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Maastricht Science Program

Week 1
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Good Choice!

= Let me start: Congratulations!

= There Is virtually no branch of science that can do
without scientific computations...

= Exact science require a way of thinking that is closely
linked with math and programming

= But also: bear with me!
= There Is a lot to be learned.
= Different backgrounds.

= But don't worry: programming is not difficult.



Practicalities

Name:
Department:
Location:
Tel.:

About me Sl
Www :

Frans Oliehoek
DKE (RAI group)

SSK 39, room 2.001

+31 43 3883485
frans.oliehoek@maastrichtuniversity.nl
http://people.csail.mit.edu/fao/

= Computer Science / Al
= First time | give this course
- |let me know if things are unclear!

Book “QSG”:

= Scientific Computing with MATLAB and Octave. Alfio
Quarteroni, Fausto Saleri & Paola Gervasio. 3rd edition.

'teaching':
http://people.csail.mit.edu/fao/

Course manual on Eleum and my website.
All information will be posted on my website under



Practicalities

Name: Frans Oliehoek
Department: DKE (RAI group)
Location: SSK 39, room 2.001

Tel.: +31 43 3883485

Examlnatlon etC Email: frans.oliehoek@maastrichtuniversity.nl

WWW: http://people.csail.mit.edu/fao/

Attendance

Grades based on:
= A small report at the end of each lab

= A (short) closed book test during the last session

Work in pairs
= |inear algebra students not together



More Practicalities

Schedule:

2012-04-18 (Wed) -MSC Lecture Hall 1.009 0900-1100
-DKE computer room 1.001 1100-1600

4 2012-05-04 (Fri) -MSC Lecture Hall 1.009 0900-1100
-DKE computer room 1.001 1100-1600

6 2012-05-16 (wed) -MSC Lecture Hall 1.001 0900-1100
-DKE computer room 1.001 1100-1600




Scientific Computing - Goals

= Goals

= familiar with the concepts of programming

= get accustomed with high-level languages like Matlab
and Mathematica.

= Provide an overview of some of the issues and
problems that arise in scientific computation:

= (non-)linear systems, numerical and symbolic integration,
differential equations and simulation.



Scientific Computing: What is it about?

= Computing: we will learn to '‘program’
= Really: make the computer do what you want.

= |n this course we will work with

= Matlab, or
= (free software) Octave.

= Scientific:
= We will deal with scientific problems.
= Mostly based on calculus and linear algebra.



Scientific Computing - Quiz

= Pop quiz:

Who has programming experience?

Who has experience with Matlab or Octave? Who with
Mathematica?

W
W
W

N0
N0

N0

Knows what a matrix 1s?
Knows what a matrix inverse 1S?

KNows how to solve a system of linear equations?



Recommended further reading

Recommended reading.

MATLAB
= |Introduction to MATLAB. Delores M. Etter. 2nd ed.
Linear Algebra

= Linear Algebra and Its Applications. David C. Lay. 4th ed.
= Linear Algebra. Gilbert Strang

Further exploring numerical methods

= Numerical Methods. An introduction to Scientific Computing
Using MATLAB. Peter Linz, Richard L.C. Wang.



Why Scientific Computing?

= Why use computers?

= Why program yourself?



Why Scientific Computing?

= Why use computers?
= Only very simple models can be solved by hand.

= Usually: there is no closed form solution.
= E.g., solving a polynomial equation of degree > 4
= But can get numerical approximations!

= Why program yourself?

= Science: if somebody programmed it, it has already
been done!

= |[ndustry:

= to use it, need to understand what a program does and how,
= somebody needs to develop these programs (often internally)!



Alright, so what is programming?

= Programming is about making a machine (computer)
do what you want it to.

= difference with a oven or other machines?



Alright, so what is programming?

= Programming is about making a machine (computer)
do what you want it to.

= difference with a oven or other machines?
= — a computer can do many tasks
and programming let's you do that!
= We focus on scientific computations.

= Example: how many km is 1 light year?



How many km in a light year?

= 299792458 * 365 * 24 * 60 * 60 / 1000 = 9.4543e+12

= These computations become difficult to interpret!
= How about if we could name parts of this computation?



How many km in a light year?

= 299792458 * 365 * 24 * 60 * 60 / 1000 = 9.4543e+12

= These computations become difficult to interpret!
= How about if we could name parts of this computation?

speed_of_light = 299792458
secs_per_year = 365 * 24 * 60 * 60

m_per_lyear = speed_of_light * secs_per_year
km_per_lyear = m_per_year / 1000

= meaning of '='
= the names are called 'variables’



Our first Matlab/Octave code!

= This Is our first Matlab code!

speed_of_light = 299792458
secs_per_year = 365 * 24 * 60 * 60
m_per_lyear = speed_of_light * secs_per_year

km_per_lyear = m_per_year / 1000

= (Demonstration)

= Matlab (Octave) is like a
convenient calculator.




Arithmetic

+ -

*

sqrt
log, log10
mod

= E.Q.:

Operators

addition, subtraction
multiplication, division

power
sguare root
logarithms
modulo

octave:4> 1982980 / 2°78

ans 7746.0

octave:5> mod(5,4)
ans

— all this is summarized in QSG
— Google: 'matlab cheat sheet'

A Matlab Cheat-sheet (MIT 18.06, Fall 2007)
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= You may want to repeat a list of instructions.

= Just create a plain text file with .m extension

% a_script.m
% A first matlab script

%

% <- note that these percentages

% indicate comments

radius

2.4

% Note 'pi'

circum

height

radius * 2 * pi

volume / circum

- What is the output?




= You may want to repeat a list of instructions.

= Just create a plain text file with .m extension

% fixed_script.m

radius 2.4
volume 48

% Note 'pi’
circum = radius * 2 * pi

height = volume / circum

— Volume was not
defined!

- Alternative: set
volume before calling
the script.

So, perform:
> volume =48
> a_script




Matlab Path

= A script will only run when it is in a place where matlab
can find It.

= Matlab looks in a list of directories called 'path'’
= path

= see “help path”

= Normally: the current working directory is in the path
= pwd
= cd



Suppressing/Showing Output

= we may not want to show all intermediate results
= use '’}
= show some particular things using 'disp'

% fixed_script.m

radius = 2.4; %<- surpress output!
circum = radius * 2 * pi;
volume = 48;

height volume / circum;
disp('height 1is');
disp(height);




Conditions: If

= Sometimes you want to do things only is some cases.
= Called 'branching’' and is a very important capability.

% longest_side.m

%

% this script determines the longest
% side of a rectangle. It expects 2
% variables 'length_x' and 'length_y'
% to be defined.

% assume y 1s longest side:
longest_side = length_y;

if length_x > length_y
longest_side = length_x;
end

disp(longest_side);




= The previous way of writing Is not the most intuitive...

= the default assumption is awkward
= use “else”

% longest_side_else.m

%

% this script determines the longest
% side of a rectangle. It expects 2
% variables 'length_x' and 'length_y'
% to be defined.

if length_x > length_y
longest_side = length_x;
else
longest_side = length_y;
end
disp(longest_side);




If...elself...else...

= More generally, we test multiple conditions

if CONDITION1

elseif CONDITION2

elseif CONDITIONS

else

o .




Conditions

= S0 exactly what are the CONDITIONs?

= expressions that evaluate to ‘true' or 'false’

= 'false' defined as 'O’
truthvalue = 0

= 'true' Is any non-zero value if truthvalue
disp('true')

else
disp('false')
end

= This code can be used to test any truth value
expression.



Conditions - 2

= Can make more complex expressions by '‘operators'

Relational operators:
« A<B,
- A>B

A<=B

A>=B

A==B

A~=B

Logical operators:
e ~A
- A|B,
- A&B

'short-circuit'
« Al B
e A&&B

octave> ~1
ans = 0
octave> 1 & 0
ans = 0

octave> -1 | O
ans = 1
octave> 0 | O
ans = 0




Do it again: loops

= Another important capability: repeating instructions.
= |.e., performing 'loops'.

= Matlab has 2 types of loops:

= 'for' when you know how often you need to loop
In advance.

= 'while' when you don't, but only have a stopping
criteria.



For loop

= For loops: used when you know how often you need to
loop.

%count to 10
for 1 = [1:10]
disp(1)

end

%count down:
for 1 = [10:1]
disp(1)

end




= For loops: used when you know how often you need to
loop.

%count to 10
for 1 = [1:10]
disp(1)

end

%count down:
start = 10
for 1 = [start:1]

disp(1)

octave:12> [1:10]
ans =

= (almost) everything in matlab is an array or matrix!



While loop

= Sometimes it is hard to know how often we loop
- use 'while'

% strange count
= 14209

1 =1;

while(n > 1)
disp(1)
if n%

else
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= Sometimes it is hard to know hde

— use 'while'

% strange count
n = 14209

1 =1;

while(n > 1)
disp(1)
if n%

else




Reusing code

= A very important concept: code reuse

= All these scripts are nice, but...
= writing scripts for complex tasks is a lot of work.
= often there Is functionality we want to reuse!

= This Is where 'functions' come In...

= a piece of code that performs a specific task
= has input and output.



Using Matlab/Octace Functions

= Matlab has many built in functions.
= We already saw a few: 'mod', 'sqrt'

= Calling a function:.  FUNCTIONNAME( ..., ..., ... )
= 'mod(3,2)'
= 'pi()' or just 'pI'
= [m, iIndex] = max( [4, 2, 6, 3])



Writing your own Functions

= You can write your own function very simply

function output = FunctionName(input1, input2)

output = ..

= Need to name the file 'FunctionName.m'



Writing your own Functions

= You can write your own function very simply

function longest = LongestSide(length_x, length_y)

if length_x > length_y

longest = length_x;
else

longest = length_y;
end

= Need to name the file 'LongestSide.m’
= Capitalization of 'LongestSide' is a convention
= (no rule)



Writing your own Functions

= You can write your own function very simply

function longest = LongestSide(length_x, length_y)

if length_x > length_y

longest = length_x;
else

longest = length_y;
end

= Need to name the file 'Longe

= Capitalization of 'LongestSid@aEiTHEENELN{NSS EEERED

ans = 5

= (no rule)



Writing your own Functions

= Document your functions!

function longest LongestSide(length_x, length_y)
%function longest LongestSide(length_x, length_y)
%

% this is a special comment block: it is shown when
% calling 'help LongestSide’

if length_x > length_y
longest = length_x;
else
longest = length_y;
end

= For yourself and others.



Anonymous Functions

= Small functions can also be defined in the matlab
environment.

= inlab
= even more ways in book

octave:35> MyAddFunction = @(x,y) X+y
MyAddFunction =

@(x, y) x +y

octave:36> MyAddFunction(2,4)
ans = 6




Recap Programming

= Congrats: Now you know the most important
constructs of programming!

= Let's summarize:

= — Advanced calculator

= Variables: names for intermediate parts of computation.
= Arithmetic operators

= Scripts

= Branching: if ... else ..., conditions

= Loops: for, while

= Functions

« full blown programming.



A First Bit of Scientific Programming

= Now that you know the most important constructs of
programming...

...we can start!
= with a scientific programming problem:

Solving non-linear equations



What are (non-)linear equations?

= linear equations?



What are (non-)linear equations?

= linear equations

3x+7y=4
X—3y=4+z
(x—3y)/z=2

'‘General Form'

a,+a,;x,;+a,x,+...=0

Straight line
(for 2 variables)




What are (non-)linear equations?

= linear equations

3x+7y=4
X—3y=4+z
(x—3y)/z=2

= non-linear equations?

'‘General Form'

a,+a,;x,;+a,x,+...=0




What are (non-)linear equations?

= linear equations

3x+7y=4
x—3y=4+z
(x—3y)/z=2

= non-linear equations:

'‘General Form'

a,+a,;x,;+a,x,+...=0

All equations that are not linear!

x°=4
Xy =2
y=vx




Finding the 'roots’

= Many problems can be reformulated as finding the
'roots' or 'zeros' of a function.

= Whatisln6 ?



Finding the 'roots’

= Many problems can be reformulated as finding the
'roots' or 'zeros' of a function.

= Whatisln6 ? y

e =6
e —6=0 7 X




Numerical Algorithms

= To solve this problem we will now discuss our first
numerical method, or numerical algorithm.

= Roughly:
= algorithm = cook-book recipe

= an algorithm can be implemented
(converted to code In a programming language).



The Bisection Method

= Suppose we want to find the roots of this function?

y




The Bisection Method

= Search the interval [a,b] for the crossing point!

y




The Bisection Method

= Halve the interval

y

a b
= Then select the interval where the crossing occurs



The Bisection Method

= Repeat, until the interval is small enough

y




The Bisection Method

= Repeat, until the interval is small enough

y




The Bisection Method

= Repeat, until the interval is small enough

y




The Bisection Method

= Repeat, until the interval is small enough

y




The Bisection Method

= Conditions to apply the Bisection Method:
= fis continuous
= Interval [a,b]

= f(a) Is positive and f(b) is negative or vice versa

— contains an a zero
(‘theorem of zeros of continuous functions')

= check with f(a)f(b) <0

= To find a good initial interval: e.g., plot the function



The Bisection Method

= Pros

= Simple conceptually

= Only need information of sign of the function
= Works in many settings

= Cons
= Even needs many iterations on a linear function!



Newton's Method

= Newton's method is a different approach
= overcomes some problems (but has its own)

/




Newton's Method

= Start with an arbitrary point.




Newton's Method

= Compute next point via the derivative f'




Newton's Method

= etc.




Newton's Method

= etc.




Newton's Method

= etc.




Newton's Method

= until difference with previous point small enough.




Newton's Method

= Algorithm:
- Start with an arbitrary point x"” .
= Compute the next point XUt — ) _ f’(x )

- repeat while |x*""—x"|<e



Newton's Method

= Pros
= From some point on, it is fast!

= converges 'quadratically’
= error of next error is square of previous one.

= Cons
= Need more information: function derivative
= Needs to be initialized sufficiently close to 0
- Problem when f'(x")=0




Homework Reading

Recap:

= H1:1.1,1.5-1.5.1, 1.7,

= H2: p. 41--48 (that is including 48).
Preparation for next time:

= H1:1.2,15.2,1.6.

= H3: p. 75--81, 93--103 (sec. 3.5 is optional)

Read chap.l sequentially
= skipping 1.3 and 1.5.3.
When reading for preparation:

= skip things that are not clear!
— Ask them in class.



Let's get started

= Lab assignments are posted on my website.
http://people.csail.mit.edu/fao

= Reminder: bring the head phones!


http://people.csail.mit.edu/fao
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