Scientific Computing Maastricht Science Program

Week 4

Frans Oliehoek <frans.oliehoek@maastrichtuniversity.nl>

Recap Last Week

- Approximation of Data and Functions
 - find a function f mapping $x \rightarrow y$
 - Interpolation
 - f goes through the data points
 - piecewise or not
 - linear regression
 - Iossy fit
 - minimizes SSE
- Linear Algebra
 - Solving systems of linear equations
 - GEM, LU factorization

Recap Least-Squares Method

number of data points: N = n + 1

- 'the function unknown'
 - it is only known at certain points
 - want to predict y given x
- Least Squares Regression:
 - find a function that minimizes the prediction error
 - better for noisy data.

 $(x_{0}, y_{0}), (x_{1}, y_{1}), \dots, (x_{n}, y_{n})$

Recap Least-Squares Method

Minimize sum of the squares of the errors

$$\tilde{y} = \tilde{f}(x) = a_0 + a_1 x$$

$$SSE(\tilde{f}) = \sum_{i=0}^{n} \left[\tilde{f}(x_i) - y_i \right]^2$$

• pick the \tilde{f} with min. SSE (that means: pick $a_{0,}a_{1}$)

This Lecture

- Last week: labeled data (also 'supervised learning')
 - data: (x,y)-pairs
- This week: unlabeled data (also 'unsupervised learning')
 - data: just x
- Finding structure in data
- 2 Main methods:
 - Clustering
 - Principle Components analysis (PCA)

Part 1: Clustering

- data set $\{(x^{(0)}, y^{(0)}), \dots, (x^{(n)}, y^{(n)})\}$
- but now: unlabeled $\{(x_1^{(0)}, x_2^{(0)}), \dots, (x_1^{(n)}, x_2^{(n)})\}$

- now what?
 - structure?
 - summarize this data?

- data set $\{(x^{(0)}, y^{(0)}), \dots, (x^{(n)}, y^{(n)})\}$
- but now: unlabeled $\{(x_1^{(0)}, x_2^{(0)}), \dots, (x_1^{(n)}, x_2^{(n)})\}$

- now what?
 - structure?
 - summarize this data?

- data set $\{(x_1^{(0)}, x_2^{(0)}), \dots, (x_1^{(n)}, x_2^{(n)})\}$
- try to find the different clusters!

How?

- data set $\{(x_1^{(0)}, x_2^{(0)}), \dots, (x_1^{(n)}, x_2^{(n)})\}$
- try to find the different clusters!
- One way:
 - find centroids

Clustering – Applications

- *Clustering* or *Cluster Analysis* has many applications
- Understanding
 - Astronomy: new types of stars
 - Biology:
 - create taxonomies of living things
 - clustering based on genetic information
 - Climate: find patterns in the atmospheric pressure
 - etc.
- Data (pre)processing
 - summarization of data set
 - compression

Cluster Methods

- Many types of clustering!
- We will treat one method: k-Means clustering
 - the standard text-book method
 - not necessarily the best
 - but the simplest
- You will implement k-Means
 - Use it to compress an image

k-Means Clustering

The main idea

- clusters are represented by 'centroids'
- start with random centroids
- then repeatedly
 - find all data points that are nearest to a centroid
 - update each centroid based on its data points

k-Means Algorithm

```
%% k-means PSEUDO CODE
%
       - the data
% X
% centroids - initial centroids
                 (given by random initialization on data points)
%
iterations = 1
done = 0
while (~done && iterations < max_iters)</pre>
    labels = NearestCentroids(X, centroids);
    centroids = UpdateCentroids(X, labels);
   iterations = iterations + 1;
   if centroids did not change
       done = 1
   end
end
```

Part 2: Principal Component Analysis

Dimension Reduction

- Clustering allows us to summarize data using centroids
 - summary of a point: what cluster is belongs to.
- Different idea:

$$(x_1, x_2, \dots, x_D) \rightarrow (z_1, z_2, \dots, z_d)$$

- reduce the number of variables
- i.e., reduce the number of dimensions from D to d

Dimension Reduction

- Clustering allows us to summarize data using centroids
 - summary of a point: what cluster is belongs to.
- Different idea:

$$(x_1, x_2, \dots, x_D) \rightarrow (z_1, z_2, \dots, z_d)$$

- reduce the number of variables
- i.e., reduce the number of dimensions from D to d

This is what Principal Component Analysis (PCA) does.

PCA – Goals

N=n+1

Given a data set X of N data point of D variables
 → convert to data set Z of N data points of d variables

$$(x_1^{(0)}, x_2^{(0)}, \dots, x_D^{(0)}) \rightarrow (z_1^{(0)}, z_2^{(0)}, \dots, z_d^{(0)}) (x_1^{(1)}, x_2^{(1)}, \dots, x_D^{(1)}) \rightarrow (z_1^{(1)}, z_2^{(1)}, \dots, z_d^{(1)})$$

$$(x_1^{(n)}, x_2^{(n)}, \dots, x_D^{(n)}) \rightarrow (z_1^{(n)}, z_2^{(n)}, \dots, z_d^{(n)})$$

PCA – Goals

Given a data set X of N data point of D variables
 → convert to data set Z of N data points of d variables

$$\begin{aligned} & (x_1^{(0)}, x_2^{(0)}, \dots, x_D^{(0)}) \to (z_1^{(0)}, z_2^{(0)}, \dots, z_d^{(0)}) \\ & (x_1^{(1)}, x_2^{(1)}, \dots, x_D^{(1)}) \to (z_1^{(1)}, z_2^{(1)}, \dots, z_d^{(1)}) \\ & \cdots \\ & (x_1^{(n)}, x_2^{(n)}, \dots, x_D^{(n)}) \to (z_1^{(n)}, z_2^{(n)}, \dots, z_d^{(n)}) \end{aligned}$$

The vector $(z_i^{(0)}, z_i^{(1)}, ..., z_i^{(n)})$

is called the *i*-th **principal component** (of the data set)

PCA – Goals

Given a data set X of N data point of D variables
 → convert to data set Z of N data points of d variables

$$\begin{aligned} & (x_1^{(0)}, x_2^{(0)}, \dots, x_D^{(0)}) \to (z_1^{(0)}, z_2^{(0)}, \dots, z_d^{(0)}) \\ & (x_1^{(1)}, x_2^{(1)}, \dots, x_D^{(1)}) \to (z_1^{(1)}, z_2^{(1)}, \dots, z_d^{(1)}) \\ & \cdots \\ & (x_1^{(n)}, x_2^{(n)}, \dots, x_D^{(n)}) \to (z_1^{(n)}, z_2^{(n)}, \dots, z_d^{(n)}) \end{aligned}$$

The vector $(z_i^{(0)}, z_i^{(1)}, ..., z_i^{(n)})$

is called the *i*-th **principal component** (of the data set)

PCA performs a linear transformation:
 → variables z_i are linear combinations of x₁,...,x_n

PCA Goals – 2

- Of course many possible transformations possible...
 - Reducing the number of variables: loss of information
 - PCA makes this loss minimal
- PCA is very useful
 - Exploratory analysis of the data
 - Visualization of high-D data
 - Data preprocessing
 - Data compression

How would you summarize this data using 1 dimension?

(what variable contains the most information?)

How would you summarize this data using 1 dimension?

(what variable contains the most information?)

How would you summarize this data using 1 dimension?

(what variable contains the most information?)

How would you summarize this data using 1 dimension?

(what variable contains the most information?)

Reconstruction based on x₂ → only need to remember mean of x₁

How would you summarize this data using 1 dimension?

How would you summarize this data using 1 dimension?

- Suppose the data is now 3-dimensional
 - $x = (x_{1}, x_{2}, x_{3})$
- Can you think of an example where we could project it to 2 dimensions:

$$(x_{1,}x_{2,}x_{3}) \rightarrow (z_{1,}z_{2})$$

?

How would you summarize this data using 1 dimension?

PCA and Least Squares Regression appear similar...

PCA and Least Squares Regression appear similar...

PCA and Least Squares Regression appear similar...

What would happen when switching the axes...?

What would happen when switching the axes...?

- PCA so far...
 - find the direction u of highest variance
 - project data on $u \rightarrow z_1$ the **first** principle component (PC)

- Next...
 - find more directions of high variance
 - \rightarrow *u* is *u*⁽¹⁾, the direction of the first PC
 - → find $u^{(2)}, u^{(3)}, ..., u^{(D)}$
 - (the directions of the other PCs)
 - How to find these directions!

PCA so far...

- find the direction u of highest variance
- project data on $u \rightarrow z_1$ the **first** principle component (PC)

Next...

- find more directions of high varia
 - \rightarrow *u* is *u*⁽¹⁾, the direction of the first
 - → find $u^{(2)}$, $u^{(3)}$,..., $u^{(D)}$ (the directions of the other PCs
- How to find these directions!

X₂

The name **Principle Components**

- variables z_i are linear combinations of data $x_1, ..., x_D$ $z_i^{(k)} = u_1^{(i)} x_1^{(k)} + ... + u_D^{(i)} x_D^{(k)}$
- But (later): x_i are linear also combinations of PCs $z_1,...,z_D$! $x_i^{(k)} = u_i^{(1)} z_1^{(k)} + ... + u_i^{(D)} z_D^{(k)}$

Given this data, what is u⁽¹⁾?
 (i.e., the direction of the first PC)

- *u*⁽¹⁾ explains the most variance
- What is u^{(2)?}
 (the direction of the 2nd PC) ?

u⁽²⁾ is the direction with most 'remaining' variance

- orthogonal to $u^{(1)}$!
- Data is 2D, so can find only two directions
- Each point x^(k) can be converted to z^(k)

 $(x_1^{(k)}, x_2^{(k)}) \Leftrightarrow (z_1^{(k)}, z_2^{(k)})$

 $z_i^{(k)} = (u^{(i)}, x^{(k)})$

u⁽²⁾ is the direction with most 'remaining' variance

orthogonal to u⁽¹⁾ !

In general

- If the data is D-dimensional
- We can find D directions $u^{(1)}, \dots, u^{(D)}$
- Each direction itself is a D-vector: $u^{(i)} = (u^{(i)}_{1,} \dots, u^{(i)}_{D})$
- Each direction is orthogonal to the others: $(u^{(i)}, u^{(j)})=0$
- The first direction is has most variance
- The least variance is in direction $u^{(D)}$

