Scientific Computing Maastricht Science Program

Week 4

Frans Oliehoek
frans.oliehoek@maastrichtuniversity.nl

Recap Last Week

- Approximation of Data and Functions
- find a function f mapping $x \rightarrow y$
- Interpolation
- f goes through the data points
- piecewise or not
- linear regression -

- lossy fit
- minimizes SSE
- Linear Algebra
- Solving systems of linear equations
- GEM, LU factorization

Recap Least-Squares Method

- 'the function unknown'
number of data points:

$$
N=n+1
$$

- it is only known at certain points $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$
- want to predict y given x
- Least Squares Regression:
- find a function that minimizes the prediction error
- better for noisy data.

Recap Least-Squares Method

- Minimize sum of the squares of the errors
$\tilde{y}=\tilde{f}(x)=a_{0}+a_{1} x$
$\operatorname{SSE}(\tilde{f})=\sum_{i=0}^{n}\left[\tilde{f}\left(x_{i}\right)-y_{i}\right]^{2}$
- pick the \tilde{f} with min. SSE (that means: pick $a_{0,}, a_{1}$)

This Lecture

- Last week: labeled data (also 'supervised learning')
- data: (x,y)-pairs
- This week: unlabeled data (also 'unsupervised learning')
- data: just x
- Finding structure in data
- 2 Main methods:
- Clustering
- Principle Components analysis (PCA)

Part 1: Clustering

Clustering

- data set
$\left\{\left(x^{(0)}, y^{(0)}\right), \ldots,\left(x^{(n)}, y^{(n)}\right)\right\}$
- but now: unlabeled
$\left\{\left(x_{1}^{(0)}, x_{2}^{(0)}\right), \ldots,\left(x_{1}^{(n)}, x_{2}^{(n)}\right)\right\}$
- now what?
- structure?
- summarize this data?

Clustering

- data set
$\left\{\left(x^{(0)}, y^{(0)}\right), \ldots,\left(x^{(n)}, y^{(n)}\right)\right\}$
- but now: unlabeled
$\left\{\left(x_{1}^{(0)}, x_{2}^{(0)}\right), \ldots,\left(x_{1}^{(n)}, x_{2}^{(n)}\right)\right\}$
- now what?
- structure?
- summarize this data?

Clustering

- data set

$$
\left\{\left(x_{1}^{(0)}, x_{2}^{(0)}\right), \ldots,\left(x_{1}^{(n)}, x_{2}^{(n)}\right)\right\}
$$

- try to find the different clusters!
- How?

Clustering

- data set

$$
\left\{\left(x_{1}^{(0)}, x_{2}^{(0)}\right), \ldots,\left(x_{1}^{(n)}, x_{2}^{(n)}\right)\right\}
$$

- try to find the different clusters!
" One way:
- find centroids

Clustering - Applications

- Clustering or Cluster Analysis has many applications
- Understanding
- Astronomy: new types of stars
- Biology:
- create taxonomies of living things
- clustering based on genetic information
- Climate: find patterns in the atmospheric pressure

- etc.
- Data (pre)processing
- summarization of data set
- compression

Cluster Methods

- Many types of clustering!
- We will treat one method: k-Means clustering
- the standard text-book method
- not necessarily the best
- but the simplest
- You will implement k-Means
- Use it to compress an image

k-Means Clustering

- The main idea
- clusters are represented by 'centroids'
- start with random centroids
- then repeatedly
- find all data points that are nearest to a centroid
- update each centroid based on its data points

k-Means Clustering: Example

k-Means Algorithm

```
%% k-means PSEUDO CODE
%
% X
    - the data
% centroids
%
- initial centroids
(given by random initialization on data points)
iterations = 1
done = 0
while (~done && iterations < max_iters)
    labels = NearestCentroids(X, centroids);
    centroids = UpdateCentroids(X, labels);
    iterations = iterations + 1;
    if centroids did not change
    done = 1
    end
end
```


Part 2: Principal Component Analysis

Dimension Reduction

- Clustering allows us to summarize data using centroids
- summary of a point: what cluster is belongs to.
- Different idea:

$$
\left(x_{1}, x_{2}, \ldots, x_{D}\right) \rightarrow\left(z_{1,}, z_{2}, \ldots, z_{d}\right)
$$

- reduce the number of variables
- i.e., reduce the number of dimensions from D to d $d<D$

Dimension Reduction

- Clustering allows us to summarize data using centroids
- summary of a point: what cluster is belongs to.
- Different idea:

$$
\left(x_{1}, x_{2}, \ldots, x_{D}\right) \rightarrow\left(z_{1}, z_{2}, \ldots, z_{d}\right)
$$

- reduce the number of variables
- i.e., reduce the number of dimensions from D to d $d<D$

This is what Principal Component Analysis (PCA) does.

PCA - Goals

$$
N=n+1
$$

- Given a data set X of N data point of D variables \rightarrow convert to data set Z of N data points of d variables

$$
\begin{aligned}
\left(x_{1}^{(0)}, x_{2}^{(0)}, \ldots, x_{D}^{(0)}\right) & \rightarrow\left(z_{1}^{(0)}, z_{2}^{(0)}, \ldots, z_{d}^{(0)}\right) \\
\left(x_{1}^{(1)}, x_{2}^{(1)}, \ldots, x_{D}^{(1)}\right) & \rightarrow\left(z_{1}^{(1)}, z_{2}^{(1)}, \ldots, z_{d}^{(1)}\right) \\
& \ldots \\
\left(x_{1}^{(n)}, x_{2}^{(n)}, \ldots, x_{D}^{(n)}\right) & \rightarrow\left(z_{1}^{(n)}, z_{2}^{(n)}, \ldots, z_{d}^{(n)}\right)
\end{aligned}
$$

PCA - Goals

- Given a data set X of N data point of D variables \rightarrow convert to data set Z of N data points of d variables

$$
\begin{aligned}
&\left(x_{1}^{(0)}, x_{2}^{(0)}, \ldots, x_{D}^{(0)}\right) \rightarrow\left(z_{1}^{(0)}, z_{2}^{(0)}\right. \\
&\left(x_{1}^{(1)}, x_{2}^{(1)}, \ldots, x_{D}^{(1)}\right) \rightarrow\left(z_{1}^{(1)}\right), \\
& \ldots \\
&\left.z_{2}^{(1)}, \ldots, z_{d}^{(1)}\right) \\
&\left(x_{1}^{(n)}, x_{2}^{(n)}, \ldots, x_{D}^{(n)}\right) \rightarrow\left(z_{1}^{(n)},\right. \\
&\left.z_{2}^{(n)}, \ldots, z_{d}^{(n)}\right)
\end{aligned}
$$

The vector $\left(z_{i}^{(0)}, z_{i}^{(1)}, \ldots, z_{i}^{(n)}\right)$
is called the i-th principal component (of the data set)

PCA - Goals

- Given a data set X of N data point of D variables \rightarrow convert to data set Z of N data points of d variables

$$
\left.\begin{array}{rl}
\left(x_{1}^{(0)}, x_{2}^{(0)}, \ldots, x_{D}^{(0)}\right) & \rightarrow\left(z_{1}^{(0)}\right. \\
\left(x_{1}^{(1)}, x_{2}^{(1)}, \ldots, x_{D}^{(1)}\right) & \rightarrow\left(z_{1}^{(1)}, \ldots, z_{d}^{(0)}\right) \\
& \ldots \\
\left(x_{1}^{(n)}, x_{2}^{(n)}, \ldots, x_{D}^{(n)}\right) & \rightarrow\left(z_{1}^{(n)}, \ldots, z_{d}^{(1)}\right) \\
z_{2}^{(n)}
\end{array}, \ldots, z_{d}^{(n)}\right)
$$

The vector $\left(z_{i}^{(0)}, z_{i}^{(1)}, \ldots, z_{i}^{(n)}\right)$
is called the i-th principal component (of the data set)

- PCA performs a linear transformation:
\rightarrow variables z_{i} are linear combinations of $\mathrm{X}_{1}, \ldots, \mathrm{x}_{\mathrm{D}}$

PCA Goals - 2

- Of course many possible transformations possible...
- Reducing the number of variables: loss of information
- PCA makes this loss minimal
- PCA is very useful
- Exploratory analysis of the data
- Visualization of high-D data
- Data preprocessing
- Data compression

PCA - Intuition

- How would you summarize this data using 1 dimension?
(what variable contains the most information?)

PCA - Intuition

- How would you summarize this data using 1 dimension?
(what variable contains the most information?)

| Very important idea |
| :--- | :--- | :--- | :--- |
| The most information is |
| contained by the variable with |
| the largest spread. |
| • i.e., highest variance |

PCA - Intuition

- How would you summarize this data using 1 dimension?
(what variable contains the most information?)
Very important idea

The most information is
contained by the variable with
the largest spread.
i.e., highest variance

(Information Theory) | so if we have to chose |
| :--- |
| between x_{1} and x_{2} |
| \rightarrow remember x_{2} |
| Transform of k-th point: |
| $\left(x_{1}^{(k)}, x_{2}^{(k)}\right) \rightarrow\left(z_{1}^{(k)}\right)$ |
| where |
| $z_{1}^{(k)}=x_{2}^{(k)}$ |

PCA - Intuition

- How would you summarize this data using 1 dimension?
(what variable contains the most information?)

PCA - Intuition

- Reconstruction based on x_{2}
\rightarrow only need to remember mean of x_{1}

PCA - Intuition

- How would you summarize this data using 1 dimension?

PCA - Intuition

- How would you summarize this data using 1 dimension?

This is a projection on the x 1 axis.

Question

- Suppose the data is now 3-dimensional
- $x=\left(x_{1}, x_{2}, x_{3}\right)$
- Can you think of an example where we could project it to 2 dimensions:

$$
\left(x_{1}, x_{2}, x_{3}\right) \rightarrow\left(z_{1,}, z_{2}\right)
$$

?

PCA - Intuition

- How would you summarize this data using 1 dimension?

PCA - Intuition

- How would you summarize this data using 1 dimension?
- More difficult...
...projection on both axes does not give nice results.
- Idea of PCA: find a new direction to project on!

PCA - Intuition

- How would you summarize this data using 1 dimension?
- More difficult...
...projection on both axes does not give nice results.
- Idea of PCA: find a new direction to project on!

PCA - Intuition

- How would you summarize this data using 1 dimension?
- u is the direction of highest variance
- e.g., u = (1, 1)
- we will assume it is a unit vector
- length = 1
- $\mathrm{u}=(0.71,0.71)$

PCA - Intuition

- How would you summarize this data using 1 dimension?

Transform of k-th point:

$$
\left(x_{1}^{(k)}, x_{2}^{(k)}\right) \rightarrow\left(z_{1}^{(k)}\right)
$$

where z_{1} is the orthogonal scalar projection on u :
$z_{1}^{(k)}=u_{1} x_{1}^{(k)}+u_{2} x_{2}^{(k)}=\left(u, x^{(k)}\right)$

PCA - Intuition

- How would you summarize this data using 1 dimension?

Transform of k-th point:

$$
\left(x_{1}^{(k)}, x_{2}^{(k)}\right) \rightarrow\left(z_{1}^{(k)}\right)
$$

where z_{1} is the orthogonal scalar projection on u :

$$
z_{1}^{(k)}=u_{1} x_{1}^{(k)}+u_{2} x_{2}^{(k)}=\left(u, x^{(k)}\right)
$$

PCA - Intuition

- How would you summarize this data using 1 dimension?

Transform of k-th point:

$$
\left(x_{1}^{(k)}, x_{2}^{(k)}\right) \rightarrow\left(z_{1}^{(k)}\right)
$$

where z_{1} is the orthogonal scalar projection on u :

$$
z_{1}^{(k)}=u_{1} x_{1}^{(k)}+u_{2} x_{2}^{(k)}=\left(u, x^{(k)}\right)
$$

E.g.:

$$
z_{1}=0.7(-0.7)+0.7(-.5)=-0.84
$$

is the first principal component of this data point

PCA vs. Least Squares

- PCA and Least Squares Regression appear similar...

PCA vs. Least Squares

- PCA and Least Squares Regression appear similar...

PCA vs. Least Squares

- PCA and Least Squares Regression appear similar...

PCA vs. Least Squares

- What would happen when switching the axes...?

PCA vs. Least Squares

- What would happen when switching the axes...?

PCA - Intuition

- PCA so far...
- find the direction u of highest variance
- project data on $u \rightarrow z_{1}$ the first principle component (PC)
- Next...

- find more directions of high variance
$\rightarrow u$ is $u^{(1)}$, the direction of the first PC
\rightarrow find $u^{(2)}, u^{(3)}, \ldots, u^{(D)}$
(the directions of the other PCs)
- How to find these directions!

PCA - Intuition

- PCA so far...
- find the direction u of highest variance
- project data on $u \rightarrow z_{1}$ the first principle component (PC)
- Next...
- find more directions of high varia
$\rightarrow u$ is $u^{(1)}$, the direction of the first
\rightarrow find $u^{(2)}, u^{(3)}, \ldots, u^{(D)}$
(the directions of the other PCs
- How to find these directions!

- variables z_{i} are linear combinations of data $\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{D}}$ $z_{i}^{(k)}=u_{1}^{(i)} x_{1}^{(k)}+\ldots+u_{D}^{(i)} x_{D}^{(k)}$
- But (later): x_{i} are linear also combinations of PCs z_{1}, \ldots, z_{D} ! $x_{i}^{(k)}=u_{i}^{(1)} z_{1}^{(k)}+\ldots+u_{i}^{(D)} z_{D}^{(k)}$

More Principle Components

- Given this data, what is $u^{(1)}$? (i.e., the direction of the first PC)

More Principle Components

- $u^{(1)}$ explains the most variance
- What is $u^{(2)}$? (the direction of the $2^{\text {nd }} P C$)?

More Principle Components

- $u^{(2)}$ is the direction with most 'remaining' variance
- orthogonal to $u^{(1)}$!
- Data is 2D, so can find only two directions
- Each point $x^{(k)}$ can be converted to $z^{(k)}$

$$
\begin{gathered}
\left(x_{1}^{(k)}, x_{2}^{(k)}\right) \Leftrightarrow\left(z_{1}^{(k)}, z_{2}^{(k)}\right) \\
z_{i}^{(k)}=\left(u^{(i)}, x^{(k)}\right)
\end{gathered}
$$

More Principle Components

- $u^{(2)}$ is the direction with most 'remaining' variance
- orthogonal to $u^{(1)}$!

In general

- If the data is D-dimensional
- We can find D directions

$$
u^{(1)}, \ldots, u^{(D)}
$$

- Each direction itself is a D-vector:

$$
u^{(i)}=\left(u_{1,}^{(i)}, \ldots, u_{D}^{(i)}\right)
$$

- Each direction is orthogonal to the others:

$$
\left(u^{(i)}, u^{(j)}\right)=0
$$

- The first direction is has most variance
- The least variance is in direction $u^{(D)}$

