
  

Scientific Computing
Maastricht Science Program

Week 2

Frans Oliehoek
<frans.oliehoek@maastrichtuniversity.nl>



  

Recap

 What is scientific programming?
 Programming

 Arithmetic, IF, conditions, WHILE, FOR
 Matlab Cheat Sheet

 General form of linear equations
 Finding the zeros of non-linear equations

 bisection
 Newton 

a0+a1 x1+a2 x2+...=0



  

This Lecture

 A very short introduction linear algebra
 Vectors & Matrices in Matlab
 LU factorization 

 Floating Point Numbers
 Computation

 Computation Errors
 Computational Costs



  

A Very Short Introduction to
Linear Algebra



  

Linear Algebra (LA)

 Linear Algebra deals with linear functions 
 You know what that is!
 but higher dimensions Rn→ Rm

 I can only give a very brief introduction
 covering only basic things

 Please:
 get a linear algebra book, open it!
 Watch some video lectures.

 E.g., the first couple at:

http://web.mit.edu/18.06/www/videos.shtml



  

Motivation

 LA is the basis of many methods in science
 For us:

 Important to solve systems of linear equations

 Arise in many problems, e.g.:
 Identifying gas mixture from peaks in spectrum
 fitting a line to data. (Next week)

a1 x1+a2 x2+...=c

a11 x1+a12 x2+...+a1n xn=c1

a21 x1+a22 x2+...+a2n xn=c2

...
am1 x1+am2 x2+...+amn xn=cm



  

Motivation

 LA is the basis of many methods in science
 For us:

 Important to solve systems of linear equations

 Arise in many problems, e.g.:
 Identifying gas mixture from peaks in spectrum
 fitting a line to data. (Next week)

a1 x1+a2 x2+...=c

a11 x1+a12 x2+...+a1n xn=c1

a21 x1+a22 x2+...+a2n xn=c2

...
am1 x1+am2 x2+...+amn xn=cm

● xj - the amount of gas of type j
● aij - how much a gas of type j 

      contributes to wavelength i
● ci  - the height of the peak of 

      wavelength i
    



  

Linear System of Equations

 Example

 Infinitely many, 1 or no solution

y

x

y=0.5x+1
y=2x−3



  

Matrices

 A matrix with 
 m rows, 
 n columns

is a collection of numbers
 represented as a table

 A vector is a matrix that is
 1 row (row vector), or
 1 column (column vector)

A=[3 −2 6
5 2 −8 ]

B=[
5 54 6
75 24 81
25 5 435]
v= [3 −2 6 ]

w=[
5
75
25]



  

Matrices

 A matrix with 
 m rows, 
 n columns

is a collection of numbers
 represented as a table

 A vector is a matrix that is
 1 row (row vector), or
 1 column (column vector)

A=[3 −2 6
5 2 −8 ]

B=[
5 54 6
75 24 81
25 5 435]
v= [3 −2 6 ]

w=[
5
75
25]

octave:1> A = [3, -2, 6; 5, 2, -8]
A =

   3  -2   6
   5   2  -8

octave:2> w = [5;75;25]
w =

    5
   75
   25



  

Matrices

 A matrix with 
 m rows, 
 n columns

is a collection of numbers
 represented as a table

 A vector is a matrix that is
 1 row (row vector), or
 1 column (column vector)

A=[3 −2 6
5 2 −8 ]

B=[
5 54 6
75 24 81
25 5 435]
v= [3 −2 6 ]

w=[
5
75
25]

octave:1> A = [3, -2, 6; 5, 2, -8]
A =

   3  -2   6
   5   2  -8

octave:2> w = [5;75;25]
w =

    5
   75
   25

octave:3> a1 = [4:8]
a1 =

   4   5   6   7   8

octave:4> a2 = [4:2:8]
a2 =

   4   6   8



  

Some Special Matrices 

 Square matrix: m=n
 Identity matrix - 'eye(3)'
 Zero matrix – 'zeros(m,n)'

 Types: diagonal, triangular (upper & lower)

 '*' denotes any number

I=[
1 0 0
0 1 0
0 0 1]

D=[
∗ 0 0
0 ∗ 0
0 0 ∗ ] TU=[

∗ ∗ ∗
0 ∗ ∗
0 0 ∗] TL=[∗ 0 0

∗ ∗ 0
∗ ∗ ∗

]



  

Operations on Vectors - 1

 We can perform operations on them!
 First: vectors. Next: generalization to matrices.

 Transpose: convert row ↔ column vector 

w=[
5
75
25] wT

=[5 75 25 ]

v= [3 −2 6 ] vT=[
3

−2
6 ]



  

Operations on Vectors - 1

 We can perform operations on them!
 First: vectors. Next: generalization to matrices.

 Transpose: convert row ↔ column vector 

w=[
5
75
25] wT

=[5 75 25 ]

v= [3 −2 6 ] vT=[
3

−2
6 ]

octave:9> a = [1,4,-2498, 12.4]
a =

      1.0000      4.0000  -2498.0000     12.4000

octave:10> a'
ans =

      1.0000
      4.0000
  -2498.0000
     12.4000

octave:11> a''
ans =

      1.0000      4.0000  -2498.0000     12.4000



  

Operations on Vectors - 2

 Sum
 Product with scalar 

 Inner product (also: 'scalar product' or 'dot product')

[1 2 3 ]+ [10 20 30 ]=[11 22 33 ]

5∗[1 2 3 ]=[5 10 15 ]

(v ,w)=vTw=∑
k=1

n

vkwk



  

Operations on Vectors - 2

 Sum
 Product with scalar 

 Inner product (also: 'scalar product' or 'dot product')

[1 2 3 ]+ [10 20 30 ]=[11 22 33 ]

5∗[1 2 3 ]=[5 10 15 ]

[1 2 3 ] [
10
20
30]=1∗10+2∗20+3∗30=10+40+90=140

(v ,w)=vTw=∑
k=1

n

vkwk

v=[
1
2
3] ,w=[

10
20
30]



  

Operations on Vectors - 2

 Sum
 Product with scalar 

 Inner product (also: 'scalar product' or 'dot product')

[1 2 3 ]+ [10 20 30 ]=[11 22 33 ]

5∗[1 2 3 ]=[5 10 15 ]

[1 2 3 ] [
10
20
30]=1∗10+2∗20+3∗30=10+40+90=140

(v ,w)=vTw=∑
k=1

n

vkwk

v=[
1
2
3] ,w=[

10
20
30]

octave:4> a = [1;2;3]
a =

   1
   2
   3

octave:5> b = [4;5;6]
b =

   4
   5
   6

octave:6> dot(a,b)
ans =  32
octave:7> a'*b
ans =  32



  

Operations on Vectors - 2

 Sum
 Product with scalar 

 Inner product (also: 'scalar product' or 'dot product')

 Outer product (also: 'vector product')

[1 2 3 ]+ [10 20 30 ]=[11 22 33 ]

5∗[1 2 3 ]=[5 10 15 ]

[1 2 3 ] [
10
20
30]=1∗10+2∗20+3∗30=10+40+90=140

(v ,w)=vTw=∑
k=1

n

vkwk

v=[
1
2
3] ,w=[

10
20
30]



  

Vector Indexing

 Retrieve parts of vectors

octave:12> a = [10, 20, 30, 40, 50, 60, 70]
a =

   10   20   30   40   50   60   70

octave:13> a(3)
ans =  30
octave:14> a([2,4])
ans =

   20   40

octave:16> a([4:end])
ans =

   40   50   60   70



  

Vector Indexing

 Retrieve parts of vectors

octave:12> a = [10, 20, 30, 40, 50, 60, 70]
a =

   10   20   30   40   50   60   70

octave:13> a(3)
ans =  30
octave:14> a([2,4])
ans =

   20   40

octave:16> a([4:end])
ans =

   40   50   60   70

indexing with 
another vector

special 'end' 
index



  

Operations on Matrices - 1

 Now matrices!
 Transpose: 

 convert each row →  column vector 
(or convert each column→  row vector)

A=[
1 2 3

10 20 30
100 200 300] AT

=[
1 10 100
2 20 200
3 30 300]



  

Operations on Matrices - 1
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 convert each row →  column vector 
(or convert each column→  row vector)

A=[
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10 20 30
100 200 300] AT
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1 10 100
2 20 200
3 30 300]



  

Operations on Matrices - 1

 Now matrices!
 Transpose: 

 convert each row →  column vector 
(or convert each column→  row vector)

A=[
1 2 3

10 20 30
100 200 300] AT

=[
1 10 100
2 20 200
3 30 300]



  

Operations on Matrices - 1

 Now matrices!
 Transpose: 

 convert each row →  column vector 
(or convert each column→  row vector)

A=[
1 2 3

10 20 30
100 200 300] AT

=[
1 10 100
2 20 200
3 30 300]

B=[ 1 2 3
10 20 30] BT

=[
1 10
2 20
3 30 ]



  

Operations on Matrices - 2

 Sum and product with scalar: pretty much the same

[1 2 3
4 5 6 ]+[10 20 30

40 50 60]=[11 22 33
44 55 66]

5∗[1 2 3
4 5 6]=[ 5 10 15

20 25 30]



  

Matrix Product

 Inner product → Matrix product

 C = m x n,      A = m x p,     B = p x n,     
 Each entry of C is an inner product:

[
... ... ...

190 ... ...
... ... .. ]=[

10 20
30 40
50 60][1 2 3

4 5 6]

C=AB

cij=r i
A c j

B



  

Matrix Product

 Inner product → Matrix product

 C = m x n,      A = m x p,     B = p x n,     
 Each entry of C is an inner product:

[
... ... ...

190 ... ...
... ... .. ]=[

10 20
30 40
50 60 ][1 2 3

4 5 6 ]

C=AB

cij=r i
A c j

B

octave:22> A = [10, 20; 30, 40; 50, 60]
A =

   10   20
   30   40
   50   60

octave:23> B = [1,2,3;4,5,6]
B =

   1   2   3
   4   5   6

octave:24> A*B
ans =

    90   120   150
   190   260   330
   290   400   510



  

Matrix Product

 Inner product → Matrix product

 C = m x n,      A = m x p,     B = p x n,     
 Each entry of C is an inner product:

[
... ... ...

190 ... ...
... ... .. ]=[

10 20
30 40
50 60 ][1 2 3

4 5 6 ]

C=AB

cij=r i
A c j

B

octave:22> A = [10, 20; 30, 40; 50, 60]
A =

   10   20
   30   40
   50   60

octave:25> Btrans =  B'
Btrans =

   1   4
   2   5
   3   6

octave:26> A*Btrans 
error: operator *: nonconformant arguments (op1 is 3x2, op2 is 3x2)

Matrix size is 
important



  

Matrix-Vector Product

 Matrix-vector product is just a (frequently occurring) 
special case:

Ab=[
a11 ... a1n

... ... ...
am1 ... amn

][
b1

...
bn

]=[
c1

...
cm

]



  

Matrix-Vector Product

 Also represents a system of equations!

Ax=[
a11 ... a1n

... ... ...
am1 ... amn

][
x1

...
xn

]=[
c1

...
cm]

a11 x1+a12 x2+...+a1n xn=c1

a21 x1+a22 x2+...+a2n xn=c2

...
am1 x1+am2 x2+...+amn xn=cm



  

Matrix Inverse

 Matrix inverse
 a square matrix A has an inverse A-1, if
 A is called 'invertible'
 generalization of scalar inverse

 Why?
 Solution of linear system 

of equations: 

A−1 A=I

a−1a=
a
a
=1

A−1 A x=A−1b
A x=b

I x=A−1b
x=A−1b

A x=b



  

Matrix Inverse

 Matrix inverse
 a square matrix A has an inverse A-1, if
 A is called 'invertible'
 generalization of scalar inverse

 Special case: diagonal matrix

A−1 A=I

a−1a=
a
a
=1

A=[
a11 0 0
0 a22 0
0 0 a33

] A−1
=[

1 /a11 0 0
0 1/a22 0
0 0 1 /a33

]



  

Existence of Matrix Inverse

 Inverse does exist for every square matrix...
 (there is a more general procedure, but can get 

divisions by 0 when following it.)

 A-1 exists 
↔ A is 'non singular' 
↔ 'determinant' is not zero
↔ columns of A are linearly independent

                  are linearly independent if

A−1=[
1/a11 0 0

0 1 /a22 0

0 0 1/a33
]

{v1, ... , vk}

a1 v1+...+ak vk=0 ⇒ a1=0,... , ak=0



  

Solving Linear Systems

 So how to solve a linear system?
 'inv'

 only for square matrices

 '\' (left division)
 careful! Will also find a 

solution if none exists!

octave:9> A = rand(4);
octave:10> c = rand(4,1);
octave:11> inv(A)*c
ans =

   0.905965
  -0.032969
   0.109202
   0.430893

octave:12> A\c
ans =

   0.905965
  -0.032969
   0.109202
   0.430893



  

Floating Point Numbers



  

How are number represented?

 Matlab represents numbers using a floating point 
representation

(−1)⋅(0.b1b2 ...b53)⋅2e

sign
mantissa
●53 bits - 253=9.0072e+15
●normalized: b

1 
~= 0

 (unique representation)

Exponent
-1021< e < 1024



  

How are number represented?

 Matlab represents numbers using a floating point 
representation

 Smallest 
 normalized
 non-norm.

 Largest

(−1)⋅(0.b1b2 ...b53)⋅2e

sign
Exponent
-1021< e < 1024

(0.100 ...00)⋅2−1021
=2.2251e-308

(0.000 ...01)⋅2−1021
=4.9407e-324

(0.111...11)⋅21024
=1.7977e+308

mantissa
●53 bits - 253=9.0072e+15
●normalized: b

1 
~= 0

 (unique representation)



  

Spacing between numbers

 Spacing for the largest numbers

 Spacing for smallest numbers 4.9407e-324

 “eps(n)” gives spacing around n
 eps(realmax), eps(0)

diff=(0.000...001)⋅21024
=1⋅2(1024−53)

=1.9958e+292

(0.000...001)⋅21024

(0.000...010)⋅21024



  

Round Off Errors

 set of floating point numbers F
 when real number x is replaced by number fl(x) in F

→ round off error 

 Absolute error can be large: 0.5 *eps(realmax)

 However: relative error is bounded
 where 

∣x−fl(x)∣
∣x∣

⩽
1
2
ϵ

ϵ=eps (1)=2.2204e-16



  

Computation



  

PP x pp

More on Errors

 Round off errors are only part of the story



  

PP x pp

More on Errors

 Round off errors are only part of the story

MP

x=∫
a

b

f (t )dt



  

PP x pp

More on Errors

 Round off errors are only part of the story

MP

x=∫
a

b

f (t )dt

NP

xn=∑
k

f (t k)Δk



  

PP x pp

More on Errors

 Round off errors are only part of the story

MP

x=∫
a

b

f (t )dt

NP

xn=∑
k

f (t k)Δk
computation x̂



  

PP x pp

More on Errors

 Round off errors are only part of the story

MP

x=∫
a

b

f (t )dt

NP

xn=∑
k

f (t k)Δk
computation x̂

modeling error



  

PP x pp

More on Errors

 Round off errors are only part of the story

MP

x=∫
a

b

f (t )dt

NP

xn=∑
k

f (t k)Δk
computation x̂

modeling error

truncation error

propagated round 
off errors



  

PP x pp

More on Errors

 Round off errors are only part of the story

MP

x=∫
a

b

f (t )dt

NP

xn=∑
k

f (t k)Δk
computation x̂

modeling error

truncation error

propagated round 
off errors

Scientific computing only takes 
into account the

Computational error

= truncation error + 
propagated round off errors



  

Convergence of 
Numerical Methods

 Discretization parameter 
 e.g. `bin size'

 A method is convergent IFF

 Order of convergence
 how fast the error reduces (when h decreases)

xn=∑
k

f (tk)Δk

Δk

h

h→0 ⇒ ec→0

ec<C⋅hp



  

Iterative order

 Iterative order of convergence
 says something about iterative methods
 E.g., we said Newton's method is “fast”

 iterative order is p:

 Newton is order 2

 In QSG:
 basically unrolling the recursive equation above

∣x(n+1)
−x∗

∣≤∣x(n)
−x∗

∣
p

∣e(n+1)
∣≤∣e(n)

∣
p

∣e(n)
∣≤ρ

np

e0



  

Computational Cost

 We discussed of how fast we approach an answer
 per iteration.

 Did not mention the cost of an iteration.

 Computational complexity gives a assessment of 
the complexity of an algorithm.

 as a function of the size of the input.



  

Complexity of 
Matrix Multiplication

 As an example consider matrix multiplication 

 Simplest algorithm:

 for each of the n2 entries c
ij

 compute the inner product … ?

C=AB

[
... ... ...
... n×n ...
... ... ...]=[

... ... ...

... n×n ...

... ... ...][
... ... ...
... n×n ...
... ... ...]



  

Complexity of 
Matrix Multiplication

 As an example consider matrix multiplication 

 Simplest algorithm:

 for each of the n2 entries c
ij

 compute the inner product

C=AB

[
... ... ...
... n×n ...
... ... ...]=[

... ... ...

... n×n ...

... ... ...][
... ... ...
... n×n ...
... ... ...]

cij=r i
A c j

B



  

Complexity of 
Matrix Multiplication

 As an example consider matrix multiplication 

 Simplest algorithm:

 for each of the n2 entries c
ij

 compute the inner product

C=AB

[
... ... ...
... n×n ...
... ... ...]=[

... ... ...

... n×n ...

... ... ...][
... ... ...
... n×n ...
... ... ...]

cij=r i
A c j

B

Inner product of 2 n-vectors:

- n multiplications
- (n-1) additions

→ 2n-1 operations



  

Complexity of 
Matrix Multiplication

 As an example consider matrix multiplication 

 Simplest algorithm:

 for each of the n2 entries c
ij

 compute the inner product

C=AB

[
... ... ...
... n×n ...
... ... ...]=[

... ... ...

... n×n ...

... ... ...][
... ... ...
... n×n ...
... ... ...]

cij=r i
A c j

B

Inner product of 2 n-vectors:

- n multiplications
- (n-1) additions

→ 2n-1 operations

Often we are not interested in the exact 
number of computations.

→ “Big-oh” notation

“f has order of at most g”:

IF
Exist a positive constant c, such that for sufficiently large n

f (n)=O(g(n))

f (n)≤c⋅∣g(n)∣



  

Complexity of 
Matrix Multiplication

 As an example consider matrix multiplication 

 Simplest algorithm:

 for each of the n2 entries c
ij

 compute the inner product

C=AB

[
... ... ...
... n×n ...
... ... ...]=[

... ... ...

... n×n ...

... ... ...][
... ... ...
... n×n ...
... ... ...]

Inner product of 2 n-vectors:

- n multiplications
- (n-1) additions

→ 2n-1 operations

cij=r i
A c j

B

2n−1=O(n)

Often we are not interested in the exact 
number of computations.

→ “Big-oh” notation

“f has order of at most g”:

IF
Exist a positive constant c, such that for sufficiently large n

f (n)=O(g(n))

f (n)≤c⋅∣g(n)∣



  

Complexity of 
Matrix Multiplication

 As an example consider matrix multiplication 

 Simplest algorithm:

 for each of the n2 entries c
ij

 compute the inner product

C=AB

[
... ... ...
... n×n ...
... ... ...]=[

... ... ...

... n×n ...

... ... ...][
... ... ...
... n×n ...
... ... ...]

Inner product of 2 n-vectors:

- n multiplications
- (n-1) additions

→ 2n-1 operations

cij=r i
A c j

B

2n−1=O(n)

Complexity of
simplest algorithm?

Often we are not interested in the exact 
number of computations.

→ “Big-oh” notation

“f has order of at most g”:

IF
Exist a positive constant c, such that for sufficiently large n

f (n)=O(g(n))

f (n)≤c⋅∣g(n)∣



  

Complexity of 
Matrix Multiplication

 As an example consider matrix multiplication 

 Simplest algorithm:

 for each of the n2 entries c
ij

 compute the inner product

C=AB

[
... ... ...
... n×n ...
... ... ...]=[

... ... ...

... n×n ...

... ... ...][
... ... ...
... n×n ...
... ... ...]

Inner product of 2 n-vectors:

- n multiplications
- (n-1) additions

→ 2n-1 operations

cij=r i
A c j

B

2n−1=O(n)

Often we are not interested in the exact 
number of computations.

→ “Big-oh” notation

“f has order of at most g”:

IF
Exist a positive constant c, such that for sufficiently large n

f (n)=O(g(n))

f (n)≤c⋅∣g(n)∣

Complexity of
simplest algorithm?

O (n3
)



  

Practical Time Measuring

 Theoretic analysis is useful to predict run-time.
 But in order to figure out where in a complex program 

the time is spend

→ measuring usually more informative

 'cputime'
octave:> [TOTAL, USER, SYSTEM] = cputime ()
TOTAL =  0.44003
USER =  0.34802
SYSTEM =  0.092005
octave:> inv(rand(50));
octave:> [TOTAL2, USER2, SYSTEM2] = cputime ()
TOTAL2 =  0.50003
USER2 =  0.38402
SYSTEM2 =  0.11601
octave:> USER2 - USER
ans =  0.036003



  

Solving Linear Systems & LU factorization



  

Easy cases: Diagonal Matrices

 In case of a diagonal matrix A, the system is easy!

[
a11 0 0
0 a22 0
0 0 a33

][
x1

x2

x3
]=[

c1

c2

c3
]



  

Easy cases: Diagonal Matrices

 In case of a diagonal matrix A, the system is easy!

[
a11 0 0
0 a22 0
0 0 a33

][
x1

x2

x3
]=[

c1

c2

c3
]

x1=c1 /a11

x2=c2 /a22

x3=c3 /a33



  

Easy cases: Diagonal Matrices

 In case of a diagonal matrix A, the system is easy!

[
a11 0 0
0 a22 0
0 0 a33

][
x1

x2

x3
]=[

c1

c2

c3
]

x1=c1 /a11

x2=c2 /a22

x3=c3 /a33

A−1
=[

1 /a11 0 0
0 1/a22 0
0 0 1 /a33

]



  

Easy cases: Triangular Matrices

 Triangular systems are also is easy

[
3 0 0
6 4 0
2 4 5 ][

x1

x2

x3
]=[

11
12
−5]

x1=5.5
[6 4 0 ] [

5.5
x2

x3
]=12

33+4x2=12

x2=(12−33)/4=3.75



  

Easy cases: Triangular Matrices

 Triangular systems are also is easy

[
3 0 0
6 4 0
2 4 5 ][

x1

x2

x3
]=[

11
12
−5]

x1=5.5
[6 4 0 ] [

5.5
x2

x3
]=12

33+4x2=12

x2=(12−33)/4=3.75

Book (5.9) expresses 
this in 1 line:

x2=
1
4
(12−(6∗5.5))



  

Easy cases: Triangular Matrices

 Triangular systems are also is easy

[
3 0 0
6 4 0
2 4 5 ][

x1

x2

x3
]=[

11
12
−5]

x1=5.5
x2=3.75

[2 4 5 ] [
5.5
3.75
x3

]=−5

26+5x3=−5

x3=(−5−26)/5=−6.2



  

Easy cases: Triangular Matrices

 Triangular systems are also is easy

[
3 0 0
6 4 0
2 4 5 ][

x1

x2

x3
]=[

11
12
−5]

x1=5.5
x2=3.75
x3=6.2

[2 4 5 ] [
5.5
3.75
x3

]=−5

26+5x3=−5

x3=(−5−26)/5=−6.2

called
'forward substitution'



  

Easy cases: Triangular Matrices

 Upper triangular matrices work the same.
 but start at the bottom
 'backward substitution'

 Now basic idea: use these simple case to solve 
general linear systems!

 LU factorization:
 first decompose a matrix A in L, U
 then use that to solve the original system

(L)ower and (U)pper
diagonal



  

LU factorization

 We want to solve
 If

we get... 

A x=b

A=LU find x



  

LU factorization

 We want to solve
 If

we get... 

A x=b

A=LU

A x=b
LU x=b
L (U x)=b



  

LU factorization

 We want to solve
 If

we get... 

A x=b

A=LU

U x≡ yA x=b
LU x=b
L (U x)=b

L y=b

define:



  

LU factorization

 We want to solve
 If

we get... 

A x=b

A=LU

U x≡ yA x=b
LU x=b
L (U x)=b

L y=b

define:

solve

y



  

LU factorization

 We want to solve
 If

we get... 

A x=b

A=LU

U x≡ yA x=b
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 We want to solve
 If
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A=LU
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define:

solve

y U x= y
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LU factorization

 How to compute L,U?

 “Gauss factorization”
 many ways to chose L, U... → arbitrary assignment

 Now solve the resulting systems of equations
→ u

11
=a

11
 

→ u
12

=a
12

 , etc.

 see QSG.

[a11 a12

a21 a22
]=[l11 0

l21 l22
][u11 u12

0 u22
]

[a11 a12

a21 a22
]=[ 1 0

l21 1 ][u11 u12

0 u22
]



  

Homework Reading 
 Recap: 

 CH1: 1.2, 1.5.2, 1.6. 
 LU factorization p. 129-142

 don't worry if you don't get all the examples

 Preparation for next time: 
 CH3: p. 75--81, 93--103 (sec. 3.5 is optional)
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