

Scientific Computing
Maastricht Science Program

Week 2

Frans Oliehoek
<frans.oliehoek@maastrichtuniversity.nl>

Recap

 What is scientific programming?
 Programming

 Arithmetic, IF, conditions, WHILE, FOR
 Matlab Cheat Sheet

 General form of linear equations
 Finding the zeros of non-linear equations

 bisection
 Newton

a0+a1 x1+a2 x2+...=0

This Lecture

 A very short introduction linear algebra
 Vectors & Matrices in Matlab
 LU factorization

 Floating Point Numbers
 Computation

 Computation Errors
 Computational Costs

A Very Short Introduction to
Linear Algebra

Linear Algebra (LA)

 Linear Algebra deals with linear functions
 You know what that is!
 but higher dimensions Rn→ Rm

 I can only give a very brief introduction
 covering only basic things

 Please:
 get a linear algebra book, open it!
 Watch some video lectures.

 E.g., the first couple at:

http://web.mit.edu/18.06/www/videos.shtml

Motivation

 LA is the basis of many methods in science
 For us:

 Important to solve systems of linear equations

 Arise in many problems, e.g.:
 Identifying gas mixture from peaks in spectrum
 fitting a line to data. (Next week)

a1 x1+a2 x2+...=c

a11 x1+a12 x2+...+a1n xn=c1

a21 x1+a22 x2+...+a2n xn=c2

...
am1 x1+am2 x2+...+amn xn=cm

Motivation

 LA is the basis of many methods in science
 For us:

 Important to solve systems of linear equations

 Arise in many problems, e.g.:
 Identifying gas mixture from peaks in spectrum
 fitting a line to data. (Next week)

a1 x1+a2 x2+...=c

a11 x1+a12 x2+...+a1n xn=c1

a21 x1+a22 x2+...+a2n xn=c2

...
am1 x1+am2 x2+...+amn xn=cm

● xj - the amount of gas of type j
● aij - how much a gas of type j

 contributes to wavelength i
● ci - the height of the peak of

 wavelength i

Linear System of Equations

 Example

 Infinitely many, 1 or no solution

y

x

y=0.5x+1
y=2x−3

Matrices

 A matrix with
 m rows,
 n columns

is a collection of numbers
 represented as a table

 A vector is a matrix that is
 1 row (row vector), or
 1 column (column vector)

A=[3 −2 6
5 2 −8]

B=[
5 54 6
75 24 81
25 5 435]
v= [3 −2 6]

w=[
5
75
25]

Matrices

 A matrix with
 m rows,
 n columns

is a collection of numbers
 represented as a table

 A vector is a matrix that is
 1 row (row vector), or
 1 column (column vector)

A=[3 −2 6
5 2 −8]

B=[
5 54 6
75 24 81
25 5 435]
v= [3 −2 6]

w=[
5
75
25]

octave:1> A = [3, -2, 6; 5, 2, -8]
A =

 3 -2 6
 5 2 -8

octave:2> w = [5;75;25]
w =

 5
 75
 25

Matrices

 A matrix with
 m rows,
 n columns

is a collection of numbers
 represented as a table

 A vector is a matrix that is
 1 row (row vector), or
 1 column (column vector)

A=[3 −2 6
5 2 −8]

B=[
5 54 6
75 24 81
25 5 435]
v= [3 −2 6]

w=[
5
75
25]

octave:1> A = [3, -2, 6; 5, 2, -8]
A =

 3 -2 6
 5 2 -8

octave:2> w = [5;75;25]
w =

 5
 75
 25

octave:3> a1 = [4:8]
a1 =

 4 5 6 7 8

octave:4> a2 = [4:2:8]
a2 =

 4 6 8

Some Special Matrices

 Square matrix: m=n
 Identity matrix - 'eye(3)'
 Zero matrix – 'zeros(m,n)'

 Types: diagonal, triangular (upper & lower)

 '*' denotes any number

I=[
1 0 0
0 1 0
0 0 1]

D=[
∗ 0 0
0 ∗ 0
0 0 ∗] TU=[

∗ ∗ ∗
0 ∗ ∗
0 0 ∗] TL=[∗ 0 0

∗ ∗ 0
∗ ∗ ∗

]

Operations on Vectors - 1

 We can perform operations on them!
 First: vectors. Next: generalization to matrices.

 Transpose: convert row ↔ column vector

w=[
5
75
25] wT

=[5 75 25]

v= [3 −2 6] vT=[
3

−2
6]

Operations on Vectors - 1

 We can perform operations on them!
 First: vectors. Next: generalization to matrices.

 Transpose: convert row ↔ column vector

w=[
5
75
25] wT

=[5 75 25]

v= [3 −2 6] vT=[
3

−2
6]

octave:9> a = [1,4,-2498, 12.4]
a =

 1.0000 4.0000 -2498.0000 12.4000

octave:10> a'
ans =

 1.0000
 4.0000
 -2498.0000
 12.4000

octave:11> a''
ans =

 1.0000 4.0000 -2498.0000 12.4000

Operations on Vectors - 2

 Sum
 Product with scalar

 Inner product (also: 'scalar product' or 'dot product')

[1 2 3]+ [10 20 30]=[11 22 33]

5∗[1 2 3]=[5 10 15]

(v ,w)=vTw=∑
k=1

n

vkwk

Operations on Vectors - 2

 Sum
 Product with scalar

 Inner product (also: 'scalar product' or 'dot product')

[1 2 3]+ [10 20 30]=[11 22 33]

5∗[1 2 3]=[5 10 15]

[1 2 3] [
10
20
30]=1∗10+2∗20+3∗30=10+40+90=140

(v ,w)=vTw=∑
k=1

n

vkwk

v=[
1
2
3] ,w=[

10
20
30]

Operations on Vectors - 2

 Sum
 Product with scalar

 Inner product (also: 'scalar product' or 'dot product')

[1 2 3]+ [10 20 30]=[11 22 33]

5∗[1 2 3]=[5 10 15]

[1 2 3] [
10
20
30]=1∗10+2∗20+3∗30=10+40+90=140

(v ,w)=vTw=∑
k=1

n

vkwk

v=[
1
2
3] ,w=[

10
20
30]

octave:4> a = [1;2;3]
a =

 1
 2
 3

octave:5> b = [4;5;6]
b =

 4
 5
 6

octave:6> dot(a,b)
ans = 32
octave:7> a'*b
ans = 32

Operations on Vectors - 2

 Sum
 Product with scalar

 Inner product (also: 'scalar product' or 'dot product')

 Outer product (also: 'vector product')

[1 2 3]+ [10 20 30]=[11 22 33]

5∗[1 2 3]=[5 10 15]

[1 2 3] [
10
20
30]=1∗10+2∗20+3∗30=10+40+90=140

(v ,w)=vTw=∑
k=1

n

vkwk

v=[
1
2
3] ,w=[

10
20
30]

Vector Indexing

 Retrieve parts of vectors

octave:12> a = [10, 20, 30, 40, 50, 60, 70]
a =

 10 20 30 40 50 60 70

octave:13> a(3)
ans = 30
octave:14> a([2,4])
ans =

 20 40

octave:16> a([4:end])
ans =

 40 50 60 70

Vector Indexing

 Retrieve parts of vectors

octave:12> a = [10, 20, 30, 40, 50, 60, 70]
a =

 10 20 30 40 50 60 70

octave:13> a(3)
ans = 30
octave:14> a([2,4])
ans =

 20 40

octave:16> a([4:end])
ans =

 40 50 60 70

indexing with
another vector

special 'end'
index

Operations on Matrices - 1

 Now matrices!
 Transpose:

 convert each row → column vector
(or convert each column→ row vector)

A=[
1 2 3

10 20 30
100 200 300] AT

=[
1 10 100
2 20 200
3 30 300]

Operations on Matrices - 1

 Now matrices!
 Transpose:

 convert each row → column vector
(or convert each column→ row vector)

A=[
1 2 3

10 20 30
100 200 300] AT

=[
1 10 100
2 20 200
3 30 300]

Operations on Matrices - 1

 Now matrices!
 Transpose:

 convert each row → column vector
(or convert each column→ row vector)

A=[
1 2 3

10 20 30
100 200 300] AT

=[
1 10 100
2 20 200
3 30 300]

Operations on Matrices - 1

 Now matrices!
 Transpose:

 convert each row → column vector
(or convert each column→ row vector)

A=[
1 2 3

10 20 30
100 200 300] AT

=[
1 10 100
2 20 200
3 30 300]

B=[1 2 3
10 20 30] BT

=[
1 10
2 20
3 30]

Operations on Matrices - 2

 Sum and product with scalar: pretty much the same

[1 2 3
4 5 6]+[10 20 30

40 50 60]=[11 22 33
44 55 66]

5∗[1 2 3
4 5 6]=[5 10 15

20 25 30]

Matrix Product

 Inner product → Matrix product

 C = m x n, A = m x p, B = p x n,
 Each entry of C is an inner product:

[
...

190
...]=[

10 20
30 40
50 60][1 2 3

4 5 6]

C=AB

cij=r i
A c j

B

Matrix Product

 Inner product → Matrix product

 C = m x n, A = m x p, B = p x n,
 Each entry of C is an inner product:

[
...

190
...]=[

10 20
30 40
50 60][1 2 3

4 5 6]

C=AB

cij=r i
A c j

B

octave:22> A = [10, 20; 30, 40; 50, 60]
A =

 10 20
 30 40
 50 60

octave:23> B = [1,2,3;4,5,6]
B =

 1 2 3
 4 5 6

octave:24> A*B
ans =

 90 120 150
 190 260 330
 290 400 510

Matrix Product

 Inner product → Matrix product

 C = m x n, A = m x p, B = p x n,
 Each entry of C is an inner product:

[
...

190
...]=[

10 20
30 40
50 60][1 2 3

4 5 6]

C=AB

cij=r i
A c j

B

octave:22> A = [10, 20; 30, 40; 50, 60]
A =

 10 20
 30 40
 50 60

octave:25> Btrans = B'
Btrans =

 1 4
 2 5
 3 6

octave:26> A*Btrans
error: operator *: nonconformant arguments (op1 is 3x2, op2 is 3x2)

Matrix size is
important

Matrix-Vector Product

 Matrix-vector product is just a (frequently occurring)
special case:

Ab=[
a11 ... a1n

...
am1 ... amn

][
b1

...
bn

]=[
c1

...
cm

]

Matrix-Vector Product

 Also represents a system of equations!

Ax=[
a11 ... a1n

...
am1 ... amn

][
x1

...
xn

]=[
c1

...
cm]

a11 x1+a12 x2+...+a1n xn=c1

a21 x1+a22 x2+...+a2n xn=c2

...
am1 x1+am2 x2+...+amn xn=cm

Matrix Inverse

 Matrix inverse
 a square matrix A has an inverse A-1, if
 A is called 'invertible'
 generalization of scalar inverse

 Why?
 Solution of linear system

of equations:

A−1 A=I

a−1a=
a
a
=1

A−1 A x=A−1b
A x=b

I x=A−1b
x=A−1b

A x=b

Matrix Inverse

 Matrix inverse
 a square matrix A has an inverse A-1, if
 A is called 'invertible'
 generalization of scalar inverse

 Special case: diagonal matrix

A−1 A=I

a−1a=
a
a
=1

A=[
a11 0 0
0 a22 0
0 0 a33

] A−1
=[

1 /a11 0 0
0 1/a22 0
0 0 1 /a33

]

Existence of Matrix Inverse

 Inverse does exist for every square matrix...
 (there is a more general procedure, but can get

divisions by 0 when following it.)

 A-1 exists
↔ A is 'non singular'
↔ 'determinant' is not zero
↔ columns of A are linearly independent

 are linearly independent if

A−1=[
1/a11 0 0

0 1 /a22 0

0 0 1/a33
]

{v1, ... , vk}

a1 v1+...+ak vk=0 ⇒ a1=0,... , ak=0

Solving Linear Systems

 So how to solve a linear system?
 'inv'

 only for square matrices

 '\' (left division)
 careful! Will also find a

solution if none exists!

octave:9> A = rand(4);
octave:10> c = rand(4,1);
octave:11> inv(A)*c
ans =

 0.905965
 -0.032969
 0.109202
 0.430893

octave:12> A\c
ans =

 0.905965
 -0.032969
 0.109202
 0.430893

Floating Point Numbers

How are number represented?

 Matlab represents numbers using a floating point
representation

(−1)⋅(0.b1b2 ...b53)⋅2e

sign
mantissa
●53 bits - 253=9.0072e+15
●normalized: b

1
~= 0

 (unique representation)

Exponent
-1021< e < 1024

How are number represented?

 Matlab represents numbers using a floating point
representation

 Smallest
 normalized
 non-norm.

 Largest

(−1)⋅(0.b1b2 ...b53)⋅2e

sign
Exponent
-1021< e < 1024

(0.100 ...00)⋅2−1021
=2.2251e-308

(0.000 ...01)⋅2−1021
=4.9407e-324

(0.111...11)⋅21024
=1.7977e+308

mantissa
●53 bits - 253=9.0072e+15
●normalized: b

1
~= 0

 (unique representation)

Spacing between numbers

 Spacing for the largest numbers

 Spacing for smallest numbers 4.9407e-324

 “eps(n)” gives spacing around n
 eps(realmax), eps(0)

diff=(0.000...001)⋅21024
=1⋅2(1024−53)

=1.9958e+292

(0.000...001)⋅21024

(0.000...010)⋅21024

Round Off Errors

 set of floating point numbers F
 when real number x is replaced by number fl(x) in F

→ round off error

 Absolute error can be large: 0.5 *eps(realmax)

 However: relative error is bounded
 where

∣x−fl(x)∣
∣x∣

⩽
1
2
ϵ

ϵ=eps (1)=2.2204e-16

Computation

PP x pp

More on Errors

 Round off errors are only part of the story

PP x pp

More on Errors

 Round off errors are only part of the story

MP

x=∫
a

b

f (t)dt

PP x pp

More on Errors

 Round off errors are only part of the story

MP

x=∫
a

b

f (t)dt

NP

xn=∑
k

f (t k)Δk

PP x pp

More on Errors

 Round off errors are only part of the story

MP

x=∫
a

b

f (t)dt

NP

xn=∑
k

f (t k)Δk
computation x̂

PP x pp

More on Errors

 Round off errors are only part of the story

MP

x=∫
a

b

f (t)dt

NP

xn=∑
k

f (t k)Δk
computation x̂

modeling error

PP x pp

More on Errors

 Round off errors are only part of the story

MP

x=∫
a

b

f (t)dt

NP

xn=∑
k

f (t k)Δk
computation x̂

modeling error

truncation error

propagated round
off errors

PP x pp

More on Errors

 Round off errors are only part of the story

MP

x=∫
a

b

f (t)dt

NP

xn=∑
k

f (t k)Δk
computation x̂

modeling error

truncation error

propagated round
off errors

Scientific computing only takes
into account the

Computational error

= truncation error +
propagated round off errors

Convergence of
Numerical Methods

 Discretization parameter
 e.g. `bin size'

 A method is convergent IFF

 Order of convergence
 how fast the error reduces (when h decreases)

xn=∑
k

f (tk)Δk

Δk

h

h→0 ⇒ ec→0

ec<C⋅hp

Iterative order

 Iterative order of convergence
 says something about iterative methods
 E.g., we said Newton's method is “fast”

 iterative order is p:

 Newton is order 2

 In QSG:
 basically unrolling the recursive equation above

∣x(n+1)
−x∗

∣≤∣x(n)
−x∗

∣
p

∣e(n+1)
∣≤∣e(n)

∣
p

∣e(n)
∣≤ρ

np

e0

Computational Cost

 We discussed of how fast we approach an answer
 per iteration.

 Did not mention the cost of an iteration.

 Computational complexity gives a assessment of
the complexity of an algorithm.

 as a function of the size of the input.

Complexity of
Matrix Multiplication

 As an example consider matrix multiplication

 Simplest algorithm:

 for each of the n2 entries c
ij

 compute the inner product … ?

C=AB

[
...
... n×n ...
...]=[

...

... n×n ...

...][
...
... n×n ...
...]

Complexity of
Matrix Multiplication

 As an example consider matrix multiplication

 Simplest algorithm:

 for each of the n2 entries c
ij

 compute the inner product

C=AB

[
...
... n×n ...
...]=[

...

... n×n ...

...][
...
... n×n ...
...]

cij=r i
A c j

B

Complexity of
Matrix Multiplication

 As an example consider matrix multiplication

 Simplest algorithm:

 for each of the n2 entries c
ij

 compute the inner product

C=AB

[
...
... n×n ...
...]=[

...

... n×n ...

...][
...
... n×n ...
...]

cij=r i
A c j

B

Inner product of 2 n-vectors:

- n multiplications
- (n-1) additions

→ 2n-1 operations

Complexity of
Matrix Multiplication

 As an example consider matrix multiplication

 Simplest algorithm:

 for each of the n2 entries c
ij

 compute the inner product

C=AB

[
...
... n×n ...
...]=[

...

... n×n ...

...][
...
... n×n ...
...]

cij=r i
A c j

B

Inner product of 2 n-vectors:

- n multiplications
- (n-1) additions

→ 2n-1 operations

Often we are not interested in the exact
number of computations.

→ “Big-oh” notation

“f has order of at most g”:

IF
Exist a positive constant c, such that for sufficiently large n

f (n)=O(g(n))

f (n)≤c⋅∣g(n)∣

Complexity of
Matrix Multiplication

 As an example consider matrix multiplication

 Simplest algorithm:

 for each of the n2 entries c
ij

 compute the inner product

C=AB

[
...
... n×n ...
...]=[

...

... n×n ...

...][
...
... n×n ...
...]

Inner product of 2 n-vectors:

- n multiplications
- (n-1) additions

→ 2n-1 operations

cij=r i
A c j

B

2n−1=O(n)

Often we are not interested in the exact
number of computations.

→ “Big-oh” notation

“f has order of at most g”:

IF
Exist a positive constant c, such that for sufficiently large n

f (n)=O(g(n))

f (n)≤c⋅∣g(n)∣

Complexity of
Matrix Multiplication

 As an example consider matrix multiplication

 Simplest algorithm:

 for each of the n2 entries c
ij

 compute the inner product

C=AB

[
...
... n×n ...
...]=[

...

... n×n ...

...][
...
... n×n ...
...]

Inner product of 2 n-vectors:

- n multiplications
- (n-1) additions

→ 2n-1 operations

cij=r i
A c j

B

2n−1=O(n)

Complexity of
simplest algorithm?

Often we are not interested in the exact
number of computations.

→ “Big-oh” notation

“f has order of at most g”:

IF
Exist a positive constant c, such that for sufficiently large n

f (n)=O(g(n))

f (n)≤c⋅∣g(n)∣

Complexity of
Matrix Multiplication

 As an example consider matrix multiplication

 Simplest algorithm:

 for each of the n2 entries c
ij

 compute the inner product

C=AB

[
...
... n×n ...
...]=[

...

... n×n ...

...][
...
... n×n ...
...]

Inner product of 2 n-vectors:

- n multiplications
- (n-1) additions

→ 2n-1 operations

cij=r i
A c j

B

2n−1=O(n)

Often we are not interested in the exact
number of computations.

→ “Big-oh” notation

“f has order of at most g”:

IF
Exist a positive constant c, such that for sufficiently large n

f (n)=O(g(n))

f (n)≤c⋅∣g(n)∣

Complexity of
simplest algorithm?

O (n3
)

Practical Time Measuring

 Theoretic analysis is useful to predict run-time.
 But in order to figure out where in a complex program

the time is spend

→ measuring usually more informative

 'cputime'
octave:> [TOTAL, USER, SYSTEM] = cputime ()
TOTAL = 0.44003
USER = 0.34802
SYSTEM = 0.092005
octave:> inv(rand(50));
octave:> [TOTAL2, USER2, SYSTEM2] = cputime ()
TOTAL2 = 0.50003
USER2 = 0.38402
SYSTEM2 = 0.11601
octave:> USER2 - USER
ans = 0.036003

Solving Linear Systems & LU factorization

Easy cases: Diagonal Matrices

 In case of a diagonal matrix A, the system is easy!

[
a11 0 0
0 a22 0
0 0 a33

][
x1

x2

x3
]=[

c1

c2

c3
]

Easy cases: Diagonal Matrices

 In case of a diagonal matrix A, the system is easy!

[
a11 0 0
0 a22 0
0 0 a33

][
x1

x2

x3
]=[

c1

c2

c3
]

x1=c1 /a11

x2=c2 /a22

x3=c3 /a33

Easy cases: Diagonal Matrices

 In case of a diagonal matrix A, the system is easy!

[
a11 0 0
0 a22 0
0 0 a33

][
x1

x2

x3
]=[

c1

c2

c3
]

x1=c1 /a11

x2=c2 /a22

x3=c3 /a33

A−1
=[

1 /a11 0 0
0 1/a22 0
0 0 1 /a33

]

Easy cases: Triangular Matrices

 Triangular systems are also is easy

[
3 0 0
6 4 0
2 4 5][

x1

x2

x3
]=[

11
12
−5]

x1=5.5
[6 4 0] [

5.5
x2

x3
]=12

33+4x2=12

x2=(12−33)/4=3.75

Easy cases: Triangular Matrices

 Triangular systems are also is easy

[
3 0 0
6 4 0
2 4 5][

x1

x2

x3
]=[

11
12
−5]

x1=5.5
[6 4 0] [

5.5
x2

x3
]=12

33+4x2=12

x2=(12−33)/4=3.75

Book (5.9) expresses
this in 1 line:

x2=
1
4
(12−(6∗5.5))

Easy cases: Triangular Matrices

 Triangular systems are also is easy

[
3 0 0
6 4 0
2 4 5][

x1

x2

x3
]=[

11
12
−5]

x1=5.5
x2=3.75

[2 4 5] [
5.5
3.75
x3

]=−5

26+5x3=−5

x3=(−5−26)/5=−6.2

Easy cases: Triangular Matrices

 Triangular systems are also is easy

[
3 0 0
6 4 0
2 4 5][

x1

x2

x3
]=[

11
12
−5]

x1=5.5
x2=3.75
x3=6.2

[2 4 5] [
5.5
3.75
x3

]=−5

26+5x3=−5

x3=(−5−26)/5=−6.2

called
'forward substitution'

Easy cases: Triangular Matrices

 Upper triangular matrices work the same.
 but start at the bottom
 'backward substitution'

 Now basic idea: use these simple case to solve
general linear systems!

 LU factorization:
 first decompose a matrix A in L, U
 then use that to solve the original system

(L)ower and (U)pper
diagonal

LU factorization

 We want to solve
 If

we get...

A x=b

A=LU find x

LU factorization

 We want to solve
 If

we get...

A x=b

A=LU

A x=b
LU x=b
L (U x)=b

LU factorization

 We want to solve
 If

we get...

A x=b

A=LU

U x≡ yA x=b
LU x=b
L (U x)=b

L y=b

define:

LU factorization

 We want to solve
 If

we get...

A x=b

A=LU

U x≡ yA x=b
LU x=b
L (U x)=b

L y=b

define:

solve

y

LU factorization

 We want to solve
 If

we get...

A x=b

A=LU

U x≡ yA x=b
LU x=b
L (U x)=b

L y=b

define:

solve

y U x= y

LU factorization

 We want to solve
 If

we get...

A x=b

A=LU

U x≡ yA x=b
LU x=b
L (U x)=b

L y=b

define:

solve

y U x= y
solve

x

LU factorization

 How to compute L,U?

 “Gauss factorization”
 many ways to chose L, U... → arbitrary assignment

 Now solve the resulting systems of equations
→ u

11
=a

11

→ u
12

=a
12

 , etc.

 see QSG.

[a11 a12

a21 a22
]=[l11 0

l21 l22
][u11 u12

0 u22
]

[a11 a12

a21 a22
]=[1 0

l21 1][u11 u12

0 u22
]

Homework Reading
 Recap:

 CH1: 1.2, 1.5.2, 1.6.
 LU factorization p. 129-142

 don't worry if you don't get all the examples

 Preparation for next time:
 CH3: p. 75--81, 93--103 (sec. 3.5 is optional)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75

