , xD)→(z1, z2, ... , zd)

This is what Principal Component Analysis (PCA) does.



  

PCA – Goals

 Given a data set X of N data point of D variables
→ convert to data set Z of N data points of d variables

(x1
(0) , x2

(0) , ... , xD
(0))→(z1

(0) , z2
(0) , ... , zd

(0))

(x1
(1) , x2

(1) , ... , xD
(1))→(z1

(1) , z2
(1) , ... , zd

(1))

...
(x1

(n) , x2
(n) , ... , xD

(n))→(z1
(n) , z2

(n) , ... , zd
(n))

N=n+1



  

PCA – Goals

 Given a data set X of N data point of D variables
→ convert to data set Z of N data points of d variables

(x1
(0) , x2

(0) , ... , xD
(0))→(z1

(0) , z2
(0) , ... , zd

(0))

(x1
(1) , x2

(1) , ... , xD
(1))→(z1

(1) , z2
(1) , ... , zd

(1))

...
(x1

(n) , x2
(n) , ... , xD

(n))→(z1
(n) , z2

(n) , ... , zd
(n))

The vector 

is called the i-th principal component (of the data set) 

(z i
(0) , zi

(1) , ... , z i
(n))



  

PCA – Goals

 Given a data set X of N data point of D variables
→ convert to data set Z of N data points of d variables

 PCA performs a linear transformation:
→ variables z

i
 are linear combinations of x

1
,...,x

D

(x1
(0) , x2

(0) , ... , xD
(0))→(z1

(0) , z2
(0) , ... , zd

(0))

(x1
(1) , x2

(1) , ... , xD
(1))→(z1

(1) , z2
(1) , ... , zd

(1))

...
(x1

(n) , x2
(n) , ... , xD

(n))→(z1
(n) , z2

(n) , ... , zd
(n))

The vector 

is called the i-th principal component (of the data set) 

(z i
(0) , zi

(1) , ... , z i
(n))



  

PCA Goals – 2

 Of course many possible transformations possible...
 Reducing the number of variables: loss of information
 PCA makes this loss minimal

 PCA is very useful
 Exploratory analysis of the data
 Visualization of high-D data
 Data preprocessing
 Data compression



  

PCA – Intuition

 How would you summarize this data using 1 dimension?

(what variable contains the most information?)

x
1

x
2



  

PCA – Intuition

 How would you summarize this data using 1 dimension?

(what variable contains the most information?)

x
1

x
2

Very important idea

The most information is 
contained by the variable with 
the largest spread.

● i.e., highest variance

(Information Theory)



  

PCA – Intuition

 How would you summarize this data using 1 dimension?

(what variable contains the most information?)

x
1

x
2

Very important idea

The most information is 
contained by the variable with 
the largest spread.

● i.e., highest variance

(Information Theory)

so if we have to chose 
between x

1
 and x

2

→ remember x
2 

Transform of k-th point:

where

(x1
(k) , x2

(k ))→(z1
(k))

z1
(k )=x2

(k )



  

PCA – Intuition

 How would you summarize this data using 1 dimension?

(what variable contains the most information?)

x
1

x
2

so if we have to chose 
between x

1
 and x

2

→ remember x
2 

Transform of k-th point:

where

(x1
(k) , x2

(k ))→(z1
(k))

z1
(k )=x2

(k )

Example:

z1
(k )=1.5



  

PCA – Intuition

 Reconstruction based on x
2

→ only need to remember mean of x
1

x
1

x
2



  

PCA – Intuition

 How would you summarize this data using 1 dimension?

x
1

x
2



  

PCA – Intuition

 How would you summarize this data using 1 dimension?

x
1

x
2

This is a projection 
on the x1 axis.



  

Question

 Suppose the data is now 3-dimensional


 Can you think of an example where we could project it 
to 2 dimensions:

?

(x1, x2, x3)→(z1, z2)

x=(x1, x2, x3)



  

PCA – Intuition

 How would you summarize this data using 1 dimension?

x
1

x
2



  

PCA – Intuition

 How would you summarize this data using 1 dimension?

x
1

x
2

● More difficult...
...projection on  both axes 
does not give nice results.

● Idea of PCA: find a new 
direction to project on!



  

PCA – Intuition

 How would you summarize this data using 1 dimension?

x
1

x
2

● More difficult...
...projection on  both axes 
does not give nice results.

● Idea of PCA: find a new 
direction to project on!



  

PCA – Intuition

 How would you summarize this data using 1 dimension?

x
1

x
2

● u is the direction of highest variance
● e.g., u = (1, 1)

● we will assume it is a unit vector
● length = 1
● u = (0.71, 0.71)

u



  

PCA – Intuition

 How would you summarize this data using 1 dimension?

x
1

x
2Transform of k-th point:

where z
1
 is the 

orthogonal scalar projection on u:

(x1
(k) , x2

(k ))→(z1
(k))

z1
(k )=u1 x1

(k)+u2 x2
(k)=(u , x(k))

u



  

PCA – Intuition

 How would you summarize this data using 1 dimension?

x
1

x
2Transform of k-th point:

where z
1
 is the 

orthogonal scalar projection on u:

(x1
(k) , x2

(k ))→(z1
(k))

z1
(k )=u1 x1

(k)+u2 x2
(k)=(u , x(k))

u
Note, the general formula for scalar 

projection is

However, when u is a unit vector,  
we can use the simplified formula

(u , x(k ))/(u ,u)



  

PCA – Intuition

 How would you summarize this data using 1 dimension?

x
1

x
2Transform of k-th point:

where z
1
 is the 

orthogonal scalar projection on u:

(x1
(k) , x2

(k ))→(z1
(k))

z1
(k )=u1 x1

(k)+u2 x2
(k)=(u , x(k))

u

E.g.:

is the first principal component 
of this data point

z1=0.7(−0.7)+0.7(−.5)=−0.84

-0.7

-0.5



  

PCA vs. Least Squares

 PCA and Least Squares Regression appear similar...

x
1

x
2

u=(u1, u2)

x

y

f (x)=a0+a1 x



  

PCA vs. Least Squares

 PCA and Least Squares Regression appear similar...

x
1

x
2

u=(u1, u2)

x

y

f (x)=a0+a1 x

Differences...
● …?



  

PCA vs. Least Squares

 PCA and Least Squares Regression appear similar...

x
1

x
2

u=(u1, u2)

x

y

f (x)=a0+a1 x

Differences...
● orthogonal projection vs. 'vertical projection'
● special status of y variable
● u is a direction, while f is a function
● computation is completely different



  

PCA vs. Least Squares

 What would happen when switching the axes...?

x
1

x
2

u=(u1, u2)

x

y

f (x)=a0+a1 x



  

PCA vs. Least Squares

 What would happen when switching the axes...?

x
2

x
1

u=(u1, u2)

y

x

f (x)=a0+a1 x



  

PCA – Intuition

 PCA so far...

 find the direction u
of highest variance

 project data on u → z
1

the first principle component (PC)

 Next...

 find more directions of high variance
→ u is u(1), the direction of the first PC
→ find u(2), u(3),..., u(D) 
     (the directions of the other PCs)

 How to find these directions!

x
1

x
2

u



  

PCA – Intuition

 PCA so far...

 find the direction u
of highest variance

 project data on u → z
1

the first principle component (PC)

 Next...

 find more directions of high variance
→ u is u(1), the direction of the first PC
→ find u(2), u(3),..., u(D) 
     (the directions of the other PCs)

 How to find these directions!

x
1

x
2

u
The name Principle Components

● variables z
i
 are linear 

combinations of data x
1
,...,x

D

● But (later): x
i
 are linear also 

combinations of PCs  z
1
,...,z

D 
!

z i
(k )=u1

(i) x1
(k )+...+uD

(i) xD
(k)

xi
(k)=ui

(1) z1
(k)+...+ui

(D) zD
(k )



  

More Principle Components

 Given this data, what is u(1) ?
(i.e., the direction of the first PC)

x
1

x
2



  

More Principle Components

 u(1) explains the most variance
 What is u(2)?  

(the direction of 
the 2nd  PC) ?

x
1

x
2



  

More Principle Components

 u(2) is the direction with most 'remaining' variance
 orthogonal to u(1) !

 Data is 2D, so can find 
only two directions

 Each point x(k) can be 
converted to z(k)   

(x1
(k) , x2

(k ))⇔(z1
(k) , z2

(k))

z i
(k )=(u(i) , x(k ))

x
1

x
2



  

More Principle Components

 u(2) is the direction with most 'remaining' variance
 orthogonal to u(1) !

x
1

x
2

In general

● If the data is D-dimensional

● We can find D directions                        

● Each direction itself is a D-vector:

● Each direction is orthogonal to the others:

● The first direction is has most variance

● The least variance is in direction 

u(1) , ... , u(D)

(u(i) , u( j)
)=0

u(D)

u(i)
=(u1,

(i) ... ,uD
(i)
)
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