Scientific Computing
Maastricht Science Program

Week 1

Frans Oliehoek
<frans.oliehoek@maastrichtuniversity.nl>

Good Choice!

= Let me start: Congratulations!

= There Is virtually no branch of science that can do
without scientific computations...

= Exact science require a way of thinking that is closely
linked with math and programming

= But also: bear with me!
= There Is a lot to be learned.
= Different backgrounds.

= But don't worry: programming is not difficult.

Practicalities

Name:
Department:
Location:
Tel.:

About me Sl
Www :

Frans Oliehoek
DKE (RAI group)

SSK 39, room 2.001

+31 43 3883485
frans.oliehoek@maastrichtuniversity.nl
http://people.csail.mit.edu/fao/

= Computer Science / Al
= First time | give this course
- |let me know if things are unclear!

Book “QSG”:

= Scientific Computing with MATLAB and Octave. Alfio
Quarteroni, Fausto Saleri & Paola Gervasio. 3rd edition.

'teaching':
http://people.csail.mit.edu/fao/

Course manual on Eleum and my website.
All information will be posted on my website under

Practicalities

Name: Frans Oliehoek
Department: DKE (RAI group)
Location: SSK 39, room 2.001

Tel.: +31 43 3883485

Examlnatlon etC Email: frans.oliehoek@maastrichtuniversity.nl

WWW: http://people.csail.mit.edu/fao/

Attendance

Grades based on:
= A small report at the end of each lab

= A (short) closed book test during the last session

Work in pairs
= |inear algebra students not together

More Practicalities

Schedule:

2012-04-18 (Wed) -MSC Lecture Hall 1.009 0900-1100
-DKE computer room 1.001 1100-1600

4 2012-05-04 (Fri) -MSC Lecture Hall 1.009 0900-1100
-DKE computer room 1.001 1100-1600

6 2012-05-16 (wed) -MSC Lecture Hall 1.001 0900-1100
-DKE computer room 1.001 1100-1600

Scientific Computing - Goals

= Goals

= familiar with the concepts of programming

= get accustomed with high-level languages like Matlab
and Mathematica.

= Provide an overview of some of the issues and
problems that arise in scientific computation:

= (non-)linear systems, numerical and symbolic integration,
differential equations and simulation.

Scientific Computing: What is it about?

= Computing: we will learn to '‘program’
= Really: make the computer do what you want.

= |n this course we will work with

= Matlab, or
= (free software) Octave.

= Scientific:
= We will deal with scientific problems.
= Mostly based on calculus and linear algebra.

Scientific Computing - Quiz

= Pop quiz:

Who has programming experience?

Who has experience with Matlab or Octave? Who with
Mathematica?

W
W
W

N0
N0

N0

Knows what a matrix 1s?
Knows what a matrix inverse 1S?

KNows how to solve a system of linear equations?

Recommended further reading

Recommended reading.

MATLAB
= |Introduction to MATLAB. Delores M. Etter. 2nd ed.
Linear Algebra

= Linear Algebra and Its Applications. David C. Lay. 4th ed.
= Linear Algebra. Gilbert Strang

Further exploring numerical methods

= Numerical Methods. An introduction to Scientific Computing
Using MATLAB. Peter Linz, Richard L.C. Wang.

Why Scientific Computing?

= Why use computers?

= Why program yourself?

Why Scientific Computing?

= Why use computers?
= Only very simple models can be solved by hand.

= Usually: there is no closed form solution.
= E.g., solving a polynomial equation of degree > 4
= But can get numerical approximations!

= Why program yourself?

= Science: if somebody programmed it, it has already
been done!

= |[ndustry:

= to use it, need to understand what a program does and how,
= somebody needs to develop these programs (often internally)!

Alright, so what is programming?

= Programming is about making a machine (computer)
do what you want it to.

= difference with a oven or other machines?

Alright, so what is programming?

= Programming is about making a machine (computer)
do what you want it to.

= difference with a oven or other machines?
= — a computer can do many tasks
and programming let's you do that!
= We focus on scientific computations.

= Example: how many km is 1 light year?

How many km in a light year?

= 299792458 * 365 * 24 * 60 * 60 / 1000 = 9.4543e+12

= These computations become difficult to interpret!
= How about if we could name parts of this computation?

How many km in a light year?

= 299792458 * 365 * 24 * 60 * 60 / 1000 = 9.4543e+12

= These computations become difficult to interpret!
= How about if we could name parts of this computation?

speed_of_light = 299792458
secs_per_year = 365 * 24 * 60 * 60

m_per_lyear = speed_of_light * secs_per_year
km_per_lyear = m_per_year / 1000

= meaning of '='
= the names are called 'variables’

Our first Matlab/Octave code!

= This Is our first Matlab code!

speed_of_light = 299792458
secs_per_year = 365 * 24 * 60 * 60
m_per_lyear = speed_of_light * secs_per_year

km_per_lyear = m_per_year / 1000

= (Demonstration)

= Matlab (Octave) is like a
convenient calculator.

Arithmetic

+ -

*

sqrt
log, log10
mod

= E.Q.:

Operators

addition, subtraction
multiplication, division

power
sguare root
logarithms
modulo

octave:4> 1982980 / 2°78

ans 7746.0

octave:5> mod(5,4)
ans

— all this is summarized in QSG
— Google: 'matlab cheat sheet'

A Matlab Cheat-sheet (MIT 18.06, Fall 2007)

mumm il vt
el o a g cred
doo command Chicnsive help on a etven ot

Defining/changing variahles:
efine variable x o be 3
sl o the Ix
. but d
atothe 3l colump-vecwor (1.2.3)
e 113);
¢ 3 matris with pows 1,2
hange « fio

o chinmd | HEom 5 o i

Arithmeltic and [unctions of numbers:
308, T4, 2-6 863 oliply, add, subtact, and divide sunbers
3, 3y sompuie 3 tnthe Tth power, or 3 o the §42i power

compute mc Squars oot of =5
compute
Log1Lug 1081 conmpue the raral Iog finfand base- 14 log fleg

mpuate the absolus value |51

aba(=5)
Sin(54pdfd) cumpule e sine of SU3
hczxc]j{z_i; cumpute the Bessel iusction J

@)

T3 muliply ey clemnt of by 3
icl 2 to every element of x
rlrlr.m“ - Wi |Hmm| of hwa vectoers ¥ and ¥
pwum e A i 1 vl
waduct of two rvumwi Aund i
'|r\r lowed re two column »O\.mr\‘
element wise muu.q o vec 3
the sguare malrix A Lo the 3rd power
not allowed if 1 15 0ot 4 square maix!
ke 1 the 30 power

Construeting a few simple matrices:
sande12,d) a1 2ol matri with il candonm nunbes: in 0.1
randn (12,4} 4 12xd motnix with Giussan randos
zeros (1,4} o l2xd m%lﬂ‘ of zeros
cnesili, 41 |24 matrix of oncs

CIEN] a5x8 ulrn‘ll\ matrx F(il

1 . a1 2xd matrix whase first J rows are the dxd identity
Linspae|l.2,4.7, 100
roe vector af 100 equa
7115 pow vectorof 759, 1415
aiagix) matris whose diagonal is the

- spaced numbers from 1.2 10 4.7

and pther elements

Portions of qunu.s and veclors:

d) rh. 2nd to the last elements of 1

idiend) t\tr. third clement of ¥, from |5t to the last

' the elements of x

m. row vector of every clement in the 3th row of A

the row vector of the first 3 xLumnu in the Sthrow of A
the colimn vector of every element in e 2rd column of A
column vector of the diaganal il

and b a calumn vectar, the solution o Av—b
the inverse manris A
= 1ua) he
the cigany;
eiglap m. columns of Vare the cigem
[

tets of A, and

iagomals diag (o) are the ciganvabes of A
Ploming:
platiy) plm y s the y ands, with 1 s e inds
plotix,¥| leagthy
plotix,A) nst have same # rows)
loglogix,y}
senilage (x,¥) puun versiz x with a log scale
senilogy x,y) plot y versis © with y on a kog scale

fplot(f(x) .expression.,la,bl] .

G e expression in i eom c=i 1
axia aqual Forceshe vand yaxes of the curremt plo m he scaled equally
eiclel's Tiele') uld atithe A Fire b top of the plot

exp(A) ¢ ko e power # xlabel{ blah'} babeel s
zl:f::l-l M' e scane n\)'lrdncn clement of A ylabel{ blah'} Iabel the v nxis A(Jff g
(i the matrix exponcntial e Legend(" fas’, ‘bar) label 2 carves. in the plot fon and bay
agrimid) the matrix whosz s is A gpad, mdmesdn ot
b figure Bpen up new figure window
Tmn\pu\c\ and dot produc
. e transposes uf 1 and A
X', A ihe somplex-conjusaie of the mnsposes of © and A dot(x,¥), sum|x.*y} oth ru-tmrwmmh-‘dutw:-lm
P the dot (inner} ,smlm of twoelprn vectors vandy ® % ¥ the o mlzmn of twn eolimm vectons

= You may want to repeat a list of instructions.

= Just create a plain text file with .m extension

% a_script.m
% A first matlab script

%

% <- note that these percentages

% indicate comments

radius

2.4

% Note 'pi'

circum

height

radius * 2 * pi

volume / circum

- What is the output?

= You may want to repeat a list of instructions.

= Just create a plain text file with .m extension

% fixed_script.m

radius 2.4
volume 48

% Note 'pi’
circum = radius * 2 * pi

height = volume / circum

— Volume was not
defined!

- Alternative: set
volume before calling
the script.

So, perform:
> volume =48
> a_script

Matlab Path

= A script will only run when it is in a place where matlab
can find It.

= Matlab looks in a list of directories called 'path'’
= path

= see “help path”

= Normally: the current working directory is in the path
= pwd
= cd

Suppressing/Showing Output

= we may not want to show all intermediate results
= use '’}
= show some particular things using 'disp'

% fixed_script.m

radius = 2.4; %<- surpress output!
circum = radius * 2 * pi;
volume = 48;

height volume / circum;
disp('height 1is');
disp(height);

Conditions: If

= Sometimes you want to do things only is some cases.
= Called 'branching’' and is a very important capability.

% longest_side.m

%

% this script determines the longest
% side of a rectangle. It expects 2
% variables 'length_x' and 'length_y'
% to be defined.

% assume y 1s longest side:
longest_side = length_y;

if length_x > length_y
longest_side = length_x;
end

disp(longest_side);

= The previous way of writing Is not the most intuitive...

= the default assumption is awkward
= use “else”

% longest_side_else.m

%

% this script determines the longest
% side of a rectangle. It expects 2
% variables 'length_x' and 'length_y'
% to be defined.

if length_x > length_y
longest_side = length_x;
else
longest_side = length_y;
end
disp(longest_side);

If...elself...else...

= More generally, we test multiple conditions

if CONDITION1

elseif CONDITION2

elseif CONDITIONS

else

o .

Conditions

= S0 exactly what are the CONDITIONs?

= expressions that evaluate to ‘true' or 'false’

= 'false' defined as 'O’
truthvalue = 0

= 'true' Is any non-zero value if truthvalue
disp('true')

else
disp('false')
end

= This code can be used to test any truth value
expression.

Conditions - 2

= Can make more complex expressions by '‘operators'

Relational operators:
« A<B,
- A>B

A<=B

A>=B

A==B

A~=B

Logical operators:
e ~A
- A|B,
- A&B

'short-circuit'
« Al B
e A&&B

octave> ~1
ans = 0
octave> 1 & 0
ans = 0

octave> -1 | O
ans = 1
octave> 0 | O
ans = 0

Do it again: loops

= Another important capability: repeating instructions.
= |.e., performing 'loops'.

= Matlab has 2 types of loops:

= 'for' when you know how often you need to loop
In advance.

= 'while' when you don't, but only have a stopping
criteria.

For loop

= For loops: used when you know how often you need to
loop.

%count to 10
for 1 = [1:10]
disp(1)

end

%count down:
for 1 = [10:1]
disp(1)

end

= For loops: used when you know how often you need to
loop.

%count to 10
for 1 = [1:10]
disp(1)

end

%count down:
start = 10
for 1 = [start:1]

disp(1)

octave:12> [1:10]
ans =

= (almost) everything in matlab is an array or matrix!

While loop

= Sometimes it is hard to know how often we loop
- use 'while'

% strange count
= 14209

1 =1;

while(n > 1)
disp(1)
if n%

else

I
—
S
N
=)
O

While loc

n

I
—
S
N
—
o

n

n

= Sometimes it is hard to know hde

— use 'while'

% strange count
n = 14209

1 =1;

while(n > 1)
disp(1)
if n%

else

Reusing code

= A very important concept: code reuse

= All these scripts are nice, but...
= writing scripts for complex tasks is a lot of work.
= often there Is functionality we want to reuse!

= This Is where 'functions' come In...

= a piece of code that performs a specific task
= has input and output.

Using Matlab/Octace Functions

= Matlab has many built in functions.
= We already saw a few: 'mod', 'sqrt'

= Calling a function:. FUNCTIONNAME(..., ..., ...)
= 'mod(3,2)'
= 'pi()' or just 'pI'
= [m, iIndex] = max([4, 2, 6, 3])

Writing your own Functions

= You can write your own function very simply

function output = FunctionName(input1, input2)

output = ..

= Need to name the file 'FunctionName.m'

Writing your own Functions

= You can write your own function very simply

function longest = LongestSide(length_x, length_y)

if length_x > length_y

longest = length_x;
else

longest = length_y;
end

= Need to name the file 'LongestSide.m’
= Capitalization of 'LongestSide' is a convention
= (no rule)

Writing your own Functions

= You can write your own function very simply

function longest = LongestSide(length_x, length_y)

if length_x > length_y

longest = length_x;
else

longest = length_y;
end

= Need to name the file 'Longe

= Capitalization of 'LongestSid@aEiTHEENELN{NSS EEERED

ans = 5

= (no rule)

Writing your own Functions

= Document your functions!

function longest LongestSide(length_x, length_y)
%function longest LongestSide(length_x, length_y)
%

% this is a special comment block: it is shown when
% calling 'help LongestSide’

if length_x > length_y
longest = length_x;
else
longest = length_y;
end

= For yourself and others.

Anonymous Functions

= Small functions can also be defined in the matlab
environment.

= inlab
= even more ways in book

octave:35> MyAddFunction = @(x,y) X+y
MyAddFunction =

@(x, y) x +y

octave:36> MyAddFunction(2,4)
ans = 6

Recap Programming

= Congrats: Now you know the most important
constructs of programming!

= Let's summarize:

= — Advanced calculator

= Variables: names for intermediate parts of computation.
= Arithmetic operators

= Scripts

= Branching: if ... else ..., conditions

= Loops: for, while

= Functions

« full blown programming.

A First Bit of Scientific Programming

= Now that you know the most important constructs of
programming...

...we can start!
= with a scientific programming problem:

Solving non-linear equations

What are (non-)linear equations?

= linear equations?

What are (non-)linear equations?

= linear equations

3x+7y=4
X—3y=4+z
(x—3y)/z=2

'‘General Form'

a,+a,;x,;+a,x,+...=0

Straight line
(for 2 variables)

What are (non-)linear equations?

= linear equations

3x+7y=4
X—3y=4+z
(x—3y)/z=2

= non-linear equations?

'‘General Form'

a,+a,;x,;+a,x,+...=0

What are (non-)linear equations?

= linear equations

3x+7y=4
x—3y=4+z
(x—3y)/z=2

= non-linear equations:

'‘General Form'

a,+a,;x,;+a,x,+...=0

All equations that are not linear!

x°=4
Xy =2
y=vx

Finding the 'roots’

= Many problems can be reformulated as finding the
'roots' or 'zeros' of a function.

= Whatisln6 ?

Finding the 'roots’

= Many problems can be reformulated as finding the
'roots' or 'zeros' of a function.

= Whatisln6 ? y

e =6
e —6=0 7 X

Numerical Algorithms

= To solve this problem we will now discuss our first
numerical method, or numerical algorithm.

= Roughly:
= algorithm = cook-book recipe

= an algorithm can be implemented
(converted to code In a programming language).

The Bisection Method

= Suppose we want to find the roots of this function?

y

The Bisection Method

= Search the interval [a,b] for the crossing point!

y

The Bisection Method

= Halve the interval

y

a b
= Then select the interval where the crossing occurs

The Bisection Method

= Repeat, until the interval is small enough

y

The Bisection Method

= Repeat, until the interval is small enough

y

The Bisection Method

= Repeat, until the interval is small enough

y

The Bisection Method

= Repeat, until the interval is small enough

y

The Bisection Method

= Conditions to apply the Bisection Method:
= fis continuous
= Interval [a,b]

= f(a) Is positive and f(b) is negative or vice versa

— contains an a zero
(‘theorem of zeros of continuous functions')

= check with f(a)f(b) <0

= To find a good initial interval: e.g., plot the function

The Bisection Method

= Pros

= Simple conceptually

= Only need information of sign of the function
= Works in many settings

= Cons
= Even needs many iterations on a linear function!

Newton's Method

= Newton's method is a different approach
= overcomes some problems (but has its own)

/

Newton's Method

= Start with an arbitrary point.

Newton's Method

= Compute next point via the derivative f'

Newton's Method

= etc.

Newton's Method

= etc.

Newton's Method

= etc.

Newton's Method

= until difference with previous point small enough.

Newton's Method

= Algorithm:
- Start with an arbitrary point x"” .
= Compute the next point XUt —) _ f’(x)

- repeat while |x*""—x"|<e

Newton's Method

= Pros
= From some point on, it is fast!

= converges 'quadratically’
= error of next error is square of previous one.

= Cons
= Need more information: function derivative
= Needs to be initialized sufficiently close to 0
- Problem when f'(x")=0

Homework Reading

Recap:

= H1:1.1,1.5-1.5.1, 1.7,

= H2: p. 41--48 (that is including 48).
Preparation for next time:

= H1:1.2,15.2,1.6.

= H3: p. 75--81, 93--103 (sec. 3.5 is optional)

Read chap.l sequentially
= skipping 1.3 and 1.5.3.
When reading for preparation:

= skip things that are not clear!
— Ask them in class.

Let's get started

= Lab assignments are posted on my website.
http://people.csail.mit.edu/fao

= Reminder: bring the head phones!

http://people.csail.mit.edu/fao

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67

