Scientific Computing Maastricht Science Program

Week 2

Frans Oliehoek <frans.oliehoek@maastrichtuniversity.nl>

Recap

- What is scientific programming?
- Programming
 - Arithmetic, IF, conditions, WHILE, FOR
 - Matlab Cheat Sheet
- General form of linear equations $a_0 + a_1 x_1 + a_2 x_2 + ... = 0$
- Finding the zeros of non-linear equations
 - bisection
 - Newton

This Lecture

- A very short introduction linear algebra
 - Vectors & Matrices in Matlab
 - LU factorization
- Floating Point Numbers
- Computation
 - Computation Errors
 - Computational Costs

A Very Short Introduction to Linear Algebra

Linear Algebra (LA)

- Linear Algebra deals with linear functions
 - You know what that is!
 - but higher dimensions Rⁿ → R^m
- I can only give a very brief introduction
 - covering only basic things
- Please:
 - get a linear algebra book, open it!
 - Watch some video lectures.
 - E.g., the first couple at:

http://web.mit.edu/18.06/www/videos.shtml

Motivation

- LA is the basis of many methods in science
- For us:
 - Important to solve systems of linear equations

$$a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1n}x_{n} = c_{1}$$

$$a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1n}x_{n} = c_{1}$$

$$a_{21}x_{1} + a_{22}x_{2} + \dots + a_{2n}x_{n} = c_{2}$$

$$\dots$$

$$a_{m1}x_{1} + a_{m2}x_{2} + \dots + a_{mn}x_{n} = c_{m}$$

- Arise in many problems, e.g.:
 - Identifying gas mixture from peaks in spectrum
 - fitting a line to data. (Next week)

Motivation

LA is the basis of many methods in science

- x_i the amount of gas of type j
- a_{ij} how much a gas of type j contributes to wavelength i
- c_i the height of the peak of wavelength i

ems of linear equations

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = c_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = c_2$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = c_m$$

. . .

- Arise in many problems, e.g.:
 - Identifying gas mixture from peaks in spectrum
 - fitting a line to data. (Next week)

Linear System of Equations

Example

y=0.5x+1y=2x-3

Infinitely many, 1 or no solution

Matrices

- A matrix with
 - m rows,
 - n columns
 - is a collection of numbers
 - represented as a table
- A vector is a matrix that is
 - 1 row (row vector), or
 - 1 column (column vector)

$$A = \begin{bmatrix} 3 & -2 & 6 \\ 5 & 2 & -8 \end{bmatrix}$$
$$B = \begin{bmatrix} 5 & 54 & 6 \\ 75 & 24 & 81 \\ 25 & 5 & 435 \end{bmatrix}$$

$$v = \begin{bmatrix} 3 & -2 & 6 \end{bmatrix}$$
$$w = \begin{bmatrix} 5 \\ 75 \\ 25 \end{bmatrix}$$

Matrices

Matrices

 A matrix with 	$A = \begin{bmatrix} 3 & -2 & 6 \\ 5 & 2 & -8 \end{bmatrix}$
 m rows, n columns is a collection of numbers 5 2 represented as a tab % = 	$A = [3, -2, 6; 5, 2, -8]$ $\begin{bmatrix} 5 & 54 & 6 \\ 75 & 24 & 81 \\ 8 & 35; 75; 25 \end{bmatrix}$ $w = [3; 75; 25]$
 A vector is a matrix that i25 	octave:3> a1 = [4:8] a1 =
 1 row (row vector), or 	4 5 6 <mark>5</mark> 7 8
 1 column (column vector) 	octave:4>/a2 = 5[4:2:8] a2 = 25 4 6 8

Some Special Matrices

 $I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

- Square matrix: m=n
- Identity matrix 'eye(3)'
- Zero matrix 'zeros(m,n)'
- Types: diagonal, triangular (upper & lower)

$$D = \begin{bmatrix} * & 0 & 0 \\ 0 & * & 0 \\ 0 & 0 & * \end{bmatrix} \quad TU = \begin{bmatrix} * & * & * \\ 0 & * & * \\ 0 & 0 & * \end{bmatrix} TL = \begin{bmatrix} * & 0 & 0 \\ * & * & 0 \\ * & * & * \end{bmatrix}$$

'*' denotes any number

- We can perform operations on them!
 - First: vectors. Next: generalization to matrices.
- Transpose: convert row ↔ column vector

$$v = \begin{bmatrix} 3 & -2 & 6 \end{bmatrix} \qquad v^{T} = \begin{bmatrix} 3 \\ -2 \\ 6 \end{bmatrix}$$
$$w = \begin{bmatrix} 5 \\ 75 \\ 25 \end{bmatrix} \qquad w^{T} = \begin{bmatrix} 5 & 75 & 25 \end{bmatrix}$$

We can perform operations on them!

- Sum $\begin{bmatrix} 1 & 2 & 3 \end{bmatrix} + \begin{bmatrix} 10 & 20 & 30 \end{bmatrix} = \begin{bmatrix} 11 & 22 & 33 \end{bmatrix}$ • Product with scalar $5 * \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} = \begin{bmatrix} 5 & 10 & 15 \end{bmatrix}$
- Inner product (also: 'scalar product' or 'dot product') $(v, w) = v^T w = \sum_{k=1}^n v_k w_k$

• Sum $\begin{bmatrix} 1 & 2 & 3 \end{bmatrix} + \begin{bmatrix} 10 & 20 & 30 \end{bmatrix} = \begin{bmatrix} 11 & 22 & 33 \end{bmatrix}$ • Product with scalar $5 * \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} = \begin{bmatrix} 5 & 10 & 15 \end{bmatrix}$

Inner product (also: 'scalar product' or 'dot product')

$$(v, w) = v^{T} w = \sum_{k=1}^{n} v_{k} w_{k}$$
$$v = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, w = \begin{bmatrix} 10 \\ 20 \\ 30 \end{bmatrix}$$
$$[1 \ 2 \ 3] \begin{bmatrix} 10 \\ 20 \\ 30 \end{bmatrix} = 1 * 10 + 2 * 20 + 3 * 30 = 10 + 40 + 90 = 140$$

 $\begin{bmatrix} 1 & 2 & 3 \end{bmatrix} + \begin{bmatrix} 10 & 20 & 30 \end{bmatrix} = \begin{bmatrix} 11 & 22 & 33 \end{bmatrix}$ Sum Product with scalar octave: 4> a = [1;2;3] 10 15 a = Inner product (also: 'scala² product' or 'dot product') $(v,w) = v^{T}w = \sum_{k=1}^{n} v_{k}w_{k} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\$ 32 ans =

- Sum $\begin{bmatrix} 1 & 2 & 3 \end{bmatrix} + \begin{bmatrix} 10 & 20 & 30 \end{bmatrix} = \begin{bmatrix} 11 & 22 & 33 \end{bmatrix}$ • Product with scalar $5 * \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} = \begin{bmatrix} 5 & 10 & 15 \end{bmatrix}$
- Inner product (also: 'scalar product' or 'dot product')

$$(v, w) = v^{T} w = \sum_{k=1}^{n} v_{k} w_{k}$$
$$v = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, w = \begin{bmatrix} 10 \\ 20 \\ 30 \end{bmatrix}$$
$$[1 \ 2 \ 3] \begin{bmatrix} 10 \\ 20 \\ 30 \end{bmatrix} = 1 * 10 + 2 * 20 + 3 * 30 = 10 + 40 + 90 = 140$$

Outer product (also: 'vector product')

Vector Indexing

Retrieve parts of vectors

```
octave:12> a = [10, 20, 30, 40, 50, 60, 70]
a =
  10 20 30 40 50 60 70
octave:13> a(3)
ans = 30
octave:14> a([2,4])
ans =
  20 40
octave:16> a([4:end])
ans =
  40 50 60 70
```

Vector Indexing

Retrieve parts of vectors

```
octave:12> a = [10, 20, 30, 40, 50, 60, 70]
a =
  10 20 30 40 50
                           60 70
octave:13> a(3)
ans = 30
octave:14> a([2,4])
ans =
     40
  20
octave:16> a([4:end]) <--</pre>
ans =
  40 50 60
                 70
```

indexing with another vector

special 'end' index

- Now matrices!
- Transpose:
 - convert each row → column vector (or convert each column → row vector)

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 10 & 20 & 30 \\ 100 & 200 & 300 \end{bmatrix} \qquad A^{T} = \begin{bmatrix} 1 & 10 & 100 \\ 2 & 20 & 200 \\ 3 & 30 & 300 \end{bmatrix}$$

- Now matrices!
- Transpose:
 - convert each row → column vector (or convert each column → row vector)

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 10 & 20 & 30 \\ 100 & 200 & 300 \end{bmatrix} \qquad A^{T} = \begin{bmatrix} 1 & 10 & 100 \\ 2 & 20 & 200 \\ 3 & 30 & 300 \end{bmatrix}$$

- Now matrices!
- Transpose:
 - convert each row → column vector (or convert each column → row vector)

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 10 & 20 & 30 \\ 100 & 200 & 300 \end{bmatrix} \qquad A^{T} = \begin{bmatrix} 1 & 10 & 100 \\ 2 & 20 & 200 \\ 3 & 30 & 300 \end{bmatrix}$$

- Now matrices!
- Transpose:
 - convert each row → column vector (or convert each column → row vector)

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 10 & 20 & 30 \\ 100 & 200 & 300 \end{bmatrix} \qquad A^{T} = \begin{bmatrix} 1 & 10 & 100 \\ 2 & 20 & 200 \\ 3 & 30 & 300 \end{bmatrix}$$
$$B = \begin{bmatrix} 1 & 2 & 3 \\ 10 & 20 & 30 \end{bmatrix} \qquad B^{T} = \begin{bmatrix} 1 & 10 \\ 2 & 20 \\ 3 & 30 \end{bmatrix}$$

Sum and product with scalar: pretty much the same

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} + \begin{bmatrix} 10 & 20 & 30 \\ 40 & 50 & 60 \end{bmatrix} = \begin{bmatrix} 11 & 22 & 33 \\ 44 & 55 & 66 \end{bmatrix}$$
$$5 * \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} = \begin{bmatrix} 5 & 10 & 15 \\ 20 & 25 & 30 \end{bmatrix}$$

Matrix Product

Inner product → Matrix product

C = AB

- $C = m \times n$, $A = m \times p$, $B = p \times n$,
- Each entry of C is an inner product: $c_{ij} = r_i^A c_j^B$

$$\begin{bmatrix} \dots & \dots & \dots \\ \mathbf{190} & \dots & \dots \\ \dots & \dots & \dots \\ \dots & \dots & \dots \end{bmatrix} = \begin{bmatrix} 10 & 20 \\ \mathbf{30} & \mathbf{40} \\ 50 & 60 \end{bmatrix} \begin{bmatrix} \mathbf{1} & 2 & 3 \\ \mathbf{4} & 5 & 6 \end{bmatrix}$$

Matrix Product

Inner product → Matrix product

C = AB• C = m x n, A = m x p, B = p x n, octave: 22> A = [10, 20; 30, 40; 50, 60] $\begin{array}{c} \text{octave: } 22> A = [10, 20; 30, 40; 50, 60] \\ 10 & 20 \\ 30 & 40 \\ 50 & 60 \\ 9 & -p \times n, \end{array}$

• Each entry of C is an in Ber product: $C_{ij} = r_i^{0,2,3;4,5,6]_B}$

Matrix Product

Inner product → Matrix product

```
octave:22> A = [10, 20; 30, 40; 50, 60]
A = C = AB
   10 20
   30 40
 C 50 m 60 n, A = m \times p, B = p \times n,
octave:25> Btrans = B'an inner pro<mark>Matrix size is</mark>
Btrans = important
error: operator *: nonconformant arguments (op1 is 3x2, op2 is 3x2)
```

Matrix-Vector Product

 Matrix-vector product is just a (frequently occurring) special case:

$$Ab = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \dots & \dots & \dots \\ a_{m1} & \dots & a_{mn} \end{bmatrix} \begin{bmatrix} b_1 \\ \dots \\ b_n \end{bmatrix} = \begin{bmatrix} c_1 \\ \dots \\ c_m \end{bmatrix}$$

Matrix-Vector Product

Also represents a system of equations!

$$Ax = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \dots & \dots & \dots \\ a_{m1} & \dots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ \dots \\ x_n \end{bmatrix} = \begin{bmatrix} c_1 \\ \dots \\ c_m \end{bmatrix}$$

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = c_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = c_2$$

 $a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = c_m$

. . .

Matrix Inverse

Matrix inverse

- a square matrix A has an inverse A⁻¹, if $A^{-1}A = I$
- A is called 'invertible'
- generalization of scalar inverse

$$a^{-1}a = \frac{a}{a} = 1$$

Why?

 Solution of linear system of equations:

$$Ax = b$$

$$A x = b$$

$$A^{-1}A x = A^{-1}b$$

$$I x = A^{-1}b$$

$$x = A^{-1}b$$

Matrix Inverse

Matrix inverse

- a square matrix A has an inverse A⁻¹, if $A^{-1}A = I$
- A is called 'invertible'
- generalization of scalar inverse

$$a^{-1}a = \frac{a}{a} = 1$$

Special case: diagonal matrix

$$A = \begin{bmatrix} a_{11} & 0 & 0 \\ 0 & a_{22} & 0 \\ 0 & 0 & a_{33} \end{bmatrix} \qquad A^{-1} = \begin{bmatrix} 1/a_{11} & 0 & 0 \\ 0 & 1/a_{22} & 0 \\ 0 & 0 & 1/a_{33} \end{bmatrix}$$

Existence of Matrix Inverse

- Inverse does exist for every square matrix...
 - (there is a more general procedure, but can get divisions by 0 when following it.)

$$A^{-1} = \begin{bmatrix} 1/a_{11} & 0 & 0\\ 0 & 1/a_{22} & 0\\ 0 & 0 & 1/a_{33} \end{bmatrix}$$

- A⁻¹ exists
 - \leftrightarrow A is 'non singular'
 - ↔ 'determinant' is not zero
 - ↔ columns of A are **linearly independent**

• $\{v_{1}, \dots, v_{k}\}$ are linearly independent if $a_{1}v_{1} + \dots + a_{k}v_{k} = 0 \Rightarrow a_{1} = 0, \dots, a_{k} = 0$

Solving Linear Systems

- So how to solve a linear system?
- 'inv'
 - only for square matrices
- '\' (left division)
 - careful! Will also find a solution if none exists!

```
octave: 9 > A = rand(4);
octave:10> c = rand(4,1);
octave:11> inv(A)*c
ans =
   0.905965
  -0.032969
   0.109202
   0.430893
octave:12> A\c
ans =
   0.905965
  -0.032969
   0.109202
   0.430893
```

Floating Point Numbers

How are number represented?

Matlab represents numbers using a floating point representation

How are number represented?

 Matlab represents numbers using a floating point representation

Spacing between numbers

• Spacing for the largest numbers $(0.000...001) \cdot 2^{1024}$ $(0.000...010) \cdot 2^{1024}$ $diff = (0.000...001) \cdot 2^{1024} = 1 \cdot 2^{(1024-53)} = 1.9958e+292$

- Spacing for smallest numbers 4.9407e-324
- "eps(n)" gives spacing around n
 - eps(realmax), eps(0)

Round Off Errors

- set of floating point numbers F
- when real number x is replaced by number fl(x) in F
 → round off error
- Absolute error can be large: 0.5 *eps(realmax)
- However: *relative error* is bounded
 where \eps(1)=2.2204e-16

Computation

Convergence of Numerical Methods

- Discretization parameter h
 - e.g. `bin size' Δ_k

$$x_n = \sum_k f(t_k) \Delta_k$$

A method is convergent IFF

$$h \rightarrow 0 \Rightarrow e_c \rightarrow 0$$

- Order of convergence $e_c < C \cdot h^p$
 - how fast the error reduces (when h decreases)

Iterative order

Iterative order of convergence

- says something about iterative methods
- E.g., we said Newton's method is "fast"
- iterative order is p:

$$|x^{(n+1)} - x^*| \le |x^{(n)} - x^*|^p$$

 $|e^{(n+1)}| \le |e^{(n)}|^p$

- Newton is order 2
- In QSG: $|e^{(n)}| \leq \rho^{n^p} e^0$
 - basically unrolling the recursive equation above

Computational Cost

- We discussed of how fast we approach an answer
 - per iteration.
- Did not mention the cost of an iteration.
- Computational complexity gives a assessment of the complexity of an algorithm.
 - as a function of the size of the input.

As an example consider matrix multiplication

C = AB

$$\begin{bmatrix} \dots & \dots & \dots \\ \dots & n \times n & \dots \end{bmatrix} = \begin{bmatrix} \dots & n \times n & \dots \\ \dots & n \times n & \dots \end{bmatrix} \begin{bmatrix} \dots & n \times n & \dots \\ \dots & \dots & \dots \end{bmatrix}$$

- Simplest algorithm:
 - for each of the n² entries c_{ii}
 - compute the inner product ... ?

As an example consider matrix multiplication

C = AB

$$\begin{bmatrix} \dots & n \times n & \dots \\ \dots & \dots & \dots \end{bmatrix} = \begin{bmatrix} \dots & n \times n & \dots \\ \dots & \dots & \dots \end{bmatrix} \begin{bmatrix} \dots & n \times n & \dots \\ \dots & \dots & \dots \end{bmatrix}$$

- Simplest algorithm:
 - for each of the n² entries c_{ii}
 - compute the inner product

$$C_{ij} = r_i^A c_j^B$$

As an example consider matrix mu

$$C = AB$$

$$[\dots n \times n \dots] = [\dots n \times n \dots] [\dots]$$

Inner product of 2 *n*-vectors:

- n multiplications (n-1) additions
- \rightarrow 2n-1 operations

- Simplest algorithm:
 - for each of the n² entries c_{ii}
 - compute the inner product

$$c_{ij} = r_i^A c_j^B$$

Often we are not interested in the exact number of computations.

→ "Big-oh" notation

"*f* has order of at most *g*": f(n) = O(q(n))

IF Exist a positive constant *c*, such that for sufficiently large *n* $f(n) \leq c \cdot |q(n)|$

- Simplest algorithm:
 - for each of the n² entries c_{ii}
 - compute the inner product $c_{ii} = r_i^A c_i^B$

Inner product of 2 *n*-vectors:

- n multiplications - (n-1) additions
- \rightarrow 2n-1 operations

Often we are not interested in the exact number of computations.

→ "Big-oh" notation

"*f* has order of at most *g*": f(n) = O(q(n))

IF Exist a positive constant *c*, such that for sufficiently large *n* $f(n) \leq c \cdot |q(n)|$

- Simplest algorithm:
 - for each of the n² entries c_{ii}
 - compute the inner product $c_{ii} = r_i^A c_i^B$

Inner product of 2 *n*-vectors:

- n multiplications - (n-1) additions
- \rightarrow 2n-1 operations

$$2n-1=O(n)$$

Often we are not interested in the exact number of computations.

→ "Big-oh" notation

"f has order of at most g": f(n) = O(g(n))

IF Exist a positive constant *c*, such that for sufficiently large *n* $f(n) \le c \cdot |g(n)|$

- Simplest algorithm:
 - for each of the n² entries c_{ii}
 - compute the inner product $c_{ij} = r_i^A c_j^B$

Inner product of 2 *n*-vectors:

- n multiplications - (n-1) additions
- \rightarrow 2n-1 operations

$$2n-1=O(n)$$

Complexity of simplest algorithm?

Often we are not interested in the exact number of computations.

→ "Big-oh" notation

"f has order of at most g": f(n) = O(g(n))

IF Exist a positive constant *c*, such that for sufficiently large *n* $f(n) \le c \cdot |g(n)|$

- Simplest algorithm:
 - for each of the n² entries c_{ii}
 - compute the inner product $c_{ij} = r_i^A c_j^B$

Inner product of 2 *n*-vectors:

- n multiplications - (n-1) additions
- \rightarrow 2n-1 operations

$$2n-1=O(n)$$

Complexity of simplest algorithm?

$$O(n^3)$$

Practical Time Measuring

- Theoretic analysis is useful to predict run-time.
- But in order to figure out where in a complex program the time is spend
 - → measuring usually more informative
- 'cputime'

```
octave:> [TOTAL, USER, SYSTEM] = cputime ()
TOTAL = 0.44003
USER = 0.34802
SYSTEM = 0.092005
octave:> inv(rand(50));
octave:> [TOTAL2, USER2, SYSTEM2] = cputime ()
TOTAL2 = 0.50003
USER2 = 0.38402
SYSTEM2 = 0.11601
octave:> USER2 - USER
ans = 0.036003
```

Solving Linear Systems & LU factorization

Easy cases: Diagonal Matrices

In case of a diagonal matrix A, the system is easy!

$$\begin{vmatrix} a_{11} & 0 & 0 \\ 0 & a_{22} & 0 \\ 0 & 0 & a_{33} \end{vmatrix} \begin{vmatrix} x_1 \\ x_2 \\ x_3 \end{vmatrix} = \begin{vmatrix} c_1 \\ c_2 \\ c_3 \end{vmatrix}$$

Easy cases: Diagonal Matrices

In case of a diagonal matrix A, the system is easy!

$$\begin{vmatrix} a_{11} & 0 & 0 \\ 0 & a_{22} & 0 \\ 0 & 0 & a_{33} \end{vmatrix} \begin{vmatrix} x_1 \\ x_2 \\ x_3 \end{vmatrix} = \begin{vmatrix} c_1 \\ c_2 \\ c_3 \end{vmatrix}$$

$$x_1 = c_1 / a_{11}$$

 $x_2 = c_2 / a_{22}$
 $x_3 = c_3 / a_{33}$

Easy cases: Diagonal Matrices

In case of a diagonal matrix A, the system is easy!

$$\begin{vmatrix} a_{11} & 0 & 0 \\ 0 & a_{22} & 0 \\ 0 & 0 & a_{33} \end{vmatrix} \begin{vmatrix} x_1 \\ x_2 \\ x_3 \end{vmatrix} = \begin{vmatrix} c_1 \\ c_2 \\ c_3 \end{vmatrix}$$

$$\begin{aligned} x_1 &= c_1 / a_{11} \\ x_2 &= c_2 / a_{22} \\ x_3 &= c_3 / a_{33} \end{aligned} \qquad A^{-1} = \begin{bmatrix} 1 / a_{11} & 0 & 0 \\ 0 & 1 / a_{22} & 0 \\ 0 & 0 & 1 / a_{33} \end{bmatrix}$$

Triangular systems are also is easy

$$\begin{bmatrix} 3 & 0 & 0 \\ 6 & 4 & 0 \\ 2 & 4 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 11 \\ 12 \\ -5 \end{bmatrix}$$
$$\begin{bmatrix} 6 & 4 & 0 \end{bmatrix} \begin{bmatrix} 5.5 \\ x_2 \\ x_3 \end{bmatrix} = 12$$
$$33 + 4x_2 = 12$$
$$x_2 = (12 - 33)/4 = 3.75$$

$$x_1 = 5.5$$

Triangular systems are also is easy

$$\begin{bmatrix} 3 & 0 & 0 \\ 6 & 4 & 0 \\ 2 & 4 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 11 \\ 12 \\ -5 \end{bmatrix}$$
$$\begin{bmatrix} 6 & 4 & 0 \end{bmatrix} \begin{bmatrix} 5.5 \\ x_2 \\ x_3 \end{bmatrix} = 12$$
$$33 + 4x_2 = 12$$
$$x_2 = (12 - 33)/4 = 3.$$

Book (5.9) expresses this in 1 line:

75

$$x_2 = \frac{1}{4}(12 - (6 + 5.5))$$

 $x_1 = 5.5$

Triangular systems are also is easy

$$\begin{bmatrix} 3 & 0 & 0 \\ 6 & 4 & 0 \\ 2 & 4 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 11 \\ 12 \\ -5 \end{bmatrix}$$
$$\begin{bmatrix} 2 & 4 & 5 \end{bmatrix} \begin{bmatrix} 5.5 \\ 3.75 \\ x_3 \end{bmatrix} = -5$$
$$26 + 5x_3 = -5$$
$$x_3 = (-5 - 26)/5 = -6.2$$

$$x_1 = 5.5$$

 $x_2 = 3.75$

Triangular systems are also is easy

$$\begin{bmatrix} 3 & 0 & 0 \\ 6 & 4 & 0 \\ 2 & 4 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 11 \\ 12 \\ -5 \end{bmatrix}$$
$$\begin{bmatrix} 2 & 4 & 5 \end{bmatrix} \begin{bmatrix} 5.5 \\ 3.75 \\ x_3 \end{bmatrix} = -5$$
$$x_3 = (-5 - 26)/5 = -6.2$$

called 'forwa

$$x_1 = 5.5$$

 $x_2 = 3.75$
 $x_3 = 6.2$

- Upper triangular matrices work the same.
 - but start at the bottom
 - 'backward substitution'
- Now basic idea: use these simple case to solve general linear systems!
- LU factorization:

(L)ower and (U)pper diagonal

- first decompose a matrix A in L, U
- then use that to solve the original system

- We want to solve Ax=b
- If A=LU we get...

$$A x = b$$

$$L U x = b$$

$$L(U x) = b$$

- We want to solve Ax=b
- If A=LU we get...

- We want to solve Ax=b
- If A=LU we get...

- We want to solve Ax=b
- If A=LU we get...

- We want to solve Ax=b
- If A=LU we get...

How to compute L,U?

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = \begin{bmatrix} l_{11} & 0 \\ l_{21} & l_{22} \end{bmatrix} \begin{bmatrix} u_{11} & u_{12} \\ 0 & u_{22} \end{bmatrix}$$

- "Gauss factorization"
 - many ways to chose L, U... \rightarrow arbitrary assignment

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ l_{21} & 1 \end{bmatrix} \begin{bmatrix} u_{11} & u_{12} \\ 0 & u_{22} \end{bmatrix}$$

- Now solve the resulting systems of equations
 - \rightarrow U₁₁=a₁₁

$$\rightarrow$$
 u₁₂=a₁₂, etc.

see QSG.

Homework Reading

- Recap:
 - CH1: 1.2, 1.5.2, 1.6.
 - LU factorization p. 129-142
 - don't worry if you don't get all the examples
- Preparation for next time:
 - CH3: p. 75--81, 93--103 (sec. 3.5 is optional)