

Scientific Computing
Maastricht Science Program

Week 1

Frans Oliehoek
<frans.oliehoek@maastrichtuniversity.nl>

Good Choice!

 Let me start: Congratulations!
 There is virtually no branch of science that can do

without scientific computations...
 Exact science require a way of thinking that is closely

linked with math and programming

 But also: bear with me!
 There is a lot to be learned.
 Different backgrounds.

 But don't worry: programming is not difficult.

Practicalities

 About me
 Computer Science / AI

 First time I give this course

→ let me know if things are unclear!

 Book “QSG”:
 Scientific Computing with MATLAB and Octave. Alfio

Quarteroni, Fausto Saleri & Paola Gervasio. 3rd edition.

 Course manual on Eleum and my website.
 All information will be posted on my website under

'teaching':

http://people.csail.mit.edu/fao/

 Name: Frans Oliehoek
 Department: DKE (RAI group)
 Location: SSK 39, room 2.001
 Tel.: +31 43 3883485
 Email: frans.oliehoek@maastrichtuniversity.nl
 WWW: http://people.csail.mit.edu/fao/

Practicalities

 Examination etc.

 Attendance

 Grades based on:
 A small report at the end of each lab
 A (short) closed book test during the last session

 Work in pairs
 linear algebra students not together

 Name: Frans Oliehoek
 Department: DKE (RAI group)
 Location: SSK 39, room 2.001
 Tel.: +31 43 3883485
 Email: frans.oliehoek@maastrichtuniversity.nl
 WWW: http://people.csail.mit.edu/fao/

More Practicalities

 Schedule:
Session Date hours / location

1 2012-04-13 (Fri) -MSC Lecture Hall 1.028 0900-1100
-DKE computer room 1.001 1100-1600

2 2012-04-18 (Wed) -MSC Lecture Hall 1.009 0900-1100
-DKE computer room 1.001 1100-1600

3 2012-04-25 (Wed) -MSC Lecture Hall 1.028 1100-1300
-DKE computer room 1.001 1400-1800

4 2012-05-04 (Fri) -MSC Lecture Hall 1.009 0900-1100
-DKE computer room 1.001 1100-1600

5 2012-05-11 (Fri) -MSC Lecture Hall 1.009 0900-1100
-DKE computer room 1.001 1100-1600

6 2012-05-16 (wed) -MSC Lecture Hall 1.001 0900-1100
-DKE computer room 1.001 1100-1600

Scientific Computing - Goals

 Goals
 familiar with the concepts of programming
 get accustomed with high-level languages like Matlab

and Mathematica.
 Provide an overview of some of the issues and

problems that arise in scientific computation:
 (non-)linear systems, numerical and symbolic integration,

differential equations and simulation.

Scientific Computing: What is it about?

 Computing: we will learn to 'program'
 Really: make the computer do what you want.
 In this course we will work with

 Matlab, or
 (free software) Octave.

 Scientific:
 We will deal with scientific problems.
 Mostly based on calculus and linear algebra.

Scientific Computing – Quiz

 Pop quiz:
 Who has programming experience?
 Who has experience with Matlab or Octave? Who with

Mathematica?
 Who knows what a matrix is?
 Who knows what a matrix inverse is?
 Who knows how to solve a system of linear equations?

Recommended further reading

 Recommended reading.

 MATLAB
 Introduction to MATLAB. Delores M. Etter. 2nd ed.

 Linear Algebra
 Linear Algebra and Its Applications. David C. Lay. 4th ed.
 Linear Algebra. Gilbert Strang

 Further exploring numerical methods
 Numerical Methods. An introduction to Scientific Computing

Using MATLAB. Peter Linz, Richard L.C. Wang.

Why Scientific Computing?

 Why use computers?

 Why program yourself?

Why Scientific Computing?

 Why use computers?
 Only very simple models can be solved by hand.
 Usually: there is no closed form solution.

 E.g., solving a polynomial equation of degree > 4

 But can get numerical approximations!
 Why program yourself?

 Science: if somebody programmed it, it has already
been done!

 Industry:
 to use it, need to understand what a program does and how,
 somebody needs to develop these programs (often internally)!

Alright, so what is programming?

 Programming is about making a machine (computer)
do what you want it to.

 difference with a oven or other machines?

Alright, so what is programming?

 Programming is about making a machine (computer)
do what you want it to.

 difference with a oven or other machines?
 → a computer can do many tasks

and programming let's you do that!
 We focus on scientific computations.

 Example: how many km is 1 light year?

How many km in a light year?

 299792458 * 365 * 24 * 60 * 60 / 1000 = 9.4543e+12

 These computations become difficult to interpret!
 How about if we could name parts of this computation?

How many km in a light year?

 299792458 * 365 * 24 * 60 * 60 / 1000 = 9.4543e+12

 These computations become difficult to interpret!
 How about if we could name parts of this computation?

 meaning of '='
 the names are called 'variables'

speed_of_light = 299792458
secs_per_year = 365 * 24 * 60 * 60
m_per_lyear = speed_of_light * secs_per_year
km_per_lyear = m_per_year / 1000

Our first Matlab/Octave code!

 This is our first Matlab code!

 (Demonstration)
 Matlab (Octave) is like a

convenient calculator.

speed_of_light = 299792458
secs_per_year = 365 * 24 * 60 * 60
m_per_lyear = speed_of_light * secs_per_year
km_per_lyear = m_per_year / 1000

Operators

 Arithmetic:
 +, - addition, subtraction
 *, / multiplication, division
 ^ power
 sqrt square root
 log, log10 logarithms
 mod modulo

 E.g.:

→ all this is summarized in QSG
→ Google: 'matlab cheat sheet'

octave:4> 1982980 / 2^8
ans = 7746.0
octave:5> mod(5,4)
ans = 1

Scripts

 You may want to repeat a list of instructions.
 Just create a plain text file with .m extension

% a_script.m
% A first matlab script
%
% <- note that these percentages
% indicate comments

radius = 2.4

% Note 'pi'
circum = radius * 2 * pi

height = volume / circum

→ What is the output?

Scripts

 You may want to repeat a list of instructions.
 Just create a plain text file with .m extension

% fixed_script.m

radius = 2.4
volume = 48

% Note 'pi'
circum = radius * 2 * pi

height = volume / circum

→ Volume was not
defined!

→ Alternative: set
volume before calling
the script.

So, perform:
> volume = 48
> a_script

Matlab Path

 A script will only run when it is in a place where matlab
can find it.

 Matlab looks in a list of directories called 'path'
 path
 see “help path”

 Normally: the current working directory is in the path
 pwd
 cd

Suppressing/Showing Output

 we may not want to show all intermediate results
 use ';'
 show some particular things using 'disp'

% fixed_script.m

radius = 2.4; %<- surpress output!
circum = radius * 2 * pi;
volume = 48;
height = volume / circum;
disp('height is');
disp(height);

Conditions: If

 Sometimes you want to do things only is some cases.
 Called 'branching' and is a very important capability.

% longest_side.m
% ---------
% this script determines the longest
% side of a rectangle. It expects 2
% variables 'length_x' and 'length_y'
% to be defined.

% assume y is longest side:
longest_side = length_y;

if length_x > length_y
 longest_side = length_x;
end

disp(longest_side);

If...else...

 The previous way of writing is not the most intuitive...
 the default assumption is awkward
 use “else”

% longest_side_else.m
% ---------
% this script determines the longest
% side of a rectangle. It expects 2
% variables 'length_x' and 'length_y'
% to be defined.

if length_x > length_y
 longest_side = length_x;
else
 longest_side = length_y;
end
disp(longest_side);

If...elseif...else...

 More generally, we test multiple conditions

if CONDITION1
 …
elseif CONDITION2
 …
elseif CONDITION3
 …
else
 …
end

Conditions

 So exactly what are the CONDITIONs?
 expressions that evaluate to `true' or 'false'
 'false' defined as '0'
 'true' is any non-zero value

 This code can be used to test any truth value
expression.

truthvalue = 0
if truthvalue
 disp('true')
else
 disp('false')
end

Conditions - 2

 Can make more complex expressions by 'operators'

Relational operators:
● A < B,
● A > B
● A <= B
● A >= B
● A == B
● A ~= B

Logical operators:
● ~A
● A | B,
● A & B

'short-circuit'
● A || B
● A && B

octave> ~1
ans = 0
octave> 1 & 0
ans = 0
octave> -1 | 0
ans = 1
octave> 0 | 0
ans = 0

Do it again: loops

 Another important capability: repeating instructions.
 i.e., performing 'loops'.

 Matlab has 2 types of loops:
 'for' when you know how often you need to loop

in advance.
 'while' when you don't, but only have a stopping

criteria.

For loop

 For loops: used when you know how often you need to
loop.

%count to 10
for i = [1:10]

disp(i)
end

%count down:
for i = [10:1]

disp(i)
end

For loop

 For loops: used when you know how often you need to
loop.

 (almost) everything in matlab is an array or matrix!

%count to 10
for i = [1:10]

disp(i)
end

%count down:
start = 10
for i = [start:1]

disp(i)
end

octave:12> [1:10]
ans =

 1 2 3 4 5 6 7 8 9 10

While loop

 Sometimes it is hard to know how often we loop

→ use 'while'

% strange count down
n = 14209

i = 1;
while(n > 1)
 disp(i)
 if n % 2 == 0
 n = n / 2
 else
 n = n + 1
 end
 i = i + 1;
end

While loop

 Sometimes it is hard to know how often we loop

→ use 'while'

% strange count down
n = 14209

i = 1;
while(n > 1)
 disp(i)
 if n % 2 == 0
 n = n / 2
 else
 n = n + 1
 end
 i = i + 1;
end

n = 14209
 1

n = 14210
 2

n = 7105
 3

n = 7106
 4

n = 3553
 5

n = 3554
 6

n = 1777
 7

n = 1778
 8

n = 889
 9

n = 890
 10

n = 445
 11

n = 446
 12

n = 223
 13

n = 224
 14

n = 112
 15

n = 56
 16

n = 28
 17

n = 14
 18

n = 7
 19

n = 8
 20

n = 4
 21

n = 2
 22

n = 1

Reusing code

 A very important concept: code reuse
 All these scripts are nice, but...

 writing scripts for complex tasks is a lot of work.
 often there is functionality we want to reuse!

 This is where 'functions' come in...
 a piece of code that performs a specific task
 has input and output.

Using Matlab/Octace Functions

 Matlab has many built in functions.
 We already saw a few: 'mod', 'sqrt'

 Calling a function: FUNCTIONNAME(…, …, ...)
 'mod(3,2)'
 'pi()' or just 'pi'
 [m, index] = max([4, 2, 6, 3])

Writing your own Functions

 You can write your own function very simply

 Need to name the file 'FunctionName.m'

function output = FunctionName(input1, input2)

…
…
output = …
…

Writing your own Functions

 You can write your own function very simply

 Need to name the file 'LongestSide.m'
 Capitalization of 'LongestSide' is a convention

 (no rule)

function longest = LongestSide(length_x, length_y)

if length_x > length_y
 longest = length_x;
else
 longest = length_y;
end

Writing your own Functions

 You can write your own function very simply

 Need to name the file 'LongestSide.m'
 Capitalization of 'LongestSide' is a convention

 (no rule)

function longest = LongestSide(length_x, length_y)

if length_x > length_y
 longest = length_x;
else
 longest = length_y;
end

octave:33> LongestSide(3, 5)
ans = 5

Writing your own Functions

 Document your functions!

 For yourself and others.

function longest = LongestSide(length_x, length_y)
%function longest = LongestSide(length_x, length_y)
%
% this is a special comment block: it is shown when
% calling 'help LongestSide'

if length_x > length_y
 longest = length_x;
else
 longest = length_y;
end

Anonymous Functions

 Small functions can also be defined in the matlab
environment.

 in lab
 even more ways in book

octave:35> MyAddFunction = @(x,y) x+y
MyAddFunction =

@(x, y) x + y

octave:36> MyAddFunction(2,4)
ans = 6

Recap Programming

 Congrats: Now you know the most important
constructs of programming!

 Let's summarize:
 → Advanced calculator
 Variables: names for intermediate parts of computation.
 Arithmetic operators
 Scripts
 Branching: if … else …, conditions
 Loops: for, while
 Functions

 ← full blown programming.

A First Bit of Scientific Programming

 Now that you know the most important constructs of
programming...

...we can start!

 with a scientific programming problem:

Solving non-linear equations

What are (non-)linear equations?

 linear equations?

What are (non-)linear equations?

 linear equations

x−3y=4+z

3 x+7 y=4

(x−3y)/ z=2

'General Form'

a0+a1 x1+a2 x2+...=0

y

x

Straight line
(for 2 variables)

What are (non-)linear equations?

 linear equations

 non-linear equations?

x−3y=4+z

3 x+7 y=4

(x−3y)/ z=2

'General Form'

a0+a1 x1+a2 x2+...=0

What are (non-)linear equations?

 linear equations

 non-linear equations:

All equations that are not linear!

x−3y=4+z

3 x+7 y=4

(x−3y)/ z=2

'General Form'

a0+a1 x1+a2 x2+...=0

x2
=4

xy=2

y=√x

Finding the 'roots'

 Many problems can be reformulated as finding the
'roots' or 'zeros' of a function.

 What is ln 6 ?

Finding the 'roots'

 Many problems can be reformulated as finding the
'roots' or 'zeros' of a function.

 What is ln 6 ? y

x

-5
-6

ln 6

e x
=6

ex
−6=0

Numerical Algorithms

 To solve this problem we will now discuss our first
numerical method, or numerical algorithm.

 Roughly:
 algorithm = cook-book recipe
 an algorithm can be implemented

(converted to code in a programming language).

The Bisection Method

 Suppose we want to find the roots of this function?

y

x

The Bisection Method

 Search the interval [a,b] for the crossing point!

y

x

a b

The Bisection Method

 Halve the interval

 Then select the interval where the crossing occurs

y

x

a b

The Bisection Method

 Repeat, until the interval is small enough

y

x

ba

The Bisection Method

 Repeat, until the interval is small enough

y

x

a b

The Bisection Method

 Repeat, until the interval is small enough

y

x

ba

The Bisection Method

 Repeat, until the interval is small enough

y

x

a b

The Bisection Method

 Conditions to apply the Bisection Method:
 f is continuous
 interval [a,b]

 f(a) is positive and f(b) is negative or vice versa

→ contains an a zero
('theorem of zeros of continuous functions')

 check with f(a)f(b) < 0

 To find a good initial interval: e.g., plot the function

The Bisection Method

 Pros
 Simple conceptually
 Only need information of sign of the function

 Works in many settings

 Cons
 Even needs many iterations on a linear function!

Newton's Method

 Newton's method is a different approach
 overcomes some problems (but has its own)

y

x

Newton's Method

 Start with an arbitrary point.

y

xx(0)

Newton's Method

 Compute next point via the derivative f'

y

xx(0)

x(1)

Newton's Method

 etc.

y

xx(0)

x(1)

x(2)

Newton's Method

 etc.

y

xx(0)

x(1)

x(2)

x(3)

Newton's Method

 etc.

y

xx(0)

x(1)

x(2)

x(3)

x(4)

Newton's Method

 until difference with previous point small enough.

y

xx(0)

x(1)

x(2)

x(3)

x(4)x(5)

Newton's Method

 Algorithm:
 Start with an arbitrary point
 Compute the next point
 repeat while

x(0)

x(k+1)
=x(k)

−
f (x(k))

f ' (x(k)
)

∣x(k+1)−x(k)∣<ϵ

Newton's Method

 Pros
 From some point on, it is fast!

 converges 'quadratically'
 error of next error is square of previous one.

 Cons
 Need more information: function derivative
 Needs to be initialized sufficiently close to 0
 Problem when f ' (x(k))=0

Homework Reading
 Recap:

 H1: 1.1, 1.5-1.5.1, 1.7,
 H2: p. 41--48 (that is including 48).

 Preparation for next time:
 H1: 1.2, 1.5.2, 1.6.
 H3: p. 75--81, 93--103 (sec. 3.5 is optional)

 Read chap.1 sequentially
 skipping 1.3 and 1.5.3.

 When reading for preparation:
 skip things that are not clear!

→ Ask them in class.

Let's get started

 Lab assignments are posted on my website.

http://people.csail.mit.edu/fao

 Reminder: bring the head phones!

http://people.csail.mit.edu/fao

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67

