Scientific Computing Maastricht Science Program

Week 2

Frans Oliehoek
frans.oliehoek@maastrichtuniversity.nl

Recap

- What is scientific programming?
- Programming
- Arithmetic, IF, conditions, WHILE, FOR
- Matlab Cheat Sheet
- General form of linear equations $a_{0}+a_{1} x_{1}+a_{2} x_{2}+\ldots=0$
- Finding the zeros of non-linear equations
- bisection
- Newton

This Lecture

- A very short introduction linear algebra
- Vectors \& Matrices in Matlab
- LU factorization
- Floating Point Numbers
- Computation
- Computation Errors
- Computational Costs

A Very Short Introduction to
 Linear Algebra

Linear Algebra (LA)

- Linear Algebra deals with linear functions
- You know what that is!
- but higher dimensions $\mathrm{R}^{\mathrm{n}} \rightarrow \mathrm{R}^{\mathrm{m}}$
- I can only give a very brief introduction
- covering only basic things
- Please:
- get a linear algebra book, open it!
- Watch some video lectures.
- E.g., the first couple at:
http://web.mit.edu/18.06/www/videos.shtml

Motivation

- LA is the basis of many methods in science
- For us:
- Important to solve systems of linear equations

$$
a_{1} x_{1}+a_{2} x_{2}+\ldots=c \quad \begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 \mathrm{n}} x_{n}=c_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 \mathrm{n}} x_{n}=c_{2} \\
\ldots \\
\\
\\
a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n}=c_{m}
\end{gathered}
$$

- Arise in many problems, e.g.:
- Identifying gas mixture from peaks in spectrum
- fitting a line to data. (Next week)

Motivation

- LA is the basis of many methods in science
- x_{j} - the amount of gas of type j
- a_{ij} - how much a gas of type j contributes to wavelength i
- c_{i} - the height of the peak of wavelength i
ems of linear equations

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=c_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}=c_{2} \\
\ldots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n}=c_{m}
\end{gathered}
$$

- Arise in many problems, e.g.:
- Identifying gas mixture from peaks in spectrum
- fitting a line to data. (Next week)

Linear System of Equations

- Example

$$
\begin{gathered}
y=0.5 x+1 \\
y=2 x-3
\end{gathered}
$$

- Infinitely many, 1 or no solution

Matrices

- A matrix with

$$
A=\left[\begin{array}{ccc}
3 & -2 & 6 \\
5 & 2 & -8
\end{array}\right]
$$

- m rows,
- n columns
is a collection of numbers
- represented as a table

$$
B=\left[\begin{array}{ccc}
5 & 54 & 6 \\
75 & 24 & 81 \\
25 & 5 & 435
\end{array}\right]
$$

- A vector is a matrix that is
- 1 row (row vector), or
- 1 column (column vector)

$$
v=\left[\begin{array}{lll}
3 & -2 & 6
\end{array}\right]
$$

$$
w=\left[\begin{array}{c}
5 \\
75 \\
25
\end{array}\right]
$$

Matrices

- A matrix with

$$
A=\left[\begin{array}{ccc}
3 & -2 & 6 \\
5 & 2 & -8
\end{array}\right]
$$

- m rows,
- n columns
is a collection of numbers ${ }^{3}$
octave:1> $A=[3,-2,6 ; 5,2,-8]$
$A=$
octave:2> w = [5;75;25] 435]
- represented as a tab ${ }_{\mathrm{w}}^{\text {octa }}=$
- A vector is a matrix that i25

$$
v=\left[\begin{array}{lll}
3 & -2 & 6
\end{array}\right]
$$

- 1 row (row vector), or

$$
w=\left[\begin{array}{c}
5 \\
75 \\
25
\end{array}\right]
$$

Matrices

- A matrix with

$$
A=\left[\begin{array}{ccc}
3 & -2 & 6 \\
5 & 2 & -8
\end{array}\right]
$$

- m rows,
- n columns
is a collection of numbers ${ }^{3}$

$$
\begin{aligned}
& \text { octave:1> } A=[3,-2,6 ; 5,2,-8] \\
& A=
\end{aligned}
$$

$$
\text { octave:2> w = } \left.\begin{array}{ll}
2 ; 75 ; 25] & 435
\end{array}\right]
$$

- A vector is a matrix that i25
a1 =
$\begin{array}{llllll}4 & 5 & 6 & 5^{7} & 8\end{array}$
octave:4> a2 $=5[4: 2: 8]$
a2 =

Some Special Matrices

- Square matrix: m=n
- Identity matrix - 'eye(3)'
- Zero matrix - 'zeros(m,n)'

$$
I=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

- Types: diagonal, triangular (upper \& lower)

$$
D=\left[\begin{array}{lll}
* & 0 & 0 \\
0 & * & 0 \\
0 & 0 & *
\end{array}\right] \quad T U=\left[\begin{array}{lll}
* & * & * \\
0 & * & * \\
0 & 0 & *
\end{array}\right] T L=\left[\begin{array}{lll}
* & 0 & 0 \\
* & * & 0 \\
* & * & *
\end{array}\right]
$$

- '*' denotes any number

Operations on Vectors - 1

- We can perform operations on them!
- First: vectors. Next: generalization to matrices.
- Transpose: convert row \leftrightarrow column vector

$$
\begin{array}{cc}
v=\left[\begin{array}{lll}
3 & -2 & 6
\end{array}\right] & v^{T}=\left[\begin{array}{c}
3 \\
-2 \\
6
\end{array}\right] \\
w=\left[\begin{array}{c}
5 \\
75 \\
25
\end{array}\right] & w^{T}=\left[\begin{array}{lll}
5 & 75 & 25
\end{array}\right]
\end{array}
$$

Operations on Vectors - 1

- We can perform operations on them!
- First: octave:9> 1 ae=t[1,4,-2498,a12.4]to matrices. a =
1.0000
$4.0000-2498.0000$
12.4000
- Transpoctave:10> art row \leftrightarrow column vector ans =
1.0000
4.0000
-2498.0000
12.4000
octave:11> a''
ans =

$$
\begin{array}{llll}
1.0000 & 4.0000 & -2498.0000 & 12.4000
\end{array}
$$

Operations on Vectors - 2

- Sum $\quad\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]+\left[\begin{array}{lll}10 & 20 & 30\end{array}\right]=\left[\begin{array}{lll}11 & 22 & 33\end{array}\right]$
- Product with scalar $\quad 5 *\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]=\left[\begin{array}{lll}5 & 10 & 15\end{array}\right]$
- Inner product (also: 'scalar product' or 'dot product')

$$
(v, w)=v^{T} w=\sum_{k=1}^{n} v_{k} w_{k}
$$

Operations on Vectors - 2

- Sum $\quad\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]+\left[\begin{array}{lll}10 & 20 & 30\end{array}\right]=\left[\begin{array}{lll}11 & 22 & 33\end{array}\right]$
- Product with scalar $\quad 5 *\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]=\left[\begin{array}{lll}5 & 10 & 15\end{array}\right]$
- Inner product (also: 'scalar product' or 'dot product')

$$
\left.\begin{array}{l}
(v, w)=v^{T} w=\sum_{k=1}^{n} v_{k} w_{k} \\
{\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right]\left[\begin{array}{l}
10 \\
20 \\
30
\end{array}\right]=1 * 10+2 * 20+3 * 30=10+40+90=140} \\
2 \\
3
\end{array}\right], w=\left[\begin{array}{l}
10 \\
20 \\
30
\end{array}\right] .
$$

Operations on Vectors - 2

- Sum

$$
\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right]+\left[\begin{array}{lll}
10 & 20 & 30
\end{array}\right]=\left[\begin{array}{lll}
11 & 22 & 33
\end{array}\right]
$$

- Product with scalar

```
octave:4> a = [1;2;3] 10 15
a =
```

- Inner product (also: 'scala $\frac{1}{3}$ product' or 'dot product')

$$
\begin{aligned}
& {\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right]\left[\begin{array}{l}
20 \\
30
\end{array}\right]=1 * 10+\begin{array}{l}
\text { octave }: 6> \\
\text { ans }= \\
32
\end{array} \operatorname{dot}(a, b)+40+90=140} \\
& \text { octave:7> a'*b } \\
& \text { ans = } 32
\end{aligned}
$$

Operations on Vectors - 2

- Sum $\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]+\left[\begin{array}{lll}10 & 20 & 30\end{array}\right]=\left[\begin{array}{lll}11 & 22 & 33\end{array}\right]$
- Product with scalar $\quad 5 *\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]=\left[\begin{array}{lll}5 & 10 & 15\end{array}\right]$
- Inner product (also: 'scalar product' or 'dot product')

$$
\left.\begin{array}{l}
(v, w)=v^{T} w=\sum_{k=1}^{n} v_{k} w_{k} \\
{\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right]\left[\begin{array}{l}
10 \\
20 \\
30
\end{array}\right]=1 * 10+2 * 20+3 * 30=10+40+90=140} \\
2 \\
3
\end{array}\right], w=\left[\begin{array}{l}
10 \\
20 \\
30
\end{array}\right] .
$$

- Outer product (also: 'vector product')

Vector Indexing

- Retrieve parts of vectors

```
octave:12> a = [10, 20, 30, 40, 50, 60, 70]
a =
    10
octave:13> a(3)
ans = 30
octave:14> a([2,4])
ans =
    20 40
octave:16> a([4:end])
ans =
    40 50 60 70
```


Vector Indexing

- Retrieve parts of vectors

$$
\text { octave:12> a = }[10,20,30,40,50,60,70]
$$

$$
\mathrm{a}=
$$

$\begin{array}{lllllll}10 & 20 & 30 & 40 & 50 & 60 & 70\end{array}$
octave:13> a(3)
ans = 30
octave:14> a([2,4])
ans =
$20 \quad 40$
octave:16> a([4:end])
ans =

$$
\begin{array}{llll}
40 & 50 & 60 & 70
\end{array}
$$

indexing with another vector
special 'end' index

Operations on Matrices - 1

- Now matrices!
- Transpose:
- convert each row \rightarrow column vector (or convert each column \rightarrow row vector)

$$
A=\left[\begin{array}{ccc}
1 & 2 & 3 \\
10 & 20 & 30 \\
100 & 200 & 300
\end{array}\right] \quad A^{T}=\left[\begin{array}{ccc}
1 & 10 & 100 \\
2 & 20 & 200 \\
3 & 30 & 300
\end{array}\right]
$$

Operations on Matrices - 1

- Now matrices!
- Transpose:
- convert each row \rightarrow column vector (or convert each column \rightarrow row vector)

$$
A=\left[\begin{array}{ccc}
1 & 2 & 3 \\
10 & 20 & 30 \\
100 & 200 & 300
\end{array}\right] \quad A^{T}=\left[\begin{array}{ccc}
1 & 10 & 100 \\
2 & 20 & 200 \\
3 & 30 & 300
\end{array}\right]
$$

Operations on Matrices - 1

- Now matrices!
- Transpose:
- convert each row \rightarrow column vector (or convert each column \rightarrow row vector) $A=\left[\begin{array}{ccc}1 & 2 & 3 \\ 10 & 20 & 30 \\ 100 & 200 & 300\end{array}\right]$

$$
A^{T}=\left[\begin{array}{ccc}
1 & 10 & 100 \\
2 & 20 & 200 \\
3 & 30 & 300
\end{array}\right]
$$

Operations on Matrices - 1

- Now matrices!
- Transpose:
- convert each row \rightarrow column vector (or convert each column \rightarrow row vector)

$$
\begin{array}{ll}
A=\left[\begin{array}{ccc}
1 & 2 & 3 \\
10 & 20 & 30 \\
100 & 200 & 300
\end{array}\right] & A^{T}=\left[\begin{array}{lll}
1 & 10 & 100 \\
2 & 20 & 200 \\
3 & 30 & 300
\end{array}\right] \\
B=\left[\begin{array}{ccc}
1 & 2 & 3 \\
10 & 20 & 30
\end{array}\right] & B^{T}=\left[\begin{array}{ll}
1 & 10 \\
2 & 20 \\
3 & 30
\end{array}\right]
\end{array}
$$

Operations on Matrices - 2

- Sum and product with scalar: pretty much the same

$$
\begin{gathered}
{\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]+\left[\begin{array}{lll}
10 & 20 & 30 \\
40 & 50 & 60
\end{array}\right]=\left[\begin{array}{lll}
11 & 22 & 33 \\
44 & 55 & 66
\end{array}\right]} \\
5 *\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]=\left[\begin{array}{ccc}
5 & 10 & 15 \\
20 & 25 & 30
\end{array}\right]
\end{gathered}
$$

Matrix Product

- Inner product \rightarrow Matrix product

$$
C=A B
$$

- $C=m \times n, \quad A=m \times p, \quad B=p \times n$,
- Each entry of C is an inner product: $\quad c_{i j}=r_{i}^{A} c_{j}^{B}$

$$
\left[\begin{array}{ccc}
\ldots & \ldots & \ldots \\
190 & \ldots & \ldots \\
\ldots & \ldots & . .
\end{array}\right]=\left[\begin{array}{ll}
10 & 20 \\
\mathbf{3 0} & \mathbf{4 0} \\
50 & 60
\end{array}\right]\left[\begin{array}{lll}
\mathbf{1} & 2 & 3 \\
\mathbf{4} & 5 & 6
\end{array}\right]
$$

Matrix Product

- Inner product \rightarrow Matrix product

$$
C=A B
$$

$$
\begin{aligned}
& \text { octave:22> } A=[10,20 ; 30,40 ; 50,60] \\
& A=
\end{aligned}
$$

Matrix Product

- Inner product \rightarrow Matrix product

```
octave:22> A = [10, 20; 30, 40; 50, 60]
A = C = AB
    10 20
    30 40
    50 m60
A = m x p,
B = 0 < n,
```

Matrix size is
octave: $25>$ Btrans Θ iB'an inner proving
Btrans $=$

1	4
2	5
3	6

octave:26> A*Btrans
error: operator *: nonconformant (arguments (op1 is 3×2, op2 is 3×2)

Matrix-Vector Product

- Matrix-vector product is just a (frequently occurring) special case:

$$
A b=\left[\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\ldots & \ldots & \ldots \\
a_{m 1} & \ldots & a_{m n}
\end{array}\right]\left[\begin{array}{l}
b_{1} \\
\ldots \\
b_{n}
\end{array}\right]=\left[\begin{array}{c}
c_{1} \\
\ldots \\
c_{m}
\end{array}\right]
$$

Matrix-Vector Product

- Also represents a system of equations!

$$
A x=\left[\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\ldots & \ldots & \ldots \\
a_{m 1} & \ldots & a_{m n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\ldots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
c_{1} \\
\ldots \\
c_{m}
\end{array}\right]
$$

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 \mathrm{n}} x_{n}=c_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 \mathrm{n}} x_{n}=c_{2} \\
\ldots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n}=c_{m}
\end{gathered}
$$

Matrix Inverse

- Matrix inverse
- a square matrix A has an inverse A^{-1}, if $\quad A^{-1} A=I$
- A is called 'invertible'
- generalization of scalar inverse

$$
a^{-1} a=\frac{a}{a}=1
$$

- Why?
- Solution of linear system

$$
\begin{aligned}
A x & =b \\
A^{-1} A x & =A^{-1} b \\
I x & =A^{-1} b \\
x & =A^{-1} b
\end{aligned}
$$ of equations:

$$
A x=b \quad \begin{aligned}
I x & =A^{-1} b \\
x & =A^{-1} b
\end{aligned}
$$

Matrix Inverse

- Matrix inverse
- a square matrix A has an inverse A^{-1}, if $\quad A^{-1} A=I$
- A is called 'invertible'
- generalization of scalar inverse

$$
a^{-1} a=\frac{a}{a}=1
$$

- Special case: diagonal matrix

$$
A=\left[\begin{array}{ccc}
a_{11} & 0 & 0 \\
0 & a_{22} & 0 \\
0 & 0 & a_{33}
\end{array}\right] \quad A^{-1}=\left[\begin{array}{ccc}
1 / a_{11} & 0 & 0 \\
0 & 1 / a_{22} & 0 \\
0 & 0 & 1 / a_{33}
\end{array}\right]
$$

Existence of Matrix Inverse

- Inverse does exist for every square matrix...
- (there is a more general procedure, but can get divisions by 0 when following it.)
- A^{-1} exists

$$
A^{-1}=\left[\begin{array}{ccc}
1 / a_{11} & 0 & 0 \\
0 & 1 / a_{22} & 0 \\
0 & 0 & 1 / a_{33}
\end{array}\right]
$$

$\leftrightarrow A$ is 'non singular'
\leftrightarrow 'determinant' is not zero
\leftrightarrow columns of A are linearly independent

- $\left\{v_{1}, \ldots, v_{k}\right\}$ are linearly independent if

$$
a_{1} v_{1}+\ldots+a_{k} v_{k}=0 \quad \Rightarrow \quad a_{1}=0, \ldots, a_{k}=0
$$

Solving Linear Systems

- So how to solve a linear system?
- 'inv'
- only for square matrices
- 'l' (left division)
- careful! Will also find a solution if none exists!

```
octave:9> A = rand(4);
octave:10> c = rand(4,1);
octave:11> inv(A)*c
ans =
    0.905965
    -0.032969
    0.109202
    0.430893
octave:12> A\c
ans =
    0.905965
    -0.032969
    0.109202
    0.430893
```

Floating Point Numbers

How are number represented?

- Matlab represents numbers using a floating point representation

How are number represented?

- Matlab represents numbers using a floating point representation

- Smallest
- normalized ($0.100 \ldots 00) \cdot 2^{-1021}=2.2251 \mathrm{e}-308$
- non-norm. ($0.000 \ldots 01) \cdot 2^{-1021}=4.9407 \mathrm{e}-324$
- Largest $(0.111 \ldots 11) \cdot 2^{1024}=1.7977 \mathrm{e}+308$

Spacing between numbers

- Spacing for the largest numbers

$$
\begin{aligned}
& (0.000 \ldots 001) \cdot 2^{1024} \\
& (0.000 \ldots . .010) \cdot 2^{1024} \\
\operatorname{diff}= & (0.000 \ldots . .001) \cdot 2^{1024}=1 \cdot 2^{(1024-53)}=1.9958 \mathrm{e}+292
\end{aligned}
$$

- Spacing for smallest numbers 4.9407e-324
- "eps(n)" gives spacing around n
- eps(realmax), eps(0)

Round Off Errors

- set of floating point numbers F
- when real number x is replaced by number $f(x)$ in F
\rightarrow round off error
- Absolute error can be large: 0.5 *eps(realmax)
- However: relative error is bounded
- where $\epsilon=e p s(1)=2.2204 \mathrm{e}-16$

$$
\frac{|x-f l(x)|}{|x|} \leqslant \frac{1}{2} \epsilon
$$

Computation

More on Errors

- Round off errors are only part of the story

More on Errors

- Round off errors are only part of the story

More on Errors

- Round off errors are only part of the story

More on Errors

- Round off errors are only part of the story

More on Errors

- Round off errors are only part of the story

More on Errors

- Round off errors are only part of the story

More on Errors

- Round off errors are only part of the story

Convergence of Numerical Methods

- Discretization parameter h
- e.g. `bin size' Δ_{k}

$$
x_{n}=\sum_{k} f\left(t_{k}\right) \Delta_{k}
$$

- A method is convergent IFF

$$
h \rightarrow 0 \Rightarrow e_{c} \rightarrow 0
$$

- Order of convergence $e_{c}<C \cdot h^{p}$
- how fast the error reduces (when h decreases)

Iterative order

- Iterative order of convergence
- says something about iterative methods
- E.g., we said Newton's method is "fast"
- iterative order is p :

$$
\begin{gathered}
\left|x^{(n+1)}-x^{*}\right| \leq\left|x^{(n)}-x^{*}\right|^{p} \\
\left|e^{(n+1)}\right| \leq\left|e^{(n)}\right|^{p}
\end{gathered}
$$

- Newton is order 2
- In QSG: $\left|e^{(n)}\right| \leq \rho^{n^{p}} e^{0}$
- basically unrolling the recursive equation above

Computational Cost

- We discussed of how fast we approach an answer
- per iteration.
- Did not mention the cost of an iteration.
- Computational complexity gives a assessment of the complexity of an algorithm.
- as a function of the size of the input.

Complexity of Matrix Multiplication

- As an example consider matrix multiplication

$$
C=A B
$$

$$
\left[\begin{array}{ccc}
\ldots & \ldots & \ldots \\
\ldots & n \times n & \ldots \\
\ldots & \ldots & \ldots
\end{array}\right]=\left[\begin{array}{ccc}
\ldots & \ldots & \ldots \\
\ldots & n \times n & \ldots \\
\ldots & \ldots & \ldots
\end{array}\right]\left[\begin{array}{ccc}
\ldots & \ldots & \ldots \\
\ldots & n \times n & \ldots \\
\ldots & \ldots & \ldots
\end{array}\right]
$$

- Simplest algorithm:
- for each of the n^{2} entries $c_{i j}$
- compute the inner product ... ?

Complexity of Matrix Multiplication

- As an example consider matrix multiplication

$$
C=A B
$$

$$
\left[\begin{array}{ccc}
\ldots & \ldots & \ldots \\
\ldots & n \times n & \ldots \\
\ldots & \ldots & \ldots
\end{array}\right]=\left[\begin{array}{ccc}
\ldots & \ldots & \ldots \\
\ldots & n \times n & \ldots \\
\ldots & \ldots & \ldots
\end{array}\right]\left[\begin{array}{ccc}
\ldots & \ldots & \ldots \\
\ldots & n \times n & \ldots \\
\ldots & \ldots & \ldots
\end{array}\right]
$$

- Simplest algorithm:
- for each of the n^{2} entries $c_{i j}$
- compute the inner product $c_{i j}=r_{i}^{A} c_{j}^{B}$

Complexity of Matrix Multiplication

- As an example consider matrix mu

$$
\begin{gathered}
c=A B \\
{\left[\begin{array}{ccc}
\ldots & \ldots & \ldots \\
\ldots & n \times n & \ldots \\
\ldots & \ldots & \ldots
\end{array}\right]=\left[\begin{array}{ccc}
\ldots & \ldots & \ldots \\
\ldots & n \times n & \ldots \\
\ldots & \ldots & \ldots
\end{array}\right]\left[\begin{array}{l}
\ldots \\
\ldots \\
\ldots
\end{array}\right]}
\end{gathered}
$$

Inner product of $2 n$-vectors:

- n multiplications
- (n-1) additions
$\rightarrow 2 \mathrm{n}-1$ operations
- Simplest algorithm:
- for each of the n^{2} entries $c_{i j}$
- compute the inner product

$$
c_{i j}=r_{i}^{A} c_{j}^{B}
$$

Complexity of Matrix Multiplication

Often we are not interested in the exact number of computations.
\rightarrow "Big-oh" notation
" f has order of at most g ": $f(n)=O(g(n))$

IF

Inner product of $2 n$-vectors:

- n multiplications
- ($n-1$) additions
$\rightarrow 2 n-1$ operations

Exist a positive constant c, such that for sufficiently large n

$$
f(n) \leq c \cdot|g(n)|
$$

- Simplest algorithm:
- for each of the n^{2} entries $c_{i j}$
- compute the inner product

$$
c_{i j}=r_{i}^{A} c_{j}^{B}
$$

Complexity of Matrix Multiplication

Often we are not interested in the exact number of computations.
\rightarrow "Big-oh" notation
" f has order of at most g ": $f(n)=O(g(n))$

IF
Exist a positive constant c, such that for sufficiently large n

$$
f(n) \leq c \cdot|g(n)|
$$

Inner product of $2 n$-vectors:

- n multiplications
- ($n-1$) additions
$\rightarrow 2 n-1$ operations

$$
2 n-1=O(n)
$$

- Simplest algorithm:
- for each of the n^{2} entries $c_{i j}$
- compute the inner product

$$
c_{i j}=r_{i}^{A} c_{j}^{B}
$$

Complexity of Matrix Multiplication

Often we are not interested in the exact number of computations.
\rightarrow "Big-oh" notation
" f has order of at most g ": $f(n)=O(g(n))$

IF
Exist a positive constant c, such that for sufficiently large n

$$
f(n) \leq c \cdot|g(n)|
$$

Inner product of $2 n$-vectors:

- n multiplications
- ($n-1$) additions
$\rightarrow 2 n-1$ operations

$$
2 n-1=O(n)
$$

- Simplest algorithm:
- for each of the n^{2} entries $c_{i j}$
- compute the inner product $c_{i j}=r_{i}^{A} c_{j}^{B}$

Complexity of Matrix Multiplication

Often we are not interested in the exact number of computations.
\rightarrow "Big-oh" notation
" f has order of at most g ": $f(n)=O(g(n))$

IF
Exist a positive constant c, such that for sufficiently large n

$$
f(n) \leq c \cdot|g(n)|
$$

Inner product of $2 n$-vectors:

- n multiplications
- ($n-1$) additions
$\rightarrow 2 n-1$ operations

$$
2 n-1=O(n)
$$

- Simplest algorithm:
- for each of the n^{2} entries $c_{i j}$
- compute the inner product $c_{i j}=r_{i}^{A} c_{j}^{B}$

Complexity of simplest algorithm?
$O\left(n^{3}\right)$

Practical Time Measuring

- Theoretic analysis is useful to predict run-time.
- But in order to figure out where in a complex program the time is spend
\rightarrow measuring usually more informative
- 'cputime'

```
octave:> [TOTAL, USER, SYSTEM] = cputime ()
TOTAL = 0.44003
USER = 0.34802
SYSTEM = 0.092005
octave:> inv(rand(50));
octave:> [TOTAL2, USER2, SYSTEM2] = cputime ()
TOTAL2 = 0.50003
USER2 = 0.38402
SYSTEM2 = 0.11601
octave:> USER2 - USER
ans = 0.036003
```


Solving Linear Systems \& LU factorization

Easy cases: Diagonal Matrices

- In case of a diagonal matrix A, the system is easy!

$$
\left[\begin{array}{ccc}
a_{11} & 0 & 0 \\
0 & a_{22} & 0 \\
0 & 0 & a_{33}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]
$$

Easy cases: Diagonal Matrices

- In case of a diagonal matrix A, the system is easy!

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
a_{11} & 0 & 0 \\
0 & a_{22} & 0 \\
0 & 0 & a_{33}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]} \\
& x_{1}=c_{1} / a_{11} \\
& x_{2}=c_{2} / a_{22} \\
& x_{3}=c_{3} / a_{33}
\end{aligned}
$$

Easy cases: Diagonal Matrices

- In case of a diagonal matrix A, the system is easy!

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
a_{11} & 0 & 0 \\
0 & a_{22} & 0 \\
0 & 0 & a_{33}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]} \\
& \begin{array}{l}
x_{1}=c_{1} / a_{11} \\
x_{2}=c_{2} / a_{22} \\
x_{3}=c_{3} / a_{33}
\end{array} \quad A^{-1}=\left[\begin{array}{ccc}
1 / a_{11} & 0 & 0 \\
0 & 1 / a_{22} & 0 \\
0 & 0 & 1 / a_{33}
\end{array}\right]
\end{aligned}
$$

Easy cases: Triangular Matrices

- Triangular systems are also is easy

$$
\begin{aligned}
& {\left[\begin{array}{lll}
3 & 0 & 0 \\
6 & 4 & 0 \\
2 & 4 & 5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
11 \\
12 \\
-5
\end{array}\right]} \\
& {\left[\begin{array}{lll}
6 & 4 & 0
\end{array}\right]\left[\begin{array}{l}
5.5 \\
x_{2} \\
x_{3}
\end{array}\right]=12} \\
& 33+4 x_{2}=12 \\
& x_{2}=(12-33) / 4=3.75
\end{aligned}
$$

Easy cases: Triangular Matrices

- Triangular systems are also is easy

$$
\begin{aligned}
& {\left[\begin{array}{lll}
3 & 0 & 0 \\
6 & 4 & 0 \\
2 & 4 & 5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
11 \\
12 \\
-5
\end{array}\right] \quad \begin{array}{l}
\text { Book (5.9) expresses } \\
\text { this in } 1 \text { line: } \\
x_{2}=\frac{1}{4}(12-(6 * 5.5)) \\
{\left[\begin{array}{lll}
6 & 4 & 0
\end{array}\right]\left[\begin{array}{c}
5.5 \\
x_{2} \\
x_{3}
\end{array}\right]=12} \\
33+4 \mathrm{x}_{2}=12 \\
x_{2}=(12-33) / 4=3.75
\end{array} . \quad x_{1}=5.5} \\
& x_{2}
\end{aligned}
$$

Easy cases: Triangular Matrices

- Triangular systems are also is easy

$$
\begin{aligned}
& {\left[\begin{array}{lll}
3 & 0 & 0 \\
6 & 4 & 0 \\
2 & 4 & 5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
11 \\
12 \\
-5
\end{array}\right]} \\
& {\left[\begin{array}{lll}
2 & 4 & 5
\end{array}\right]\left[\begin{array}{c}
5.5 \\
3.75 \\
x_{3}
\end{array}\right]=-5} \\
& 26+5 x_{3}=-5 \\
& x_{3}=(-5-26) / 5=-6.2
\end{aligned}
$$

Easy cases: Triangular Matrices

- Triangular systems are also is easy

$$
\begin{aligned}
& {\left[\begin{array}{lll}
3 & 0 & 0 \\
6 & 4 & 0 \\
2 & 4 & 5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
11 \\
12 \\
-5
\end{array}\right]} \\
& {\left[\begin{array}{lll}
2 & 4 & 5
\end{array}\right]\left[\begin{array}{c}
5.5 \\
3.75 \\
x_{3}
\end{array}\right]=-5} \\
& 26+5 x_{3}=-5 \\
& x_{3}=(-5-26) / 5=-6.2
\end{aligned}
$$

called
'forward substitution'

Easy cases: Triangular Matrices

- Upper triangular matrices work the same.
- but start at the bottom
- 'backward substitution'
- Now basic idea: use these simple case to solve general linear systems!
- LU factorization:
- first decompose a matrix A in L, U
- then use that to solve the original system

LU factorization

- We want to solve $A x=b$
- If $A=L U$ we get...

LU factorization

- We want to solve $A x=b$
- If $A=L U$ we get...

$$
\begin{gathered}
A x=b \\
L U x=b \\
L(U x)=b
\end{gathered}
$$

LU factorization

- We want to solve

$$
A x=b
$$

- If $A=L U$ we get...

$$
\begin{array}{cl}
A x=b \\
L U x=b \\
L(U x)=b
\end{array} \quad \xrightarrow{\text { define: }} \begin{aligned}
& U x \equiv y
\end{aligned} L y=b
$$

LU factorization

- We want to solve

$$
A x=b
$$

- If $A=L U$ we get...

$$
\begin{array}{cc}
\begin{array}{c}
A x=b \\
L U x=b \\
L(U x)=b
\end{array} & \begin{array}{c}
\text { define: } \\
U x \equiv y
\end{array} \\
\text { solve } & L y=b \\
\\
y & \\
\hline
\end{array}
$$

LU factorization

- We want to solve $A x=b$
- If $A=L U$ we get...

$$
\begin{array}{cc}
\begin{array}{c}
A x=b \\
L U x=b \\
L(U x)=b
\end{array} & \begin{array}{c}
\text { define: } \\
U x \equiv y
\end{array} \\
\text { solve } \\
& L y=b \\
y \longrightarrow U x=y
\end{array}
$$

LU factorization

- We want to solve $A x=b$
- If $A=L U$
we get...

$$
\begin{array}{cc}
\begin{array}{c}
A x=b \\
L U x=b \\
L(U x)=b
\end{array} & \begin{array}{c}
\text { define: } \\
U x \equiv y
\end{array} \\
\text { solve } \\
& L y=b \\
y \longrightarrow U x=y \xrightarrow{\text { solve }} \longrightarrow
\end{array}
$$

LU factorization

- How to compute L,U?

$$
\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]=\left[\begin{array}{cc}
l_{11} & 0 \\
l_{21} & l_{22}
\end{array}\right]\left[\begin{array}{cc}
u_{11} & u_{12} \\
0 & u_{22}
\end{array}\right]
$$

- "Gauss factorization"
" many ways to chose L, U... \rightarrow arbitrary assignment

$$
\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
l_{21} & 1
\end{array}\right]\left[\begin{array}{cc}
u_{11} & u_{12} \\
0 & u_{22}
\end{array}\right]
$$

- Now solve the resulting systems of equations
$\rightarrow \mathrm{u}_{11}=\mathrm{a}_{11}$
$\rightarrow \mathrm{u}_{12}=\mathrm{a}_{12}$, etc.
- see QSG.

Homework Reading

- Recap:
- CH1: 1.2, 1.5.2, 1.6.
- LU factorization p. 129-142
- don't worry if you don't get all the examples
- Preparation for next time:
- CH3: p. 75--81, 93--103 (sec. 3.5 is optional)

